1932

Abstract

Patient-derived cancer organoids (PDCOs) are organotypic 3D cultures grown from patient tumor samples. PDCOs provide an exciting opportunity to study drug response and heterogeneity within and between patients. This research can guide new drug development and inform clinical treatment planning. We review technologies to assess PDCO drug response and heterogeneity, discuss best practices for clinically relevant drug screens, and assert the importance of quantifying single-cell and organoid heterogeneity to characterize response. Autofluorescence imaging of PDCO growth and metabolic activity is highlighted as a compelling method to monitor single-cell and single-organoid response robustly and reproducibly. We also speculate on the future of PDCOs in clinical practice and drug discovery.Future development will require standardization of assessment methods for both morphology and function in PDCOs, increased throughput for new drug development, prospective validation with patient outcomes, and robust classification algorithms.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110220-123503
2022-06-06
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-110220-123503.html?itemId=/content/journals/10.1146/annurev-bioeng-110220-123503&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Collins A, Miles GJ, Wood J, MacFarlane M, Pritchard C, Moss E 2020. Patient-derived explants, xenografts and organoids: 3-dimensional patient-relevant pre-clinical models in endometrial cancer. Gynecol. Oncol. 156:251–59
    [Google Scholar]
  2. 2.
    Huo K-G, D'Arcangelo E, Tsao M-S 2020. Patient-derived cell line, xenograft and organoid models in lung cancer therapy. Transl. Lung Cancer Res. 9:2214–32
    [Google Scholar]
  3. 3.
    Inoue A, Deem AK, Kopetz S, Heffernan TP, Draetta GF, Carugo A. 2019. Current and future horizons of patient-derived xenograft models in colorectal cancer translational research. Cancers 11:1321
    [Google Scholar]
  4. 4.
    Castro F, Pereira CL, Macedo MH, Almeida A, Silveira MJ et al. 2021. Advances on colorectal cancer 3D models: the needed translational technology for nanomedicine screening. Adv. Drug Deliv. Rev. 175:113824
    [Google Scholar]
  5. 5.
    Driehuis E, Kretzschmar K, Clevers H. 2020. Establishment of patient-derived cancer organoids for drug-screening applications. Nat. Protoc. 15:3380–409
    [Google Scholar]
  6. 6.
    Dekkers JF, Alieva M, Wellens LM, Ariese HC, Jamieson PR et al. 2019. High-resolution 3D imaging of fixed and cleared organoids. Nat. Protoc. 14:1756–71
    [Google Scholar]
  7. 7.
    Kratochvil MJ, Seymour AJ, Li TL, Paşca SP, Kuo CJ, Heilshorn SC. 2019. Engineered materials for organoid systems. Nat. Rev. Mater. 4:606–22
    [Google Scholar]
  8. 8.
    Driehuis E, Kolders S, Spelier S, Lõhmussaar K, Willems SM et al. 2019. Oral mucosal organoids as a potential platform for personalized cancer therapy. Cancer Discov 9:852–71
    [Google Scholar]
  9. 9.
    Ganesh K, Wu C, O'Rourke KP, Szeglin BC, Zheng Y et al. 2019. A rectal cancer organoid platform to study individual responses to chemoradiation. Nat. Med. 25:1607–14
    [Google Scholar]
  10. 10.
    Ooft SN, Weeber F, Dijkstra KK, McLean CM, Kaing S et al. 2019. Patient-derived organoids can predict response to chemotherapy in metastatic colorectal cancer patients. Sci. Translational Med. 11:eaay2574
    [Google Scholar]
  11. 11.
    Sharick JT, Walsh CM, Sprackling CM, Pasch CA, Pham DL et al. 2020. Metabolic heterogeneity in patient tumor-derived organoids by primary site and drug treatment. Front. Oncol. 10:553
    [Google Scholar]
  12. 12.
    Tiriac H, Belleau P, Engle DD, Plenker D, Deschênes A et al. 2018. Organoid profiling identifies common responders to chemotherapy in pancreatic cancer. Cancer Discov 8:1112–29
    [Google Scholar]
  13. 13.
    Vlachogiannis G, Hedayat S, Vatsiou A, Jamin Y, Fernández-Mateos J et al. 2018. Patient-derived organoids model treatment response of metastatic gastrointestinal cancers. Science 359:920–26
    [Google Scholar]
  14. 14.
    Yao Y, Xu X, Yang L, Zhu J, Wan J et al. 2020. Patient-derived organoids predict chemoradiation responses of locally advanced rectal cancer. Cell Stem Cell 26:17–26.e6
    [Google Scholar]
  15. 15.
    Lou Y-R, Leung AW. 2018. Next generation organoids for biomedical research and applications. Biotechnol. Adv. 36:132–49
    [Google Scholar]
  16. 16.
    Wensink GE, Elias SG, Mullenders J, Koopman M, Boj SF et al. 2021. Patient-derived organoids as a predictive biomarker for treatment response in cancer patients. NPJ Precision Oncol 5:30
    [Google Scholar]
  17. 17.
    Kondo J, Inoue M. 2019. Application of cancer organoid model for drug screening and personalized therapy. Cells 8:470
    [Google Scholar]
  18. 18.
    LeSavage BL, Suhar RA, Broguiere N, Lutolf MP, Heilshorn SC. 2021. Next-generation cancer organoids. Nat. Mater. 21:14359
    [Google Scholar]
  19. 19.
    Drost J, Clevers H. 2018. Organoids in cancer research. Nat. Rev. Cancer 18:407–18
    [Google Scholar]
  20. 20.
    Tuveson D, Clevers H. 2019. Cancer modeling meets human organoid technology. Science 364:952–55
    [Google Scholar]
  21. 21.
    Pasch CA, Favreau PF, Yueh AE, Babiarz CP, Gillette AA et al. 2019. Patient-derived cancer organoid cultures to predict sensitivity to chemotherapy and radiation. Clin. Cancer Res. 25:5376–87
    [Google Scholar]
  22. 22.
    Dijkstra KK, Monkhorst K, Schipper LJ, Hartemink KJ, Smit EF et al. 2020. Challenges in establishing pure lung cancer organoids limit their utility for personalized medicine. Cell Rep 31:107588
    [Google Scholar]
  23. 23.
    Gillette AA, Babiarz CP, VanDommelen AR, Pasch CA, Clipson L et al. 2021. Autofluorescence imaging of treatment response in neuroendocrine tumor organoids. Cancers 13:1873
    [Google Scholar]
  24. 24.
    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:933–45
    [Google Scholar]
  25. 25.
    Kondo J, Endo H, Okuyama H, Ishikawa O, Iishi H et al. 2011. Retaining cell-cell contact enables preparation and culture of spheroids composed of pure primary cancer cells from colorectal cancer. PNAS 108:6235–40
    [Google Scholar]
  26. 26.
    Arnadottir SS, Jeppesen M, Lamy P, Bramsen JB, Nordentoft I et al. 2018. Characterization of genetic intratumor heterogeneity in colorectal cancer and matching patient-derived spheroid cultures. Mol. Oncol. 12:132–47
    [Google Scholar]
  27. 27.
    Weeber F, van de Wetering M, Hoogstraat M, Dijkstra KK, Krijgsman O et al. 2015. Preserved genetic diversity in organoids cultured from biopsies of human colorectal cancer metastases. PNAS 112:13308–11
    [Google Scholar]
  28. 28.
    Sato T, Stange DE, Ferrante M, Vries RG, van Es JH et al. 2011. Long-term expansion of epithelial organoids from human colon, adenoma, adenocarcinoma, and Barrett's epithelium. Gastroenterology 141:1762–72
    [Google Scholar]
  29. 29.
    Kopper O, De Witte CJ, Lõhmussaar K, Valle-Inclan JE, Hami N et al. 2019. An organoid platform for ovarian cancer captures intra-and interpatient heterogeneity. Nat. Med. 25:838–49
    [Google Scholar]
  30. 30.
    Broutier L, Mastrogiovanni G, Verstegen MM, Francies HE, Gavarró LM et al. 2017. Human primary liver cancer–derived organoid cultures for disease modeling and drug screening. Nat. Med. 23:1424–35
    [Google Scholar]
  31. 31.
    Boj SF, Hwang C-I, Baker LA, Chio IIC, Engle DD et al. 2015. Organoid models of human and mouse ductal pancreatic cancer. Cell 160:324–38
    [Google Scholar]
  32. 32.
    Sachs N, de Ligt J, Kopper O, Gogola E, Bounova G et al. 2018. A living biobank of breast cancer organoids captures disease heterogeneity. Cell 172:373–86.e10
    [Google Scholar]
  33. 33.
    Turco MY, Gardner L, Hughes J, Cindrova-Davies T, Gomez MJ et al. 2017. Long-term, hormone-responsive organoid cultures of human endometrium in a chemically defined medium. Nat. Cell Biol. 19:568–77
    [Google Scholar]
  34. 34.
    Schutgens F, Rookmaaker MB, Margaritis T, Rios A, Ammerlaan C et al. 2019. Tubuloids derived from human adult kidney and urine for personalized disease modeling. Nat. Biotechnol. 37:303–13
    [Google Scholar]
  35. 35.
    Larsen BM, Kannan M, Langer LF, Leibowitz BD, Bentaieb A et al. 2021. A pan-cancer organoid platform for precision medicine. Cell Rep 36:109429
    [Google Scholar]
  36. 36.
    Tsai S, McOlash L, Palen K, Johnson B, Duris C et al. 2018. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18:1335
    [Google Scholar]
  37. 37.
    Francies HE, Barthorpe A, McLaren-Douglas A, Barendt WJ, Garnett MJ. 2016. Drug sensitivity assays of human cancer organoid cultures. Organoids K Turksen 339–51 New York: Humana
    [Google Scholar]
  38. 38.
    Hu Y, Sui X, Song F, Li Y, Li K et al. 2021. Lung cancer organoids analyzed on microwell arrays predict drug responses of patients within a week. Nat. Commun. 12:2581
    [Google Scholar]
  39. 39.
    Seppälä TT, Zimmerman JW, Sereni E, Plenker D, Suri R et al. 2020. Patient-derived organoid pharmacotyping is a clinically tractable strategy for precision medicine in pancreatic cancer. Ann. Surg. 272:427–35
    [Google Scholar]
  40. 40.
    Zoetemelk M, Rausch M, Colin DJ, Dormond O, Nowak-Sliwinska P. 2019. Short-term 3D culture systems of various complexity for treatment optimization of colorectal carcinoma. Sci. Rep. 9:7103
    [Google Scholar]
  41. 41.
    Hafner M, Niepel M, Chung M, Sorger PK 2016. Growth rate inhibition metrics correct for confounders in measuring sensitivity to cancer drugs. Nat. Methods 13:521–27
    [Google Scholar]
  42. 42.
    Zack GW, Rogers WE, Latt SA. 1977. Automatic measurement of sister chromatid exchange frequency. J. Histochem. Cytochem. 25:741–53
    [Google Scholar]
  43. 43.
    Walton W. 1948. Feret's statistical diameter as a measure of particle size. Nature 162:329–30
    [Google Scholar]
  44. 44.
    Batlle E, Clevers H. 2017. Cancer stem cells revisited. Nat. Med. 23:1124–34
    [Google Scholar]
  45. 45.
    Walsh AJ, Cook RS, Sanders ME, Aurisicchio L, Ciliberto G et al. 2014. Quantitative optical imaging of primary tumor organoid metabolism predicts drug response in breast cancer. Cancer Res 74:5184–94
    [Google Scholar]
  46. 46.
    Shah AT, Diggins KE, Walsh AJ, Irish JM, Skala MC. 2015. In vivo autofluorescence imaging of tumor heterogeneity in response to treatment. Neoplasia 17:862–70
    [Google Scholar]
  47. 47.
    Walsh AJ, Cook RS, Manning HC, Hicks DJ, Lafontant A et al. 2013. Optical metabolic imaging identifies glycolytic levels, subtypes, and early-treatment response in breast cancer. Cancer Res 73:6164–74
    [Google Scholar]
  48. 48.
    Shah AT, Heaster TM, Skala MC. 2017. Metabolic imaging of head and neck cancer organoids. PLOS ONE 12:e0170415
    [Google Scholar]
  49. 49.
    Walsh AJ, Cook RS, Skala MC. 2017. Functional optical imaging of primary human tumor organoids: development of a personalized drug screen. J. Nucl. Med. 58:1367–72
    [Google Scholar]
  50. 50.
    Walsh AJ, Cook RS, Sanders ME, Arteaga CL, Skala MC. 2016. Drug response in organoids generated from frozen primary tumor tissues. Sci. Rep. 6:18889
    [Google Scholar]
  51. 51.
    Walsh AJ, Mueller KP, Tweed K, Jones I, Walsh CM et al. 2021. Classification of T-cell activation via autofluorescence lifetime imaging. Nat. Biomed. Eng. 5:77–88
    [Google Scholar]
  52. 52.
    Chance B, Schoener B, Oshino R, Itshak F, Nakase Y. 1979. Oxidation-reduction ratio studies of mitochondria in freeze-trapped samples. NADH and flavoprotein fluorescence signals. J. Biol. Chem. 254:4764–71
    [Google Scholar]
  53. 53.
    Georgakoudi I, Quinn KP. 2012. Optical imaging using endogenous contrast to assess metabolic state. Annu. Rev. Biomed. Eng. 14:351–67
    [Google Scholar]
  54. 54.
    Alhallak K, Rebello LG, Muldoon TJ, Quinn KP, Rajaram N. 2016. Optical redox ratio identifies metastatic potential-dependent changes in breast cancer cell metabolism. Biomed. Opt. Express 7:4364–74
    [Google Scholar]
  55. 55.
    Lakowicz JR, Szmacinski H, Nowaczyk K, Johnson ML. 1992. Fluorescence lifetime imaging of free and protein-bound NADH. PNAS 89:1271–75
    [Google Scholar]
  56. 56.
    Sharick JT, Favreau PF, Gillette AA, Sdao SM, Merrins MJ, Skala MC. 2018. Protein-bound NAD(P)H lifetime is sensitive to multiple fates of glucose carbon. Sci. Rep. 8:5456
    [Google Scholar]
  57. 57.
    Becker W. 2014. The bh TCSPC Handbook Berlin: Becker & Hickl
  58. 58.
    Sharick JT, Jeffery JJ, Karim MR, Walsh CM, Esbona K et al. 2019. Cellular metabolic heterogeneity in vivo is recapitulated in tumor organoids. Neoplasia 21:615–26
    [Google Scholar]
  59. 59.
    Walsh A, Cook RS, Rexer B, Arteaga CL, Skala MC. 2012. Optical imaging of metabolism in HER2 overexpressing breast cancer cells. Biomed. Opt. Express 3:75–85
    [Google Scholar]
  60. 60.
    Walsh AJ, Castellanos JA, Nagathihalli NS, Merchant NB, Skala MC. 2016. Optical imaging of drug-induced metabolism changes in murine and human pancreatic cancer organoids reveals heterogeneous drug response. Pancreas 45:863–69
    [Google Scholar]
  61. 61.
    Hedges LV. 1981. Distribution theory for Glass's estimator of effect size and related estimators. J. Educ. Stat. 6:107–28
    [Google Scholar]
  62. 62.
    Gil DA, Deming DA, Skala MC. 2021. Patient-derived cancer organoid tracking with wide-field one-photon redox imaging to assess treatment response. J. Biomed. Opt. 26:036005
    [Google Scholar]
  63. 63.
    Dagogo-Jack I, Shaw AT 2018. Tumour heterogeneity and resistance to cancer therapies. Nat. Rev. Clin. Oncol. 15:81–94
    [Google Scholar]
  64. 64.
    Vitale I, Shema E, Loi S, Galluzzi L. 2021. Intratumoral heterogeneity in cancer progression and response to immunotherapy. Nat. Med. 27:212–24
    [Google Scholar]
  65. 65.
    Kim J, DeBerardinis RJ. 2019. Mechanisms and implications of metabolic heterogeneity in cancer. Cell Metab 30:434–46
    [Google Scholar]
  66. 66.
    Gerlinger M, Rowan AJ, Horswell S, Larkin J, Endesfelder D et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. New Engl. . J. Med. 366:883–92
    [Google Scholar]
  67. 67.
    Strickler JH, Loree JM, Ahronian LG, Parikh AR, Niedzwiecki D et al. 2018. Genomic landscape of cell-free DNA in patients with colorectal cancer. Cancer Discov 8:164–73
    [Google Scholar]
  68. 68.
    Alexandrov LB, Kim J, Haradhvala NJ, Huang MN, Ng AWT et al. 2020. The repertoire of mutational signatures in human cancer. Nature 578:94–101
    [Google Scholar]
  69. 69.
    Vogelstein B, Papadopoulos N, Velculescu VE, Zhou S, Diaz LA, Kinzler KW. 2013. Cancer genome landscapes. Science 339:1546–58
    [Google Scholar]
  70. 70.
    Swanton C. 2012. Intratumor heterogeneity: evolution through space and time. Cancer Res 72:4875–82
    [Google Scholar]
  71. 71.
    Sottoriva A, Kang H, Ma Z, Graham TA, Salomon MP et al. 2015. A Big Bang model of human colorectal tumor growth. Nat. Genet. 47:209–16
    [Google Scholar]
  72. 72.
    Lee SH, Hu W, Matulay JT, Silva MV, Owczarek TB et al. 2018. Tumor evolution and drug response in patient-derived organoid models of bladder cancer. Cell 173:515–28.e17
    [Google Scholar]
  73. 73.
    Yan HH, Siu HC, Law S, Ho SL, Yue SS et al. 2018. A comprehensive human gastric cancer organoid biobank captures tumor subtype heterogeneity and enables therapeutic screening. Cell Stem Cell 23:882–97.e11
    [Google Scholar]
  74. 74.
    Beshiri ML, Tice CM, Tran C, Nguyen HM, Sowalsky AG et al. 2018. A PDX/organoid biobank of advanced prostate cancers captures genomic and phenotypic heterogeneity for disease modeling and therapeutic screening. Clin. Cancer Res. 24:4332–45
    [Google Scholar]
  75. 75.
    Jacob F, Salinas RD, Zhang DY, Nguyen PT, Schnoll JG et al. 2020. A patient-derived glioblastoma organoid model and biobank recapitulates inter-and intra-tumoral heterogeneity. Cell 180:188–204.e22
    [Google Scholar]
  76. 76.
    Jiang S, Zhao H, Zhang W, Wang J, Liu Y et al. 2020. An automated organoid platform with inter-organoid homogeneity and inter-patient heterogeneity. Cell Rep. Med. 1:100161
    [Google Scholar]
  77. 77.
    Li L, Knutsdottir H, Hui K, Weiss MJ, He J et al. 2019. Human primary liver cancer organoids reveal intratumor and interpatient drug response heterogeneity. JCI Insight 4:e121490
    [Google Scholar]
  78. 78.
    Calandrini C, Schutgens F, Oka R, Margaritis T, Candelli T et al. 2020. An organoid biobank for childhood kidney cancers that captures disease and tissue heterogeneity. Nat. Commun. 11:1310
    [Google Scholar]
  79. 79.
    Boretto M, Maenhoudt N, Luo X, Hennes A, Boeckx B et al. 2019. Patient-derived organoids from endometrial disease capture clinical heterogeneity and are amenable to drug screening. Nat. Cell Biol. 21:1041–51
    [Google Scholar]
  80. 80.
    DeStefanis RA, Olson AM, DeZeeuw AK, Gillette AA, Sha GC et al. 2021. Impact of baseline culture conditions of mouse-derived cancer organoids when determining therapeutic response and tumor heterogeneity. bioRxiv 2021.10.12.464087. https://doi.org/10.1101/2021.10.12.464087
    [Crossref]
  81. 81.
    Kratz JD, Rehman S, Johnson KA, Gillette AA, Sunil A et al. 2021. Integrating subclonal response heterogeneity to define cancer organoid therapeutic sensitivity. bioRxiv 2021.10.15.464556. https://doi.org/10.1101/2021.10.15.464556
    [Crossref]
  82. 82.
    Saito T, Niida A, Uchi R, Hirata H, Komatsu H et al. 2018. A temporal shift of the evolutionary principle shaping intratumor heterogeneity in colorectal cancer. Nat. Commun. 9:2884
    [Google Scholar]
  83. 83.
    Bollen Y, Stelloo E, van Leenen P, van den Bos M, Ponsioen B et al. 2021. Reconstructing single-cell karyotype alterations in colorectal cancer identifies punctuated and gradual diversification patterns. Nat. Genet. 53:1187–95
    [Google Scholar]
  84. 84.
    Dijkstra KK, Cattaneo CM, Weeber F, Chalabi M, van de Haar J et al. 2018. Generation of tumor-reactive T cells by co-culture of peripheral blood lymphocytes and tumor organoids. Cell 174:1586–98.e12
    [Google Scholar]
  85. 85.
    Neal JT, Li X, Zhu J, Giangarra V, Grzeskowiak CL et al. 2018. Organoid modeling of the tumor immune microenvironment. Cell 175:1972–88.e16
    [Google Scholar]
  86. 86.
    Shelton SE, Nguyen HT, DA Barbie, Kamm RD. 2020. Engineering approaches for studying immune-tumor cell interactions and immunotherapy. iScience 24:101985
    [Google Scholar]
  87. 87.
    Ayuso JM, Rehman S, Virumbrales-Munoz M, McMinn PH, Geiger P et al. 2021. Microfluidic tumor-on-a-chip model to evaluate the role of tumor environmental stress on NK cell exhaustion. Sci. Adv. 7:eabc2331
    [Google Scholar]
  88. 88.
    Tsai S, McOlash L, Palen K, Johnson B, Duris C et al. 2018. Development of primary human pancreatic cancer organoids, matched stromal and immune cells and 3D tumor microenvironment models. BMC Cancer 18:335
    [Google Scholar]
  89. 89.
    Rodriguez AD, Horowitz LF, Castro K, Kenerson H, Bhattacharjee N et al. 2020. A microfluidic platform for functional testing of cancer drugs on intact tumor slices. . Lab Chip 20:91658–75
    [Google Scholar]
  90. 90.
    He K, Gkioxari G, Dollár P, Girshick R. 2017. Mask R-CNN. Proceedings of the IEEE International Conference on Computer Vision, 20172961–69 New York: IEEE
    [Google Scholar]
  91. 91.
    DeZeeuw AK, DeStefanis RA, Sha G, Pasch CA, Clipson L, Deming DA. 2020. Murine-derived colorectal cancer organoid culture high-throughput drug screening to identify novel combinations targeting PIK3CA mutant cancers. Proceedings of the Annual Meeting of the American Association for Cancer Research 2020 Abstract 3048 Philadelphia: AACR
    [Google Scholar]
  92. 92.
    Schütte M, Risch T, Abdavi-Azar N, Boehnke K, Schumacher D et al. 2017. Molecular dissection of colorectal cancer in pre-clinical models identifies biomarkers predicting sensitivity to EGFR inhibitors. Nat. Commun. 8:14262
    [Google Scholar]
  93. 93.
    Narasimhan V, Wright JA, Churchill M, Wang T, Rosati R et al. 2020. Medium-throughput drug screening of patient-derived organoids from colorectal peritoneal metastases to direct personalized therapy. Clin. Cancer Res. 26:3662–70
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110220-123503
Loading
/content/journals/10.1146/annurev-bioeng-110220-123503
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error