1932

Abstract

Significant advances in bionic prosthetics have occurred in the past two decades. The field's rapid expansion has yielded many exciting technologies that can enhance the physical, functional, and cognitive integration of a prosthetic limb with a human. We review advances in the engineering of prosthetic devices and their interfaces with the human nervous system, as well as various surgical techniques for altering human neuromusculoskeletal systems for seamless human–prosthesis integration. We discuss significant advancements in research and clinical translation, focusing on upper limbprosthetics since they heavily rely on user intent for daily operation, although many discussed technologies have been extended to lower limb prostheses as well. In addition, our review emphasizes the roles of advanced prosthetics technologies in complex interactions with humans and the technology readiness levels (TRLs) of individual research advances. Finally, we discuss current gaps and controversies in the field and point out future research directions, guided by TRLs.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110222-095816
2024-07-03
2025-02-19
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/26/1/annurev-bioeng-110222-095816.html?itemId=/content/journals/10.1146/annurev-bioeng-110222-095816&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Sensinger JW, Hill W, Sybring M. 2019.. Prostheses—assistive technology—upper. . In Encyclopedia of Biomedical Engineering, Vol. 2, ed. R Narayan , pp. 63244. Amsterdam:: Elsevier
    [Google Scholar]
  2. 2.
    Vujaklija I, Farina D, Aszmann OC. 2016.. New developments in prosthetic arm systems. . Orthop. Res. Rev. 8::3139
    [Google Scholar]
  3. 3.
    Basumatary H, Hazarika SM. 2020.. State of the art in bionic hands. . IEEE Trans. Hum. Mach. Syst. 50:(2):11630
    [Crossref] [Google Scholar]
  4. 4.
    Farina D, Vujaklija I, Brånemark R, Bull AM, Dietl H, et al. 2021.. Toward higher-performance bionic limbs for wider clinical use. . Nat. Biomed. Eng. 7:(4):47385
    [Crossref] [Google Scholar]
  5. 5.
    Marasco PD, Hebert JS, Sensinger JW, Beckler DT, Thumser ZC, et al. 2021.. Neurorobotic fusion of prosthetic touch, kinesthesia, and movement in bionic upper limbs promotes intrinsic brain behaviors. . Sci. Robot. 6:(58):eabf3368
    [Crossref] [Google Scholar]
  6. 6.
    Atkins DJ, Heard DC, Donovan WH. 1996.. Epidemiologic overview of individuals with upper-limb loss and their reported research priorities. . J. Prosthet. Orthot. 8:(1):211
    [Crossref] [Google Scholar]
  7. 7.
    Biddiss E, Chau T. 2007.. Upper-limb prosthetics: critical factors in device abandonment. . Am. J. Phys. Med. Rehabil. 86:(12):97787
    [Crossref] [Google Scholar]
  8. 8.
    Lenzi T, Lipsey J, Sensinger JW. 2016.. The RIC arm—a small anthropomorphic transhumeral prosthesis. . IEEE/ASME Trans. Mechatron. 21:(6):266071
    [Crossref] [Google Scholar]
  9. 9.
    Héder M. 2017.. From NASA to EU: the evolution of the TRL scale in public sector innovation. . Innov. J. 22:(2):123
    [Google Scholar]
  10. 10.
    Rier SC, Vreemann S, Nijhof WH, van Driel V, van der Bilt IAC. 2022.. Interventional cardiac magnetic resonance imaging: current applications, technology readiness level, and future perspectives. . Ther. Adv. Cardiovasc. Dis. 16::17539447221119624
    [Crossref] [Google Scholar]
  11. 11.
    Belter JT, Dollar AM. 2013.. Novel differential mechanism enabling two DOF from a single actuator: application to a prosthetic hand. . In 2013 IEEE 13th International Conference on Rehabilitation Robotics (ICORR), pp. 16. New York:: IEEE
    [Google Scholar]
  12. 12.
    Vertongen J, Kamper DG, Smit G, Vallery H. 2020.. Mechanical aspects of robot hands, active hand orthoses, and prostheses: a comparative review. . IEEE/ASME Trans. Mechatron. 26:(2):95565
    [Crossref] [Google Scholar]
  13. 13.
    Damerla R, Qiu Y, Sun TM, Awtar S. 2021.. A review of the performance of extrinsically powered prosthetic hands. . IEEE Trans. Med. Robot. Bion. 3:(3):64060
    [Crossref] [Google Scholar]
  14. 14.
    Catalano MG, Grioli G, Farnioli E, Serio A, Piazza C, et al. 2014.. Adaptive synergies for the design and control of the Pisa/IIT SoftHand. . Int. J. Robot. Res. 33:(5):76882
    [Crossref] [Google Scholar]
  15. 15.
    Leddy MT, Dollar AM. 2022.. The Yale MyoAdapt hand: a highly functional and adaptive single actuator prosthesis. . IEEE Trans. Med. Robot. Bion. 4:(3):80720
    [Crossref] [Google Scholar]
  16. 16.
    Leddy MT, Dollar AM. 2018.. Preliminary design and evaluation of a single-actuator anthropomorphic prosthetic hand with multiple distinct grasp types. . In 2018 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), pp. 106269. New York:: IEEE
    [Google Scholar]
  17. 17.
    Liu H, Xu K, Siciliano B, Ficuciello F. 2019.. The MERO hand: a mechanically robust anthropomorphic prosthetic hand using novel compliant rolling contact joint. . In 2019 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM), pp. 12632. New York:: IEEE
    [Google Scholar]
  18. 18.
    Montagnani F, Controzzi M, Cipriani C. 2015.. Is it finger or wrist dexterity that is missing in current hand prostheses?. IEEE Trans. Neural Syst. Rehabil. Eng. 23:(4):6009
    [Crossref] [Google Scholar]
  19. 19.
    Bajaj NM, Spiers AJ, Dollar AM. 2019.. State of the art in artificial wrists: a review of prosthetic and robotic wrist design. . IEEE T Robot. 35:(1):26177
    [Crossref] [Google Scholar]
  20. 20.
    Damerla R, Rice K, Rubio-Ejchel D, Miro M, Braucher E, et al. 2022.. Design and testing of a novel, high-performance two DoF prosthetic wrist. . IEEE Trans. Med. Robot. Bion. 4::50219
    [Crossref] [Google Scholar]
  21. 21.
    Zhong B, Huang H, Lobaton E. 2020.. Reliable vision-based grasping target recognition for upper limb prostheses. . IEEE Trans. Cybernet. 52:(3):175062
    [Crossref] [Google Scholar]
  22. 22.
    Ghazaei G, Alameer A, Degenaar P, Morgan G, Nazarpour K. 2017.. Deep learning-based artificial vision for grasp classification in myoelectric hands. . J. Neural Eng. 14:(3):036025
    [Crossref] [Google Scholar]
  23. 23.
    Markovic M, Dosen S, Popovic D, Graimann B, Farina D. 2015.. Sensor fusion and computer vision for context-aware control of a multi degree-of-freedom prosthesis. . J. Neural Eng. 12:(6):066022
    [Crossref] [Google Scholar]
  24. 24.
    Castro MN, Dosen S. 2022.. Continuous semi-autonomous prosthesis control using a depth sensor on the hand. . Front. Neurorobot. 16::814973
    [Crossref] [Google Scholar]
  25. 25.
    Došen S, Cipriani C, Kostić M, Controzzi M, Carrozza MC, et al. 2010.. Cognitive vision system for control of dexterous prosthetic hands: experimental evaluation. . J. NeuroEng. Rehabil. 7::42
    [Crossref] [Google Scholar]
  26. 26.
    Yip M, Salcudean S, Goldberg K, Althoefer K, Menciassi A, et al. 2023.. Artificial intelligence meets medical robotics. . Science 381:(6654):14146
    [Crossref] [Google Scholar]
  27. 27.
    Kyberd P. 2023.. Slip detection strategies for automatic grasping in prosthetic hands. . Sensors 23:(9):4433
    [Crossref] [Google Scholar]
  28. 28.
    Aboseria M, Clemente F, Engels LF, Cipriani C. 2018.. Discrete vibro-tactile feedback prevents object slippage in hand prostheses more intuitively than other modalities. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(8):157784
    [Crossref] [Google Scholar]
  29. 29.
    Engeberg ED, Meek SG. 2011.. Adaptive sliding mode control for prosthetic hands to simultaneously prevent slip and minimize deformation of grasped objects. . IEEE/ASME Trans. Mechatron. 18:(1):37685
    [Crossref] [Google Scholar]
  30. 30.
    Marinelli A, Boccardo N, Tessari F, Di Domenico D, Caserta G, et al. 2022.. Active upper limb prostheses: a review on current state and upcoming breakthroughs. . Progress Biomed. Eng. 5::012001
    [Crossref] [Google Scholar]
  31. 31.
    Hargrove LJ, Miller LA, Turner K, Kuiken TA. 2017.. Myoelectric pattern recognition outperforms direct control for transhumeral amputees with targeted muscle reinnervation: a randomized clinical trial. . Sci. Rep. 7:(1):13840
    [Crossref] [Google Scholar]
  32. 32.
    Deleted in proof
  33. 33.
    Scheme E, Englehart K. 2011.. Electromyogram pattern recognition for control of powered upper-limb prostheses: state of the art and challenges for clinical use. . J. Rehabil. Res. Dev. 48:(6):64360
    [Crossref] [Google Scholar]
  34. 34.
    Simon AM, Lock BA, Stubblefield KA. 2012.. Patient training for functional use of pattern recognition–controlled prostheses. . J. Prosthet. Orthot. 24:(2):5664
    [Crossref] [Google Scholar]
  35. 35.
    Atzori M, Cognolato M, Müller H. 2016.. Deep learning with convolutional neural networks applied to electromyography data: a resource for the classification of movements for prosthetic hands. . Front. Neurorobot. 10::9
    [Crossref] [Google Scholar]
  36. 36.
    Ameri A, Akhaee MA, Scheme E, Englehart K. 2018.. Real-time, simultaneous myoelectric control using a convolutional neural network. . PLOS ONE 13:(9):e0203835
    [Crossref] [Google Scholar]
  37. 37.
    Tam S, Boukadoum M, Campeau-Lecours A, Gosselin B. 2021.. Intuitive real-time control strategy for high-density myoelectric hand prosthesis using deep and transfer learning. . Sci. Rep. 11:(1):11275
    [Crossref] [Google Scholar]
  38. 38.
    Hahne JM, Biessmann F, Jiang N, Rehbaum H, Farina D, et al. 2014.. Linear and nonlinear regression techniques for simultaneous and proportional myoelectric control. . IEEE Trans. Neural Syst. Rehabil. Eng. 22:(2):26979
    [Crossref] [Google Scholar]
  39. 39.
    Jiang N, Englehart KB, Parker PA. 2009.. Extracting simultaneous and proportional neural control information for multiple-DOF prostheses from the surface electromyographic signal. . IEEE Trans. Biomed. Eng. 56:(4):107080
    [Crossref] [Google Scholar]
  40. 40.
    Crouch DL, Huang H. 2016.. Lumped-parameter electromyogram-driven musculoskeletal hand model: a potential platform for real-time prosthesis control. . J. Biomechan. 49:(16):39017
    [Crossref] [Google Scholar]
  41. 41.
    Sartori M, Llyod DG, Farina D. 2016.. Neural data-driven musculoskeletal modeling for personalized neurorehabilitation technologies. . IEEE Trans. Biomed. Eng. 63:(5):87993
    [Crossref] [Google Scholar]
  42. 42.
    Pan L, Crouch DL, Huang H. 2018.. Myoelectric control based on a generic musculoskeletal model: toward a multi-user neural-machine interface. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(7):143542
    [Crossref] [Google Scholar]
  43. 43.
    Sartori M, Durandau G, Došen S, Farina D. 2018.. Robust simultaneous myoelectric control of multiple degrees of freedom in wrist-hand prostheses by real-time neuromusculoskeletal modeling. . J. Neural Eng. 15:(6):066026
    [Crossref] [Google Scholar]
  44. 44.
    Crouch DL, Pan L, Filer W, Stallings JW, Huang H. 2018.. Comparing surface and intramuscular electromyography for simultaneous and proportional control based on a musculoskeletal model: a pilot study. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(9):173544
    [Crossref] [Google Scholar]
  45. 45.
    Blana D, Van Den Bogert AJ, Murray WM, Ganguly A, Krasoulis A, et al. 2020.. Model-based control of individual finger movements for prosthetic hand function. . IEEE Trans. Neural Syst. Rehabil. Eng. 28:(3):61220
    [Crossref] [Google Scholar]
  46. 46.
    Berman J, Hinson R, Lee IC, Huang H. 2023.. Harnessing machine learning and physiological knowledge for a novel EMG-based neural-machine interface. . IEEE Trans. Biomed. Eng. 70:(4):112536
    [Crossref] [Google Scholar]
  47. 47.
    Wu W, Saul KR, Huang H. 2021.. Using reinforcement learning to estimate human joint moments from electromyography or joint kinematics: an alternative solution to musculoskeletal-based biomechanics. . J. Biomech. Eng. 143:(4):044502
    [Crossref] [Google Scholar]
  48. 48.
    Ison M, Vujaklija I, Whitsell B, Farina D, Artemiadis P. 2016.. High-density electromyography and motor skill learning for robust long-term control of a 7-DoF robot arm. . IEEE Trans. Neural Syst. Rehabil. Eng. 24:(4):42433
    [Crossref] [Google Scholar]
  49. 49.
    Dyson M, Dupan S, Jones H, Nazarpour K. 2020.. Learning, generalization, and scalability of abstract myoelectric control. . IEEE Trans. Neural Syst. Rehabil. Eng. 28:(7):153947
    [Crossref] [Google Scholar]
  50. 50.
    Kapelner T, Negro F, Aszmann OC, Farina D. 2018.. Decoding motor unit activity from forearm muscles: perspectives for myoelectric control. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(1):24451
    [Crossref] [Google Scholar]
  51. 51.
    Twardowski MD, Roy SH, Li Z, Contessa P, De Luca G, et al. 2018.. Motor unit drive: a neural interface for real-time upper limb prosthetic control. . J. Neural Eng. 16:(1):016012
    [Crossref] [Google Scholar]
  52. 52.
    Kyranou I, Vijayakumar S, Erden MS. 2018.. Causes of performance degradation in non-invasive electromyographic pattern recognition in upper limb prostheses. . Front. Neurorobot. 12::58
    [Crossref] [Google Scholar]
  53. 53.
    Simon A, Lock B, Stubblefield KA. 2012.. Patient training for functional use of pattern recognition-controlled prostheses. . J. Prosthet. Orthot. 24:(2):5664
    [Crossref] [Google Scholar]
  54. 54.
    Zhang X, Huang H. 2015.. A real-time, practical sensor fault-tolerant module for robust EMG pattern recognition. . J. Neuroeng. Rehabil. 12:(1):18
    [Crossref] [Google Scholar]
  55. 55.
    Young AJ, Hargrove LJ, Kuiken TA. 2012.. Improving myoelectric pattern recognition robustness to electrode shift by changing interelectrode distance and electrode configuration. . IEEE Trans. Biomed. Eng. 59:(3):64552
    [Crossref] [Google Scholar]
  56. 56.
    Hargrove L, Miller L, Turner K, Kuiken T. 2018.. Control within a virtual environment is correlated to functional outcomes when using a physical prosthesis. . J. NeuroEng. Rehabil. 15::60
    [Crossref] [Google Scholar]
  57. 57.
    Miller L, Turner K, Simon A. 2020.. Data logging during pattern recognition calibration as a remote diagnostic tool. . In Myoelectric Controls (MEC20) Symposium Proceedings. Fredericton, Can.:: Univ. New Brunswick. https://conferences.lib.unb.ca/index.php/mec/article/view/63
    [Google Scholar]
  58. 58.
    Simon AM, Turner KL, Miller LA, Potter BK, Beachler MD, et al. 2023.. User performance with a transradial multi-articulating hand prosthesis during pattern recognition and direct control home use. . IEEE Trans. Neural Syst. Rehabil. Eng. 31::27181
    [Crossref] [Google Scholar]
  59. 59.
    Chadwell A, Prince M, Head J, Galpin A, Thies S, et al. 2022.. Why does my prosthetic hand not always do what it is told?. Front. Young Minds 10::786663
    [Crossref] [Google Scholar]
  60. 60.
    De Luca CJ, Gilmore LD, Kuznetsov M, Roy SH. 2010.. Filtering the surface EMG signal: movement artifact and baseline noise contamination. . J. Biomechan. 43:(8):157379
    [Crossref] [Google Scholar]
  61. 61.
    Maier J, Naber A, Ortiz-Catalan M. 2018.. Improved prosthetic control based on myoelectric pattern recognition via wavelet-based de-noising. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(2):50614
    [Crossref] [Google Scholar]
  62. 62.
    Ortolan RL, Mori RN, Pereira RR, Cabral CMN, Pereira JC, et al. 2003.. Evaluation of adaptive/nonadaptive filtering and wavelet transform techniques for noise reduction in EMG mobile acquisition equipment. . IEEE Trans. Neural Syst. Rehabil. Eng. 11:(1):6069
    [Crossref] [Google Scholar]
  63. 63.
    Rehbaum H, Farina D. 2015.. Adaptive common average filtering for myocontrol applications. . Med. Biol. Eng. Comput. 53:(2):17986
    [Crossref] [Google Scholar]
  64. 64.
    Sensinger JW, Lock BA, Kuiken TA. 2009.. Adaptive pattern recognition of myoelectric signals: exploration of conceptual framework and practical algorithms. . IEEE Trans. Neural Syst. Rehabil. Eng. 17:(3):27078
    [Crossref] [Google Scholar]
  65. 65.
    Stachaczyk M, Atashzar SF, Farina D. 2020.. Adaptive spatial filtering of high-density EMG for reducing the influence of noise and artefacts in myoelectric control. . IEEE Trans. Neural Syst. Rehabil. Eng. 28:(7):151117
    [Crossref] [Google Scholar]
  66. 66.
    Tommasi T, Orabona F, Castellini C, Caputo B. 2013.. Improving control of dexterous hand prostheses using adaptive learning. . IEEE Trans. Robot. 29:(1):20719
    [Crossref] [Google Scholar]
  67. 67.
    Jiang N, Vujaklija I, Rehbaum H, Graimann B, Farina D. 2013.. Is accurate mapping of EMG signals on kinematics needed for precise online myoelectric control?. IEEE Trans. Neural Syst. Rehabil. Eng. 22:(3):54958
    [Crossref] [Google Scholar]
  68. 68.
    Hinson RM, Berman J, Filer W, Kamper D, Hu X, et al. 2023.. Offline evaluation matters: investigation of the influence of offline performance on real-time operation of electromyography-based neural-machine interfaces. . IEEE Trans. Neural Syst. Rehabil. Eng. 31::68089
    [Crossref] [Google Scholar]
  69. 69.
    Hinson RM, Berman J, Lee IC, Filer WG, Huang H. 2023.. Offline evaluation matters: investigation of the influence of offline performance of EMG-based neural-machine interfaces on user adaptation, cognitive load, and physical efforts in a real-time application. . IEEE Trans. Neural Syst. Rehabil. Eng. 31::305563
    [Crossref] [Google Scholar]
  70. 70.
    Ortiz-Catalan M, Branemark R, Hakansson B. 2013.. BioPatRec: a modular research platform for the control of artificial limbs based on pattern recognition algorithms. . Source Code Biol. Med. 8:(1):11
    [Crossref] [Google Scholar]
  71. 71.
    Sensinger JW, Dosen S. 2020.. A review of sensory feedback in upper-limb prostheses from the perspective of human motor control. . Front. Neurosci. 14::345
    [Crossref] [Google Scholar]
  72. 72.
    Schofield JS, Evans KR, Carey JP, Hebert JS. 2014.. Applications of sensory feedback in motorized upper extremity prosthesis: a review. . Expert Rev. Med. Devices 11:(5):499511
    [Crossref] [Google Scholar]
  73. 73.
    Svensson P, Wijk U, Bjorkman A, Antfolk C. 2017.. A review of invasive and non-invasive sensory feedback in upper limb prostheses. . Expert Rev. Med. Devices 14:(6):43947
    [Crossref] [Google Scholar]
  74. 74.
    Pasluosta C, Kiele P, Stieglitz T. 2018.. Paradigms for restoration of somatosensory feedback via stimulation of the peripheral nervous system. . Clin. Neurophysiol. 129:(4):85162
    [Crossref] [Google Scholar]
  75. 75.
    Childress DS. 1980.. Closed-loop control in prosthetic systems: historical perspective. . Ann. Biomed. Eng. 8:(4–6):293303
    [Crossref] [Google Scholar]
  76. 76.
    Clemente F, Cipriani C. 2014.. A novel device for multi-modal sensory feedback in hand prosthetics: design and preliminary prototype. . In 2014 IEEE Haptics Symposium (HAPTICS), pp. 56973. New York:: IEEE
    [Google Scholar]
  77. 77.
    Kim K, Colgate JE, Santos-Munné JJ, Makhlin A, Peshkin MA. 2009.. On the design of miniature haptic devices for upper extremity prosthetics. . IEEE/ASME Trans. Mechatron. 15:(1):2739
    [Google Scholar]
  78. 78.
    Markovic M, Schweisfurth MA, Engels LF, Farina D, Dosen S. 2018.. Myocontrol is closed-loop control: incidental feedback is sufficient for scaling the prosthesis force in routine grasping. . J. NeuroEng. Rehabil. 15::81
    [Crossref] [Google Scholar]
  79. 79.
    Shehata AW, Scheme EJ, Sensinger JW. 2018.. Evaluating internal model strength and performance of myoelectric prosthesis control strategies. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(5):104655
    [Crossref] [Google Scholar]
  80. 80.
    Kuiken TA, Miller LA, Lipschutz RD, Lock BA, Stubblefield K, et al. 2007.. Targeted reinnervation for enhanced prosthetic arm function in a woman with a proximal amputation: a case study. . Lancet 369:(9559):37180
    [Crossref] [Google Scholar]
  81. 81.
    Kuiken TA, Marasco PD, Lock BA, Harden RN, Dewald JP. 2007.. Redirection of cutaneous sensation from the hand to the chest skin of human amputees with targeted reinnervation. . PNAS 104:(50):2006166
    [Crossref] [Google Scholar]
  82. 82.
    Carty MJ, Herr HM. 2021.. The agonist-antagonist myoneural interface. . Hand Clin. 37:(3):43545
    [Crossref] [Google Scholar]
  83. 83.
    Valle G, Mazzoni A, Iberite F, D'Anna E, Strauss I, et al. 2018.. Biomimetic intraneural sensory feedback enhances sensation naturalness, tactile sensitivity, and manual dexterity in a bidirectional prosthesis. . Neuron 100:(1):3745.e7
    [Crossref] [Google Scholar]
  84. 84.
    Shin H, Watkins Z, Huang HH, Zhu Y, Hu X. 2018.. Evoked haptic sensations in the hand via non-invasive proximal nerve stimulation. . J. Neural. Eng. 15:(4):046005
    [Crossref] [Google Scholar]
  85. 85.
    Tan DW, Schiefer MA, Keith MW, Anderson JR, Tyler J, et al. 2014.. A neural interface provides long-term stable natural touch perception. . Sci. Transl. Med. 6:(257):257ra138
    [Crossref] [Google Scholar]
  86. 86.
    Graczyk EL, Resnik L, Schiefer MA, Schmitt MS, Tyler DJ. 2018.. Home use of a neural-connected sensory prosthesis provides the functional and psychosocial experience of having a hand again. . Sci. Rep. 8:(1):9866
    [Crossref] [Google Scholar]
  87. 87.
    George JA, Kluger DT, Davis TS, Wendelken SM, Okorokova E, et al. 2019.. Biomimetic sensory feedback through peripheral nerve stimulation improves dexterous use of a bionic hand. . Sci. Robot. 4:(32):eaax2352
    [Crossref] [Google Scholar]
  88. 88.
    Chandrasekaran S, Nanivadekar AC, McKernan G, Helm ER, Boninger ML, et al. 2020.. Sensory restoration by epidural stimulation of the lateral spinal cord in upper-limb amputees. . eLife 9::e54349
    [Crossref] [Google Scholar]
  89. 89.
    Ortiz-Catalan M, Hakansson B, Branemark R. 2014.. An osseointegrated human-machine gateway for long-term sensory feedback and motor control of artificial limbs. . Sci. Transl. Med. 6:(257):257re6
    [Crossref] [Google Scholar]
  90. 90.
    Ortiz-Catalan M, Mastinu E, Sassu P, Aszmann O, Branemark R. 2020.. Self-contained neuromusculoskeletal arm prostheses. . N. Engl. J. Med. 382:(18):173238
    [Crossref] [Google Scholar]
  91. 91.
    Vargas L, Whitehouse G, Huang H, Zhu Y, Hu X. 2019.. Evoked haptic sensation in the hand with concurrent non-invasive nerve stimulation. . IEEE Trans. Biomed. Eng. 66:(10):276167
    [Crossref] [Google Scholar]
  92. 92.
    Christie BP, Freeberg M, Memberg WD, Pinault GJC, Hoyen HA, et al. 2017.. Long-term stability of stimulating spiral nerve cuff electrodes on human peripheral nerves. . J. Neuroeng. Rehabil. 14:(1):70
    [Crossref] [Google Scholar]
  93. 93.
    Marasco PD, Hebert JS, Sensinger JW, Shell CE, Schofield JS, et al. 2018.. Illusory movement perception improves motor control for prosthetic hands. . Sci. Transl. Med. 10:(432):eaao6990
    [Crossref] [Google Scholar]
  94. 94.
    Gherardini M, Masiero F, Ianniciello V, Cipriani C. 2023.. The myokinetic interface: implanting permanent magnets to restore the sensory-motor control loop in amputees. . Curr. Opin. Biomed. Eng. 27::100460
    [Crossref] [Google Scholar]
  95. 95.
    Overmann AL, Aparicio C, Richards JT, Mutreja I, Fischer NG, et al. 2020.. Orthopaedic osseointegration: implantology and future directions. . J. Orthop. Res. 38:(7):144554
    [Crossref] [Google Scholar]
  96. 96.
    Zaid MB, O'Donnell RJ, Potter BK, Forsberg JA. 2019.. Orthopaedic osseointegration: state of the art. . J. Am. Acad. Orthop. Surg. 27:(22):e97785
    [Crossref] [Google Scholar]
  97. 97.
    Thesleff A, Branemark R, Hakansson B, Ortiz-Catalan M. 2018.. Biomechanical characterisation of bone-anchored implant systems for amputation limb prostheses: a systematic review. . Ann. Biomed. Eng. 46:(3):37791
    [Crossref] [Google Scholar]
  98. 98.
    Jönsson S, Caine-Winterberger K, Brånemark R. 2011.. Osseointegration amputation prostheses on the upper limbs: methods, prosthetics and rehabilitation. . Prosthet. Orthot. Int. 35:(2):190200
    [Crossref] [Google Scholar]
  99. 99.
    Clemente F, Hakansson B, Cipriani C, Wessberg J, Kulbacka-Ortiz K, et al. 2017.. Touch and hearing mediate osseoperception. . Sci. Rep. 7::45363
    [Crossref] [Google Scholar]
  100. 100.
    Middleton A, Ortiz-Catalan M. 2020.. Neuromusculoskeletal arm prostheses: personal and social implications of living with an intimately integrated bionic arm. . Front. Neurorobot. 14::39
    [Crossref] [Google Scholar]
  101. 101.
    Kaulback K, Jones A. 2017.. Osseointegrated Prosthetic Implants for Lower Limb Amputation: a Review of Clinical Effectiveness, Cost-Effectiveness and Guidelines. Ottawa, Can.:: Can. Agency Drugs Technol. Health
    [Google Scholar]
  102. 102.
    Tillander J, Hagberg K, Berlin O, Hagberg L, Branemark R. 2017.. Osteomyelitis risk in patients with transfemoral amputations treated with osseointegration prostheses. . Clin. Orthop. Relat. Res. 475:(12):31008
    [Crossref] [Google Scholar]
  103. 103.
    Atallah R, Leijendekkers RA, Hoogeboom TJ, Frolke JP. 2018.. Complications of bone-anchored prostheses for individuals with an extremity amputation: a systematic review. . PLOS ONE 13:(8):e0201821
    [Crossref] [Google Scholar]
  104. 104.
    Tillander J, Hagberg K, Hagberg L, Branemark R. 2010.. Osseointegrated titanium implants for limb prostheses attachments: infectious complications. . Clin. Orthop. Relat. Res. 468:(10):278188
    [Crossref] [Google Scholar]
  105. 105.
    Weir RFF, Heckathorne CW, Childress DS. 2001.. Cineplasty as a control input for externally powered prosthetic components. . J. Rehabil. Res. Dev. 38:(4):35763
    [Google Scholar]
  106. 106.
    Kuiken TA, Dumanian GA, Lipschutz RD, Miller LA, Stubblefield KA. 2004.. The use of targeted muscle reinnervation for improved myoelectric prosthesis control in a bilateral shoulder disarticulation amputee. . Prosthet. Orthot. Int. 28:(3):24553
    [Crossref] [Google Scholar]
  107. 107.
    Valerio IL, Dumanian GA, Jordan SW, Mioton LM, Bowen JB, et al. 2019.. Preemptive treatment of phantom and residual limb pain with targeted muscle reinnervation at the time of major limb amputation. . J. Am. Coll. Surg. 228:(3):21726
    [Crossref] [Google Scholar]
  108. 108.
    Dumanian GA, Potter BK, Mioton LM, Ko JH, Cheesborough JE, et al. 2019.. Targeted muscle reinnervation treats neuroma and phantom pain in major limb amputees: a randomized clinical trial. . Ann. Surg. 270:(2):23846
    [Crossref] [Google Scholar]
  109. 109.
    Souza JM, Cheesborough JE, Ko JH, Cho MS, Kuiken TA, et al. 2014.. Targeted muscle reinnervation: a novel approach to postamputation neuroma pain. . Clin. Orthop. Relat. Res. 472:(10):298490
    [Crossref] [Google Scholar]
  110. 110.
    Agnew SP, Ko J, De La Garza M, Kuiken T, Dumanian G. 2012.. Limb transplantation and targeted reinnervation: a practical comparison. . J. Reconstr. Microsurg. 28:(1):6368
    [Crossref] [Google Scholar]
  111. 111.
    Valerio I, Schulz SA, West J, Westenberg RF, Eberlin KR. 2020.. Targeted muscle reinnervation combined with a vascularized pedicled regenerative peripheral nerve interface. . Plast. Reconstr. Surg. Glob. Open 8:(3):e2689
    [Crossref] [Google Scholar]
  112. 112.
    Urbanchek MG, Kung TA, Frost CM, Martin DC, Larkin LM, et al. 2016.. Development of a regenerative peripheral nerve interface for control of a neuroprosthetic limb. . Biomed. Res. Int. 2016::5726730
    [Crossref] [Google Scholar]
  113. 113.
    Vaskov AK, Vu PP, North N, Davis AJ, Kung TA, et al. 2022.. Surgically implanted electrodes enable real-time finger and grasp pattern recognition for prosthetic hands. . IEEE Trans. Robot. 38:(5):284157
    [Crossref] [Google Scholar]
  114. 114.
    Vu PP, Vaskov AK, Irwin ZT, Henning PT, Lueders DR, et al. 2020.. A regenerative peripheral nerve interface allows real-time control of an artificial hand in upper limb amputees. . Sci. Transl. Med. 12:(533):eaay2857
    [Crossref] [Google Scholar]
  115. 115.
    Woo SL, Kung TA, Brown DL, Leonard JA, Kelly BM, et al. 2016.. Regenerative peripheral nerve interfaces for the treatment of postamputation neuroma pain: a pilot study. . Plast. Reconstr. Surg. Glob. Open 4:(12):e1038
    [Crossref] [Google Scholar]
  116. 116.
    Zbinden J, Sassu P, Mastinu E, Earley EJ, Munoz-Novoa M, et al. 2023.. Improved control of a prosthetic limb by surgically creating electro-neuromuscular constructs with implanted electrodes. . Sci. Transl. Med. 15:(704):eabq3665
    [Crossref] [Google Scholar]
  117. 117.
    Ortiz-Catalan M, Zbinden J, Millenaar J, D'Accolti D, Controzzi M, et al. 2023.. A highly integrated bionic hand with neural control and feedback for use in daily life. . Sci. Robot. 8:(83):eadf7360
    [Crossref] [Google Scholar]
  118. 118.
    Kubiak CA, Svientek SR, Dehdashtian A, Lawera NG, Nadarajan V, et al. 2021.. Physiologic signaling and viability of the muscle cuff regenerative peripheral nerve interface (MC-RPNI) for intact peripheral nerves. . J. Neural Eng. 18::0460d5
    [Crossref] [Google Scholar]
  119. 119.
    Svientek SR, Ursu DC, Cederna PS, Kemp SWP. 2020.. Fabrication of the composite regenerative peripheral nerve interface (C-RPNI) in the adult rat. . J. Vis. Exp. 156::e60841
    [Google Scholar]
  120. 120.
    Tuffaha SH, Glass C, Rosson G, Shores J, Belzberg A, et al. 2020.. Vascularized, denervated muscle targets: a novel approach to treat and prevent symptomatic neuromas. . Plast. Reconstr. Surg. Glob. Open 8:(4):e2779
    [Crossref] [Google Scholar]
  121. 121.
    Suresh V, Schaefer EJ, Calotta NA, Giladi AM, Tuffaha SH. 2023.. Use of vascularized, denervated muscle targets for prevention and treatment of upper-extremity neuromas. . J. Hand Surg. Glob. Online 5:(1):9296
    [Crossref] [Google Scholar]
  122. 122.
    Deslivia MF, Lee HJ, Zulkarnain RF, Zhu B, Adikrishna A, et al. 2016.. Reinnervated split-muscle technique for creating additional myoelectric sites in an animal model. . Plast. Reconstr. Surg. 138:(6):997e1010e
    [Crossref] [Google Scholar]
  123. 123.
    Roche AD, Bailey ZK, Gonzalez M, Vu PP, Chestek CA, et al. 2023.. Upper limb prostheses: bridging the sensory gap. . J. Hand Surg. Eur. 48:(3):18290
    [Crossref] [Google Scholar]
  124. 124.
    Hebert JS, Chan KM, Dawson MR. 2016.. Cutaneous sensory outcomes from three transhumeral targeted reinnervation cases. . Prosthet. Orthot. Int. 40:(3):30310
    [Crossref] [Google Scholar]
  125. 125.
    Ortiz-Catalan M, Wessberg J, Mastinu E, Naber A, Brånemark R. 2019.. Patterned stimulation of peripheral nerves produces natural sensations with regards to location but not quality. . IEEE Trans. Med. Robot. Bion. 1:(3):199203
    [Crossref] [Google Scholar]
  126. 126.
    Vu PP, Lu CW, Vaskov AK, Gates DH, Gillespie RB, et al. 2022.. Restoration of proprioceptive and cutaneous sensation using regenerative peripheral nerve interfaces in humans with upper limb amputations. . Plast. Reconstr. Surg. 149:(6):1149e54e
    [Crossref] [Google Scholar]
  127. 127.
    Sando IC, Adidharma W, Nedic A, Ursu DC, Mays EA, et al. 2023.. Dermal sensory regenerative peripheral nerve interface for reestablishing sensory nerve feedback in peripheral afferents in the rat. . Plast. Reconstr. Surg. 151:(5):804e13e
    [Crossref] [Google Scholar]
  128. 128.
    Clites TR, Carty MJ, Ullauri JB, Carney ME, Mooney LM, et al. 2018.. Proprioception from a neurally controlled lower-extremity prosthesis. . Sci. Transl. Med. 10:(443):eaap8373
    [Crossref] [Google Scholar]
  129. 129.
    Fleming A, Liu W, Huang H. 2023.. Neural prosthesis control restores near-normative neuromechanics in standing postural control. . Sci. Robot. 8:(83):eadf5758
    [Crossref] [Google Scholar]
  130. 130.
    Srinivasan SS, Carty MJ, Calvaresi PW, Clites TR, Maimon BE, et al. 2017.. On prosthetic control: a regenerative agonist-antagonist myoneural interface. . Sci. Robot. 2:(6):eaan2971
    [Crossref] [Google Scholar]
  131. 131.
    Srinivasan SS, Herr HM. 2022.. A cutaneous mechanoneural interface for neuroprosthetic feedback. . Nat. Biomed. Eng. 6:(6):73140
    [Crossref] [Google Scholar]
  132. 132.
    Ortiz-Catalan M. 2017.. Neuroengineering: deciphering neural drive. . Nat. Biomed. Eng. 1:(2):0034
    [Crossref] [Google Scholar]
  133. 133.
    Ortiz-Catalan M. 2021.. Engineering and surgical advancements enable more cognitively integrated bionic arms. . Sci. Robot. 6:(58):eabk3123
    [Crossref] [Google Scholar]
  134. 134.
    Salminger S, Sturma A, Hofer C, Evangelista M, Perrin M, et al. 2019.. Long-term implant of intramuscular sensors and nerve transfers for wireless control of robotic arms in above-elbow amputees. . Sci. Robot. 4:(32):eaaw6306
    [Crossref] [Google Scholar]
  135. 135.
    Aman M, Festin C, Sporer ME, Gstoettner C, Prahm C, et al. 2019.. Bionic reconstruction: restoration of extremity function with osseointegrated and mind-controlled prostheses. . Wien Klin. Wochenschr. 131:(23–24):599607
    [Crossref] [Google Scholar]
  136. 136.
    Kuiken TA, Miller LA, Turner K, Hargrove LJ. 2016.. A comparison of pattern recognition control and direct control of a multiple degree-of-freedom transradial prosthesis. . IEEE J. Transl. Eng. Health Med. 4::2100508
    [Crossref] [Google Scholar]
  137. 137.
    Resnik L, Huang HH, Winslow A, Crouch DL, Zhang F, et al. 2018.. Evaluation of EMG pattern recognition for upper limb prosthesis control: a case study in comparison with direct myoelectric control. . J. Neuroeng. Rehabil. 15:(1):23
    [Crossref] [Google Scholar]
  138. 138.
    Simon AM, Turner KL, Miller LA, Potter BK, Beachler MD, et al. 2023.. User performance with a transradial multi-articulating hand prosthesis during pattern recognition and direct control home use. . IEEE Trans. Neural Syst. Rehabil. Eng. 31::27181
    [Crossref] [Google Scholar]
  139. 139.
    Tabor A, Bateman S, Scheme E. 2018.. Evaluation of myoelectric control learning using multi-session game-based training. . IEEE Trans. Neural Syst. Rehabil. Eng. 26:(9):168089
    [Crossref] [Google Scholar]
  140. 140.
    Fisher LE, Gaunt RA, Huang H. 2023.. Sensory restoration for improved motor control of prostheses. . Curr. Opin. Biomed. Eng. 28::100498
    [Crossref] [Google Scholar]
  141. 141.
    Zbinden J, Lendaro E, Ortiz-Catalan M. 2022.. A multi-dimensional framework for prosthetic embodiment: a perspective for translational research. . J. Neuroeng. Rehabil. 19:(1):122
    [Crossref] [Google Scholar]
  142. 142.
    Zbinden J, Lendaro E, Ortiz-Catalan M. 2022.. Prosthetic embodiment: systematic review on definitions, measures, and experimental paradigms. . J. Neuroeng. Rehabil. 19:(1):37
    [Crossref] [Google Scholar]
  143. 143.
    Schofield JS, Battraw MA, Parker ASR, Pilarski PM, Sensinger JW, et al. 2021.. Embodied cooperation to promote forgiving interactions with autonomous machines. . Front. Neurorobot. 15::661603
    [Crossref] [Google Scholar]
  144. 144.
    Weser V, Proffitt DR. 2019.. Tool embodiment: the tool's output must match the user's input. . Front. Hum. Neurosci. 12::537
    [Crossref] [Google Scholar]
  145. 145.
    Fleming A, Stafford N, Huang S, Hu X, Ferris DP, et al. 2021.. Myoelectric control of robotic lower limb prostheses: a review of electromyography interfaces, control paradigms, challenges and future directions. . J. Neural Eng. 18:(4):041004
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110222-095816
Loading
/content/journals/10.1146/annurev-bioeng-110222-095816
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error