1932

Abstract

Migration is an essential cellular process that regulates human organ development and homeostasis as well as disease initiation and progression. In cancer, immune and tumor cell migration is strongly associated with immune cell infiltration, immune escape, and tumor cell metastasis, which ultimately account for more than 90% of cancer deaths. The biophysics and molecular regulation of the migration of cancer and immune cells have been extensively studied separately. However, accumulating evidence indicates that, in the tumor microenvironment, the motilities of immune and cancer cells are highly interdependent via secreted factors such as cytokines and chemokines. Tumor and immune cells constantly express these soluble factors, which produce a tightly intertwined regulatory network for these cells’ respective migration. A mechanistic understanding of the reciprocal regulation of soluble factor–mediated cell migration can provide critical information for the development of new biomarkers of tumor progression and of tumor response to immuno-oncological treatments. We review the biophysical andbiomolecular basis for the migration of immune and tumor cells and their associated reciprocal regulatory network. We also describe ongoing attempts to translate this knowledge into the clinic.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-110320-110749
2022-06-06
2024-05-12
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/24/1/annurev-bioeng-110320-110749.html?itemId=/content/journals/10.1146/annurev-bioeng-110320-110749&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Grivennikov SI, Greten FR, Karin M. 2010. Immunity, inflammation, and cancer. Cell 140:883–99
    [Google Scholar]
  2. 2.
    Gupta GP, Massagué J. 2006. Cancer metastasis: building a framework. Cell 127:679–95
    [Google Scholar]
  3. 3.
    Pagès F, Galon J, Dieu-Nosjean MC, Tartour E, Sautès-Fridman C, Fridman WH. 2010. Immune infiltration in human tumors: a prognostic factor that should not be ignored. Oncogene 29:1093–102
    [Google Scholar]
  4. 4.
    Roussos ET, Condeelis JS, Patsialou A. 2011. Chemotaxis in cancer. Nat. Rev. Cancer 11:573–87
    [Google Scholar]
  5. 5.
    Condeelis J, Singer RH, Segall JE. 2005. The great escape: when cancer cells hijack the genes for chemotaxis and motility. Annu. Rev. Cell Dev. Biol. 21:695–718
    [Google Scholar]
  6. 6.
    Yamada KM, Sixt M. 2019. Mechanisms of 3D cell migration. Nat. Rev. Mol. Cell Biol. 20:738–52
    [Google Scholar]
  7. 7.
    Lämmermann T, Bader BL, Monkley SJ, Worbs T, Wedlich-Söldner R et al. 2008. Rapid leukocyte migration by integrin-independent flowing and squeezing. Nature 453:51–55
    [Google Scholar]
  8. 8.
    Swaney KF, Huang C-H, Devreotes PN. 2010. Eukaryotic chemotaxis: A network of signaling pathways controls motility, directional sensing, and polarity. Annu. Rev. Biophys. 39:265–89
    [Google Scholar]
  9. 9.
    Devreotes PN, Horwitz AR. 2015. Signaling networks that regulate cell migration. Cold Spring Harb. Perspect. Biol. 7:a005959
    [Google Scholar]
  10. 10.
    Van Haastert PJM, Devreotes PN. 2004. Chemotaxis: signalling the way forward. Nat. Rev. Mol. Cell Biol. 5:626–34
    [Google Scholar]
  11. 11.
    Scotton CJ, Wilson JL, Milliken D, Stamp G, Balkwill FR. 2001. Epithelial cancer cell migration: a role for chemokine receptors?. Cancer Res 61:4961–65
    [Google Scholar]
  12. 12.
    Chow MT, Luster AD. 2014. Chemokines in cancer. Cancer Immunol. Res. 2:1125–31
    [Google Scholar]
  13. 13.
    Nagarsheth N, Wicha MS, Zou W. 2017. Chemokines in the cancer microenvironment and their relevance in cancer immunotherapy. Nat. Rev. Immunol. 17:559–72
    [Google Scholar]
  14. 14.
    Maas SLN, Breakefield XO, Weaver AM. 2017. Extracellular vesicles: unique intercellular delivery vehicles. Trends Cell Biol 27:172–88
    [Google Scholar]
  15. 15.
    Marar C, Starich B, Wirtz D. 2021. Extracellular vesicles in immunomodulation and tumor progression. Nat. Immunol. 22:560–70
    [Google Scholar]
  16. 16.
    Sung BH, Parent CA, Weaver AM. 2021. Extracellular vesicles: critical players during cell migration. Dev. Cell 56:1861–74
    [Google Scholar]
  17. 17.
    Brown M, Johnson LA, Leone DA, Majek P, Vaahtomeri K et al. 2018. Lymphatic exosomes promote dendritic cell migration along guidance cues. J. Cell Biol. 217:2205–21
    [Google Scholar]
  18. 18.
    Esser J, Gehrmann U, D'Alexandri FL, Hidalgo-Estévez AM, Wheelock CE et al. 2010. Exosomes from human macrophages and dendritic cells contain enzymes for leukotriene biosynthesis and promote granulocyte migration. J. Allergy Clin. Immunol. 126:1032–40.e4
    [Google Scholar]
  19. 19.
    Sung BH, Weaver AM. 2017. Exosome secretion promotes chemotaxis of cancer cells. Cell Adhes. Migr. 11:187–95
    [Google Scholar]
  20. 20.
    Makkouk A, Weiner GJ. 2015. Cancer immunotherapy and breaking immune tolerance: new approaches to an old challenge. Cancer Res 75:5–10
    [Google Scholar]
  21. 21.
    Whiteside TL, Demaria S, Rodriguez-Ruiz ME, Zarour HM, Melero I. 2016. Emerging opportunities and challenges in cancer immunotherapy. Clin. Cancer Res. 22:1845–55
    [Google Scholar]
  22. 22.
    Restifo NP, Smyth MJ, Snyder A. 2016. Acquired resistance to immunotherapy and future challenges. Nat. Rev. Cancer 16:121–26
    [Google Scholar]
  23. 23.
    Fesnak AD, June CH, Levine BL. 2016. Engineered T cells: the promise and challenges of cancer immunotherapy. Nat. Rev. Cancer 16:566–81
    [Google Scholar]
  24. 24.
    Bonaventura P, Shekarian T, Alcazer V, Valladeau-Guilemond J, Valsesia-Wittmann S et al. 2019. Cold tumors: a therapeutic challenge for immunotherapy. Front. Immunol. 10:168
    [Google Scholar]
  25. 25.
    Dunn GP, Bruce AT, Ikeda H, Old LJ, Schreiber RD. 2002. Cancer immunoediting: from immunosurveillance to tumor escape. Nat. Immunol. 3:991–98
    [Google Scholar]
  26. 26.
    Dunn GP, Old LJ, Schreiber RD. 2004. The immunobiology of cancer immunosurveillance and immunoediting. Immunity 21:137–48
    [Google Scholar]
  27. 27.
    Becker A, Thakur BK, Weiss JM, Kim HS, Peinado H, Lyden D. 2016. Extracellular vesicles in cancer: cell-to-cell mediators of metastasis. Cancer Cell 30:836–48
    [Google Scholar]
  28. 28.
    Kishimoto T, Taga T, Akira S. 1994. Cytokine signal transduction. Cell 76:253–62
    [Google Scholar]
  29. 29.
    Ihle JN. 1995. Cytokine receptor signalling. Nature 377:591–94
    [Google Scholar]
  30. 30.
    Luster AD. 1998. Chemokines–chemotactic cytokines that mediate inflammation. N. Engl. J. Med. 338:436–45
    [Google Scholar]
  31. 31.
    Zlotnik A, Yoshie O 2012. The chemokine superfamily revisited. Immunity 36:705–16
    [Google Scholar]
  32. 32.
    Grada A, Otero-Vinas M, Prieto-Castrillo F, Obagi Z, Falanga V. 2017. Research techniques made simple: analysis of collective cell migration using the wound healing assay. J. Investig. Dermatol. 137:e11–16
    [Google Scholar]
  33. 33.
    Justus CR, Leffler N, Ruiz-Echevarria M, Yang LV. 2014. In vitro cell migration and invasion assays. J. Vis. Exp. 88:51046
    [Google Scholar]
  34. 34.
    Li Y-H, Zhu C. 1999. A modified Boyden chamber assay for tumor cell transendothelial migration in vitro. Clin. Exp. Metastasis 17:423–29
    [Google Scholar]
  35. 35.
    Ritch SJ, Brandhagen BN, Goyeneche AA, Telleria CM. 2019. Advanced assessment of migration and invasion of cancer cells in response to mifepristone therapy using double fluorescence cytochemical labeling. BMC Cancer 19:376
    [Google Scholar]
  36. 36.
    Somersalo K, Salo OP, Björkstén F, Mustakallio KK. 1990. A simplified Boyden chamber assay for neutrophil chemotaxis based on quantitation of myeloperoxidase. Anal. Biochem. 185:238–42
    [Google Scholar]
  37. 37.
    van der Meer AD, Vermeul K, Poot AA, Feijen J, Vermes I. 2009. A microfluidic wound-healing assay for quantifying endothelial cell migration. Am. J. Physiol. Heart Circ. Physiol. 298:H719–25
    [Google Scholar]
  38. 38.
    Wang X, Decker CC, Zechner L, Krstin S, Wink M. 2019. In vitro wound healing of tumor cells: inhibition of cell migration by selected cytotoxic alkaloids. BMC Pharmacol. Toxicol. 20:4
    [Google Scholar]
  39. 39.
    Zengel P, Nguyen-Hoang A, Schildhammer C, Zantl R, Kahl V, Horn E. 2011. μ-Slide chemotaxis: a new chamber for long-term chemotaxis studies. BMC Cell Biol. 12:21
    [Google Scholar]
  40. 40.
    Heit B, Kubes P. 2003. Measuring chemotaxis and chemokinesis: the under-agarose cell migration assay. Sci. Signal. 2003:pl5
    [Google Scholar]
  41. 41.
    Lauffenburger D, Rothman C, Zigmond SH. 1983. Measurement of leukocyte motility and chemotaxis parameters with a linear under-agarose migration assay. J. Immunol. 131:940–47
    [Google Scholar]
  42. 42.
    Wu P-H, Giri A, Wirtz D. 2015. Statistical analysis of cell migration in 3D using the anisotropic persistent random walk model. Nat. Protoc. 10:517–27
    [Google Scholar]
  43. 43.
    Jayatilaka H, Tyle P, Chen JJ, Kwak M, Ju J et al. 2017. Synergistic IL-6 and IL-8 paracrine signalling pathway infers a strategy to inhibit tumour cell migration. Nat. Commun. 8:15584
    [Google Scholar]
  44. 44.
    Cassetta L, Fragkogianni S, Sims AH, Swierczak A, Forrester LM et al. 2019. Human tumor-associated macrophage and monocyte transcriptional landscapes reveal cancer-specific reprogramming, biomarkers, and therapeutic targets. Cancer Cell 35:588–602.e10
    [Google Scholar]
  45. 45.
    Chung W, Eum HH, Lee H-O, Lee K-M, Lee H-B et al. 2017. Single-cell RNA-seq enables comprehensive tumour and immune cell profiling in primary breast cancer. Nat. Commun. 8:15081
    [Google Scholar]
  46. 46.
    Ino Y, Yamazaki-Itoh R, Shimada K, Iwasaki M, Kosuge T et al. 2013. Immune cell infiltration as an indicator of the immune microenvironment of pancreatic cancer. Br. J. Cancer 108:914–23
    [Google Scholar]
  47. 47.
    Thorsson V, Gibbs DL, Brown SD, Wolf D, Bortone DS et al. 2018. The immune landscape of cancer. Immunity 48:812–30.e14
    [Google Scholar]
  48. 48.
    Zhou R, Zhang J, Zeng D, Sun H, Rong X et al. 2019. Immune cell infiltration as a biomarker for the diagnosis and prognosis of stage I–III colon cancer. Cancer Immunol. Immunother. 68:433–42
    [Google Scholar]
  49. 49.
    Chen Z, Ross JL, Hambardzumyan D. 2019. Intravital 2-photon imaging reveals distinct morphology and infiltrative properties of glioblastoma-associated macrophages. PNAS 116:14254–59
    [Google Scholar]
  50. 50.
    Lau D, Garçon F, Chandra A, Lechermann LM, Aloj L et al. 2020. Intravital imaging of adoptive T-cell morphology, mobility and trafficking following immune checkpoint inhibition in a mouse melanoma model. Front. Immunol. 11:3389
    [Google Scholar]
  51. 51.
    Qi S, Li H, Lu L, Qi Z, Liu L et al. 2016. Long-term intravital imaging of the multicolor-coded tumor microenvironment during combination immunotherapy. eLife 5:e14756
    [Google Scholar]
  52. 52.
    McArdle S, Chodaczek G, Ray N, Ley K. 2015. Intravital live cell triggered imaging system reveals monocyte patrolling and macrophage migration in atherosclerotic arteries. J. Biomed. Opt. 20:26005
    [Google Scholar]
  53. 53.
    Meijering E, Dzyubachyk O, Smal I. 2012. Methods for cell and particle tracking. Methods Enzymol. 504:183–200
    [Google Scholar]
  54. 54.
    Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  55. 55.
    Guo D, van de Ven AL, Zhou X. 2014. Red blood cell tracking using optical flow methods. IEEE J. Biomed. Health Inform. 18:991–98
    [Google Scholar]
  56. 56.
    Breen EJ, Williams KL. 1994. Optical flow analysis of the ventral cellular layer of the migrating Dictyostelium discoideum slug. Microbiology 140:1241–52
    [Google Scholar]
  57. 57.
    Dufour A, Thibeaux R, Labruyère E, Guillén N, Olivo-Marin J. 2011. 3-D active meshes: fast discrete deformable models for cell tracking in 3-D time-lapse microscopy. IEEE Trans. Image Process. 20:1925–37
    [Google Scholar]
  58. 58.
    Maška M, Daněk O, Garasa S, Rouzaut A, Muñoz-Barrutia A, Ortiz-de-Solorzano C. 2013. Segmentation and shape tracking of whole fluorescent cells based on the Chan–Vese model. IEEE Trans. Med. Imaging 32:995–1006
    [Google Scholar]
  59. 59.
    Türetken E, Wang X, Becker CJ, Haubold C, Fua P. 2017. Network flow integer programming to track elliptical cells in time-lapse sequences. IEEE Trans. Med. Imaging 36:942–51
    [Google Scholar]
  60. 60.
    Schiegg M, Hanslovsky P, Haubold C, Koethe U, Hufnagel L, Hamprecht FA. 2014. Graphical model for joint segmentation and tracking of multiple dividing cells. Bioinformatics 31:948–56
    [Google Scholar]
  61. 61.
    Bensch R, Ronneberger O. 2015. Cell segmentation and tracking in phase contrast images using graph cut with asymmetric boundary costs. Proceedings of the 2015 IEEE 12th International Symposium on Biomedical Imaging1220–23 Piscataway, NJ: IEEE
    [Google Scholar]
  62. 62.
    Harder N, Mora-Bermúdez F, Godinez WJ, Wünsche A, Eils R et al. 2009. Automatic analysis of dividing cells in live cell movies to detect mitotic delays and correlate phenotypes in time. Genome Res. 19:2113–24
    [Google Scholar]
  63. 63.
    Hilsenbeck O, Schwarzfischer M, Skylaki S, Schauberger B, Hoppe PS et al. 2016. Software tools for single-cell tracking and quantification of cellular and molecular properties. Nat. Biotechnol. 34:703–6
    [Google Scholar]
  64. 64.
    Stringer C, Wang T, Michaelos M, Pachitariu M. 2021. Cellpose: a generalist algorithm for cellular segmentation. Nat. Methods 18:100–6
    [Google Scholar]
  65. 65.
    Badrinarayanan V, Kendall A, Cipolla R. 2017. SegNet: a deep convolutional encoder-decoder architecture for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 39:2481–95
    [Google Scholar]
  66. 66.
    Phillip JM, Zamponi N, Phillip MP, Daya J, McGovern S et al. 2021. Fractional re-distribution among cell motility states during ageing. Commun. Biol. 4:81
    [Google Scholar]
  67. 67.
    Wu PH, Gilkes DM, Phillip JM, Narkar A, Cheng TW et al. 2020. Single-cell morphology encodes metastatic potential. Sci. Adv. 6:eaaw6938
    [Google Scholar]
  68. 68.
    Cao J, Packer JS, Ramani V, Cusanovich DA, Huynh C et al. 2017. Comprehensive single-cell transcriptional profiling of a multicellular organism. Science 357:661–67
    [Google Scholar]
  69. 69.
    Pijuan-Sala B, Guibentif C, Göttgens B. 2018. Single-cell transcriptional profiling: a window into embryonic cell-type specification. Nat. Rev. Mol. Cell Biol. 19:399–412
    [Google Scholar]
  70. 70.
    McFarland JM, Paolella BR, Warren A, Geiger-Schuller K, Shibue T et al. 2020. Multiplexed single-cell transcriptional response profiling to define cancer vulnerabilities and therapeutic mechanism of action. Nat. Commun. 11:4296
    [Google Scholar]
  71. 71.
    Stassen SV, Yip GGK, Wong KKY, Ho JWK, Tsia KK. 2021. Generalized and scalable trajectory inference in single-cell omics data with VIA. Nat. Commun. 12:5528
    [Google Scholar]
  72. 72.
    Ma X, Dagliyan O, Hahn KM, Danuser G. 2018. Profiling cellular morphodynamics by spatiotemporal spectrum decomposition. PLOS Comput. Biol. 14:e1006321
    [Google Scholar]
  73. 73.
    Wu P-H, Giri A, Sun SX, Wirtz D. 2014. Three-dimensional cell migration does not follow a random walk. PNAS 111:3949–54
    [Google Scholar]
  74. 74.
    Wu P-H, Gilkes DM, Wirtz D. 2018. The biophysics of 3D cell migration. Annu. Rev. Biophys. 47:549–67
    [Google Scholar]
  75. 75.
    Harris TH, Banigan EJ, Christian DA, Konradt C, Tait Wojno ED et al. 2012. Generalized Lévy walks and the role of chemokines in migration of effector CD8+ T cells. Nature 486:545–48
    [Google Scholar]
  76. 76.
    Krummel MF, Bartumeus F, Gérard A. 2016. T cell migration, search strategies and mechanisms. Nat. Rev. Immunol. 16:193–201
    [Google Scholar]
  77. 77.
    Lin Y, Xu J, Lan H. 2019. Tumor-associated macrophages in tumor metastasis: biological roles and clinical therapeutic applications. J. Hematol. Oncol. 12:76
    [Google Scholar]
  78. 78.
    Sitkovsky MV, Lukashev D, Apasov S, Kojima H, Koshiba M et al. 2004. Physiological control of immune response and inflammatory tissue damage by hypoxia-inducible factors and adenosine A2A receptors. Annu. Rev. Immunol. 22:657–82
    [Google Scholar]
  79. 79.
    Sitkovsky M, Lukashev D. 2005. Regulation of immune cells by local-tissue oxygen tension: HIF1α and adenosine receptors. Nat. Rev. Immunol. 5:712–21
    [Google Scholar]
  80. 80.
    Henze A-T, Mazzone M. 2016. The impact of hypoxia on tumor-associated macrophages. J. Clin. Investig. 126:3672–79
    [Google Scholar]
  81. 81.
    Doedens AL, Stockmann C, Rubinstein MP, Liao D, Zhang N et al. 2010. Macrophage expression of hypoxia-inducible factor 1α suppresses T-cell function and promotes tumor progression. Cancer Res 70:7465–75
    [Google Scholar]
  82. 82.
    Park JE, Dutta B, Tse SW, Gupta N, Tan CF et al. 2019. Hypoxia-induced tumor exosomes promote M2-like macrophage polarization of infiltrating myeloid cells and microRNA-mediated metabolic shift. Oncogene 38:5158–73
    [Google Scholar]
  83. 83.
    Roca H, Varsos ZS, Sud S, Craig MJ, Ying C, Pienta KJ. 2009. CCL2 and interleukin-6 promote survival of human CD11b+ peripheral blood mononuclear cells and induce M2-type macrophage polarization. J. Biol. Chem. 284:34342–54
    [Google Scholar]
  84. 84.
    Pixley FJ, Stanley ER. 2004. CSF-1 regulation of the wandering macrophage: complexity in action. Trends Cell Biol 14:628–38
    [Google Scholar]
  85. 85.
    Mantovani A. 2009. The yin-yang of tumor-associated neutrophils. Cancer Cell 16:173–74
    [Google Scholar]
  86. 86.
    Sagiv JY, Michaeli J, Assi S, Mishalian I, Kisos H et al. 2015. Phenotypic diversity and plasticity in circulating neutrophil subpopulations in cancer. Cell Rep 10:562–73
    [Google Scholar]
  87. 87.
    Sexton RE, Hachem AH, Assi AA, Bukhsh MA, Gorski DH, Speyer CL. 2018. Metabotropic glutamate receptor 1 regulates inflammation in triple negative breast cancer. Sci. Rep. 8:16008
    [Google Scholar]
  88. 88.
    De Filippo K, Dudeck A, Hasenberg M, Nye E, van Rooijen N et al. 2013. Mast cell and macrophage chemokines CXCL1/CXCL2 control the early stage of neutrophil recruitment during tissue inflammation. Blood 121:4930–37
    [Google Scholar]
  89. 89.
    Hammond ME, Lapointe GR, Feucht PH, Hilt S, Gallegos CA et al. 1995. IL-8 induces neutrophil chemotaxis predominantly via type I IL-8 receptors. J. Immunol. 155:1428–33
    [Google Scholar]
  90. 90.
    Hsu BE, Roy J, Mouhanna J, Rayes RF, Ramsay L et al. 2020. C3a elicits unique migratory responses in immature low-density neutrophils. Oncogene 39:2612–23
    [Google Scholar]
  91. 91.
    Naito Y, Saito K, Shiiba K, Ohuchi A, Saigenji K et al. 1998. CD8+ T cells infiltrated within cancer cell nests as a prognostic factor in human colorectal cancer. Cancer Res 58:3491–94
    [Google Scholar]
  92. 92.
    Yan H, Parsons DW, Jin G, McLendon R, Rasheed BA et al. 2009. IDH1 and IDH2 mutations in gliomas. N. Engl. J. Med. 360:765–73
    [Google Scholar]
  93. 93.
    Kohanbash G, Carrera DA, Shrivastav S, Ahn BJ, Jahan N et al. 2017. Isocitrate dehydrogenase mutations suppress STAT1 and CD8+ T cell accumulation in gliomas. J. Clin. Investig. 127:1425–37
    [Google Scholar]
  94. 94.
    Chheda ZS, Sharma RK, Jala VR, Luster AD, Haribabu B. 2016. Chemoattractant receptors BLT1 and CXCR3 regulate antitumor immunity by facilitating CD8+ T cell migration into tumors. J. Immunol. 197:2016–26
    [Google Scholar]
  95. 95.
    Dangaj D, Bruand M, Grimm AJ, Ronet C, Barras D et al. 2019. Cooperation between constitutive and inducible chemokines enables T cell engraftment and immune attack in solid tumors. Cancer Cell 35:885–900.e10
    [Google Scholar]
  96. 96.
    Harlin H, Meng Y, Peterson AC, Zha Y, Tretiakova M et al. 2009. Chemokine expression in melanoma metastases associated with CD8+ T-cell recruitment. Cancer Res 69:3077–85
    [Google Scholar]
  97. 97.
    Bacon KB, Premack BA, Gardner P, Schall TJ. 1995. Activation of dual T cell signaling pathways by the chemokine RANTES. Science 269:1727–30
    [Google Scholar]
  98. 98.
    Schall TJ, Bacon K, Toy KJ, Goeddel DV. 1990. Selective attraction of monocytes and T lymphocytes of the memory phenotype by cytokine RANTES. Nature 347:669–71
    [Google Scholar]
  99. 99.
    Shortman K, Liu YJ. 2002. Mouse and human dendritic cell subtypes. Nat. Rev. Immunol. 2:151–61
    [Google Scholar]
  100. 100.
    Collin M, Bigley V 2018. Human dendritic cell subsets: an update. Immunology 154:3–20
    [Google Scholar]
  101. 101.
    Salmon H, Idoyaga J, Rahman A, Leboeuf M, Remark R et al. 2016. Expansion and activation of CD103+ dendritic cell progenitors at the tumor site enhances tumor responses to therapeutic PD-L1 and BRAF inhibition. Immunity 44:924–38
    [Google Scholar]
  102. 102.
    Guermonprez P, Valladeau J, Zitvogel L, Théry C, Amigorena S. 2002. Antigen presentation and T cell stimulation by dendritic cells. Annu. Rev. Immunol. 20:621–67
    [Google Scholar]
  103. 103.
    Zou W, Machelon V, Coulomb-L'Hermin A, Borvak J, Nome F et al. 2001. Stromal-derived factor 1 in human tumors recruits and alters the function of plasmacytoid precursor dendritic cells. Nat. Med. 7:1339–46
    [Google Scholar]
  104. 104.
    Hegde PS, Chen DS. 2020. Top 10 challenges in cancer immunotherapy. Immunity 52:17–35
    [Google Scholar]
  105. 105.
    Damsky WE, Curley DP, Santhanakrishnan M, Rosenbaum LE, Platt JT et al. 2011. β-Catenin signaling controls metastasis in Braf-activated Pten-deficient melanomas. Cancer Cell 20:741–54
    [Google Scholar]
  106. 106.
    Spranger S, Bao R, Gajewski TF 2015. Melanoma-intrinsic β-catenin signalling prevents anti-tumour immunity. Nature 523:231–35
    [Google Scholar]
  107. 107.
    Halama N, Zoernig I, Berthel A, Kahlert C, Klupp F et al. 2016. Tumoral immune cell exploitation in colorectal cancer metastases can be targeted effectively by anti-CCR5 therapy in cancer patients. Cancer Cell 29:587–601
    [Google Scholar]
  108. 108.
    Kim K-S, Park J-I, Oh N, Cho H-J, Park J-H, Park K-S. 2019. ELK3 expressed in lymphatic endothelial cells promotes breast cancer progression and metastasis through exosomal miRNAs. Sci. Rep. 9:8418
    [Google Scholar]
  109. 109.
    Pang MF, Georgoudaki AM, Lambut L, Johansson J, Tabor V et al. 2016. TGF-β1-induced EMT promotes targeted migration of breast cancer cells through the lymphatic system by the activation of CCR7/CCL21-mediated chemotaxis. Oncogene 35:748–60
    [Google Scholar]
  110. 110.
    Wei J-C, Yang J, Liu D, Wu M-F, Qiao L et al. 2017. Tumor-associated lymphatic endothelial cells promote lymphatic metastasis by highly expressing and secreting SEMA4C. Clin. Cancer Res. 23:214–24
    [Google Scholar]
  111. 111.
    Quail DF, Joyce JA. 2013. Microenvironmental regulation of tumor progression and metastasis. Nat. Med. 19:1423–37
    [Google Scholar]
  112. 112.
    Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D 2020. Dendritic cells in cancer immunology and immunotherapy. Nat. Rev. Immunol. 20:7–24
    [Google Scholar]
  113. 113.
    Su S, Liu Q, Chen J, Chen J, Chen F et al. 2014. A positive feedback loop between mesenchymal-like cancer cells and macrophages is essential to breast cancer metastasis. Cancer Cell 25:605–20
    [Google Scholar]
  114. 114.
    Fu X-T, Dai Z, Song K, Zhang Z-J, Zhou Z-J et al. 2015. Macrophage-secreted IL-8 induces epithelial–mesenchymal transition in hepatocellular carcinoma cells by activating the JAK2/STAT3/Snail pathway. Int. J. Oncol. 46:587–96
    [Google Scholar]
  115. 115.
    Condeelis J, Pollard JW. 2006. Macrophages: obligate partners for tumor cell migration, invasion, and metastasis. Cell 124:263–66
    [Google Scholar]
  116. 116.
    Lim SY, Yuzhalin AE, Gordon-Weeks AN, Muschel RJ. 2016. Tumor-infiltrating monocytes/macrophages promote tumor invasion and migration by upregulating S100A8 and S100A9 expression in cancer cells. Oncogene 35:5735–45
    [Google Scholar]
  117. 117.
    Wang N, Liu W, Zheng Y, Wang S, Yang B et al. 2018. CXCL1 derived from tumor-associated macrophages promotes breast cancer metastasis via activating NF-κB/SOX4 signaling. Cell Death Dis 9:880
    [Google Scholar]
  118. 118.
    Zheng P, Luo Q, Wang W, Li J, Wang T et al. 2018. Tumor-associated macrophages–derived exosomes promote the migration of gastric cancer cells by transfer of functional apolipoprotein E. Cell Death Dis 9:434
    [Google Scholar]
  119. 119.
    Pignatelli J, Bravo-Cordero JJ, Roh-Johnson M, Gandhi SJ, Wang Y et al. 2016. Macrophage-dependent tumor cell transendothelial migration is mediated by Notch1/MenaINV-initiated invadopodium formation. Sci. Rep. 6:37874
    [Google Scholar]
  120. 120.
    Kessenbrock K, Plaks V, Werb Z. 2010. Matrix metalloproteinases: regulators of the tumor microenvironment. Cell 141:52–67
    [Google Scholar]
  121. 121.
    Li S, Huang C, Hu G, Ma J, Chen Y et al. 2020. Tumor-educated B cells promote renal cancer metastasis via inducing the IL-1β/HIF-2α/Notch1 signals. Cell Death Dis 11:163
    [Google Scholar]
  122. 122.
    López-Soto A, Gonzalez S, Smyth MJ, Galluzzi L. 2017. Control of metastasis by NK cells. Cancer Cell 32:135–54
    [Google Scholar]
  123. 123.
    López-Soto A, Huergo-Zapico L, Galván JA, Rodrigo L, de Herreros AG et al. 2013. Epithelial–mesenchymal transition induces an antitumor immune response mediated by NKG2D receptor. J. Immunol. 190:4408–19
    [Google Scholar]
  124. 124.
    Malaisé M, Rovira J, Renner P, Eggenhofer E, Sabet-Baktach M et al. 2014. KLRG1+ NK cells protect T-bet-deficient mice from pulmonary metastatic colorectal carcinoma. J. Immunol. 192:1954–61
    [Google Scholar]
  125. 125.
    Hsu BE, Tabariès S, Johnson RM, Andrzejewski S, Senecal J et al. 2019. Immature low-density neutrophils exhibit metabolic flexibility that facilitates breast cancer liver metastasis. Cell Rep 27:3902–15.e6
    [Google Scholar]
  126. 126.
    Nishida J, Momoi Y, Miyakuni K, Tamura Y, Takahashi K et al. 2020. Epigenetic remodelling shapes inflammatory renal cancer and neutrophil-dependent metastasis. Nat. Cell Biol. 22:465–75
    [Google Scholar]
  127. 127.
    Caputa G, Castoldi A, Pearce EJ. 2019. Metabolic adaptations of tissue-resident immune cells. Nat. Immunol. 20:793–801
    [Google Scholar]
  128. 128.
    Kolaczkowska E, Kubes P. 2013. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 13:159–75
    [Google Scholar]
  129. 129.
    Shulman Z, Cohen SJ, Roediger B, Kalchenko V, Jain R et al. 2012. Transendothelial migration of lymphocytes mediated by intraendothelial vesicle stores rather than by extracellular chemokine depots. Nat. Immunol. 13:67–76
    [Google Scholar]
  130. 130.
    Jamieson AM, Isnard P, Dorfman JR, Coles MC, Raulet DH. 2004. Turnover and proliferation of NK cells in steady state and lymphopenic conditions. J. Immunol. 172:864–70
    [Google Scholar]
  131. 131.
    Casey KA, Fraser KA, Schenkel JM, Moran A, Abt MC et al. 2012. Antigen-independent differentiation and maintenance of effector-like resident memory T cells in tissues. J. Immunol. 188:4866–75
    [Google Scholar]
  132. 132.
    Hidalgo A, Chilvers ER, Summers C, Koenderman L. 2019. The neutrophil life cycle. Trends Immunol 40:584–97
    [Google Scholar]
  133. 133.
    Davies LC, Rosas M, Jenkins SJ, Liao C-T, Scurr MJ et al. 2013. Distinct bone marrow–derived and tissue-resident macrophage lineages proliferate at key stages during inflammation. Nat. Commun. 4:1886
    [Google Scholar]
  134. 134.
    Veres TZ, Voedisch S, Spies E, Valtonen J, Prenzler F, Braun A. 2013. Aeroallergen challenge promotes dendritic cell proliferation in the airways. J. Immunol. 190:897–903
    [Google Scholar]
  135. 135.
    Johnstone RW, Frew AJ, Smyth MJ. 2008. The TRAIL apoptotic pathway in cancer onset, progression and therapy. Nat. Rev. Cancer 8:782–98
    [Google Scholar]
  136. 136.
    Wang S, El-Deiry WS. 2003. TRAIL and apoptosis induction by TNF-family death receptors. Oncogene 22:8628–33
    [Google Scholar]
  137. 137.
    Refaat A, Abd-Rabou A, Reda A 2014. TRAIL combinations: The new ‘trail’ for cancer therapy. Oncol. Lett. 7:1327–32
    [Google Scholar]
  138. 138.
    Jiang Y, Chen K, Tang Z, Zeng Z, Yao W et al. 2006. TRAIL gene reorganizes the cytoskeleton and decreases the motility of human leukemic Jurkat cells. Cell Motil 63:471–82
    [Google Scholar]
  139. 139.
    Gelmini S, Mangoni M, Serio M, Romagnani P, Lazzeri E. 2008. The critical role of SDF-1/CXCR4 axis in cancer and cancer stem cells metastasis. J. Endocrinol. Investig. 31:809–19
    [Google Scholar]
  140. 140.
    Song Z, Zhang X, Ye X, Feng C, Yang G et al. 2017. High expression of stromal cell–derived factor 1 (SDF-1) and NF-κB predicts poor prognosis in cervical cancer. Med. Sci. Monit. 23:151–57
    [Google Scholar]
  141. 141.
    Freeley M, O'Dowd F, Paul T, Kashanin D, Davies A et al. 2012. L-plastin regulates polarization and migration in chemokine-stimulated human T lymphocytes. J. Immunol. 188:6357–70
    [Google Scholar]
  142. 142.
    Yonezawa A, Hori T, Sakaida H, Uchiyama T. 2000. SDF-1 has costimulatory effects on human T cells: possible involvement of MAPK (ERK2) activation. Microbiol. Immunol. 44:135–41
    [Google Scholar]
  143. 143.
    Luo J, Li D, Wei D, Wang X, Wang L, Zeng X. 2017. RhoA and RhoC are involved in stromal cell–derived factor 1–induced cell migration by regulating F-actin redistribution and assembly. Mol. Cell Biochem. 436:13–21
    [Google Scholar]
  144. 144.
    Rohatgi R, Ho HY, Kirschner MW. 2000. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150:1299–310
    [Google Scholar]
  145. 145.
    Haddad E, Zugaza JL, Louache F, Debili N, Crouin C et al. 2001. The interaction between Cdc42 and WASP is required for SDF-1-induced T-lymphocyte chemotaxis. Blood 97:33–38
    [Google Scholar]
  146. 146.
    Okabe S, Fukuda S, Broxmeyer HE. 2002. Activation of Wiskott-Aldrich syndrome protein and its association with other proteins by stromal cell–derived factor 1α is associated with cell migration in a T-lymphocyte line. Exp. Hematol. 30:761–66
    [Google Scholar]
  147. 147.
    Luo J, Wei D, Li D, Wang L 2018. Nitric oxide functions in stromal cell–derived factor 1–induced cytoskeleton changes and the migration of Jurkat cells. Oncol. Lett. 16:6685–90
    [Google Scholar]
  148. 148.
    Papa A, Pandolfi PP. 2019. The PTEN–PI3K axis in cancer. Biomolecules 9:153
    [Google Scholar]
  149. 149.
    Li B, Xu WW, Lam AKY, Wang Y, Hu HF et al. 2017. Significance of PI3K/AKT signaling pathway in metastasis of esophageal squamous cell carcinoma and its potential as a target for anti-metastasis therapy. Oncotarget 8:38755–66
    [Google Scholar]
  150. 150.
    Yothaisong S, Dokduang H, Techasen A, Namwat N, Yongvanit P et al. 2013. Increased activation of PI3K/AKT signaling pathway is associated with cholangiocarcinoma metastasis and PI3K/mTOR inhibition presents a possible therapeutic strategy. Tumour Biol 34:3637–48
    [Google Scholar]
  151. 151.
    Lacalle RA, Gómez-Moutón C, Barber DF, Jiménez-Baranda S, Mira E et al. 2004. PTEN regulates motility but not directionality during leukocyte chemotaxis. J. Cell Sci. 117:6207–15
    [Google Scholar]
  152. 152.
    Mills SC, Goh PH, Kudatsih J, Ncube S, Gurung R et al. 2016. Cell migration towards CXCL12 in leukemic cells compared to breast cancer cells. Cell. Signal. 28:316–24
    [Google Scholar]
  153. 153.
    Beadnell TC, Nassar KW, Rose MM, Clark EG, Danysh BP et al. 2018. Src-mediated regulation of the PI3K pathway in advanced papillary and anaplastic thyroid cancer. Oncogenesis 7:23
    [Google Scholar]
  154. 154.
    Rexer B, Chakrabarty A, Rinehart C, Hill S, Olivares M et al. 2009. Intracellular Src family kinases mediate PI3K-Akt pathway activation and resistance to lapatinib in HER2-overexpressing human breast cancer cells. Cancer Res 69:Suppl.707
    [Google Scholar]
  155. 155.
    Moro-García MA, Mayo JC, Sainz RM, Alonso-Arias R. 2018. Influence of inflammation in the process of T lymphocyte differentiation: proliferative, metabolic, and oxidative changes. Front. Immunol. 9:339
    [Google Scholar]
  156. 156.
    Cope AP. 2002. Studies of T-cell activation in chronic inflammation. Arthritis Res 4:Suppl. 3S197–211
    [Google Scholar]
  157. 157.
    Busch DH, Kerksiek KM, Pamer EG. 2000. Differing roles of inflammation and antigen in T cell proliferation and memory generation. J. Immunol. 164:4063–70
    [Google Scholar]
  158. 158.
    Fang P, Li X, Dai J, Cole L, Camacho JA et al. 2018. Immune cell subset differentiation and tissue inflammation. J. Hematol. Oncol. 11:97
    [Google Scholar]
  159. 159.
    Goswami R, Awasthi A. 2020. T cell differentiation and function in tissue inflammation. Front. Immunol. 11:289
    [Google Scholar]
  160. 160.
    Grivennikov SI, Karin M. 2011. Inflammatory cytokines in cancer: Tumour necrosis factor and interleukin 6 take the stage. Ann. Rheum. Dis. 70:Suppl. 1I104–8
    [Google Scholar]
  161. 161.
    Shalapour S, Karin M. 2015. Immunity, inflammation, and cancer: an eternal fight between good and evil. J. Clin. Investig. 125:3347–55
    [Google Scholar]
  162. 162.
    Sorokin L. 2010. The impact of the extracellular matrix on inflammation. Nat. Rev. Immunol. 10:712–23
    [Google Scholar]
  163. 163.
    Overstreet MG, Gaylo A, Angermann BR, Hughson A, Hyun Y-M et al. 2013. Inflammation-induced interstitial migration of effector CD4+ T cells is dependent on integrin αV. Nat. Immunol. 14:949–58
    [Google Scholar]
  164. 164.
    Franitza S, Hershkoviz R, Kam N, Lichtenstein N, Vaday GG et al. 2000. TNF-α associated with extracellular matrix fibronectin provides a stop signal for chemotactically migrating T cells. J. Immunol. 165:2738–47
    [Google Scholar]
  165. 165.
    Mason SD, Joyce JA. 2011. Proteolytic networks in cancer. Trends Cell Biol 21:228–37
    [Google Scholar]
  166. 166.
    Mehner C, Hockla A, Miller E, Ran S, Radisky DC, Radisky ES. 2014. Tumor cell-produced matrix metalloproteinase 9 (MMP-9) drives malignant progression and metastasis of basal-like triple negative breast cancer. Oncotarget 5:2736–49
    [Google Scholar]
  167. 167.
    Quintero-Fabián S, Arreola R, Becerril-Villanueva E, Torres-Romero JC, Arana-Argáez V et al. 2019. Role of matrix metalloproteinases in angiogenesis and cancer. Front. Oncol. 9:1370
    [Google Scholar]
  168. 168.
    Webb AH, Gao BT, Goldsmith ZK, Irvine AS, Saleh N et al. 2017. Inhibition of MMP-2 and MMP-9 decreases cellular migration, and angiogenesis in in vitro models of retinoblastoma. BMC Cancer 17:434
    [Google Scholar]
  169. 169.
    Adair-Kirk TL, Atkinson JJ, Broekelmann TJ, Doi M, Tryggvason K et al. 2003. A site on laminin α5, AQARSAASKVKVSMKF, induces inflammatory cell production of matrix metalloproteinase-9 and chemotaxis. J. Immunol. 171:398–406
    [Google Scholar]
  170. 170.
    Huang H. 2018. Matrix metalloproteinase-9 (MMP-9) as a cancer biomarker and MMP-9 biosensors: recent advances. Sensors 18:3249
    [Google Scholar]
  171. 171.
    Qian BZ, Pollard JW. 2010. Macrophage diversity enhances tumor progression and metastasis. Cell 141:39–51
    [Google Scholar]
  172. 172.
    Kim S, Takahashi H, Lin WW, Descargues P, Grivennikov S et al. 2009. Carcinoma-produced factors activate myeloid cells through TLR2 to stimulate metastasis. Nature 457:102–6
    [Google Scholar]
  173. 173.
    Jakowlew SB. 2006. Transforming growth factor β in cancer and metastasis. Cancer Metastasis Rev 25:435–57
    [Google Scholar]
  174. 174.
    Colak S, Ten Dijke P. 2017. Targeting TGF-β signaling in cancer. Trends Cancer 3:56–71
    [Google Scholar]
  175. 175.
    Trapani JA. 2005. The dual adverse effects of TGF-β secretion on tumor progression. Cancer Cell 8:349–50
    [Google Scholar]
  176. 176.
    Dahmani A, Delisle J-S. 2018. TGF-β in T cell biology: implications for cancer immunotherapy. Cancers 10:194
    [Google Scholar]
  177. 177.
    Hargadon KM. 2016. Dysregulation of TGFβ1 activity in cancer and its influence on the quality of anti-tumor immunity. J. Clin. Med. 5:76
    [Google Scholar]
  178. 178.
    Fridlender ZG, Sun J, Kim S, Kapoor V, Cheng G et al. 2009. Polarization of tumor-associated neutrophil phenotype by TGF-β: “N1” versus “N2” TAN. Cancer Cell 16:183–94
    [Google Scholar]
  179. 179.
    Zou S, Wang X, Liu P, Ke C, Xu S. 2019. Arginine metabolism and deprivation in cancer therapy. Biomed. Pharmacother. 118:109210
    [Google Scholar]
  180. 180.
    Patil MD, Bhaumik J, Babykutty S, Banerjee UC, Fukumura D. 2016. Arginine dependence of tumor cells: targeting a chink in cancer's armor. Oncogene 35:4957–72
    [Google Scholar]
  181. 181.
    Feun L, You M, Wu CJ, Kuo MT, Wangpaichitr M et al. 2008. Arginine deprivation as a targeted therapy for cancer. Curr. Pharm. Des. 14:1049–57
    [Google Scholar]
  182. 182.
    van der Woude LL, Gorris MAJ, Halilovic A, Figdor CG, de Vries IJM. 2017. Migrating into the tumor: a roadmap for T cells. Trends Cancer 3:797–808
    [Google Scholar]
  183. 183.
    Cao Y, Feng Y, Zhang Y, Zhu X, Jin F 2016. l-Arginine supplementation inhibits the growth of breast cancer by enhancing innate and adaptive immune responses mediated by suppression of MDSCs in vivo. BMC Cancer 16:343
    [Google Scholar]
  184. 184.
    DiPersio JF, Uy GL, Yasothan U, Kirkpatrick P. 2009. Plerixafor. Nat. Rev. Drug Discov. 8:105–7
    [Google Scholar]
  185. 185.
    Biasci D, Smoragiewicz M, Connell CM, Wang Z, Gao Y et al. 2020. CXCR4 inhibition in human pancreatic and colorectal cancers induces an integrated immune response. PNAS 117:28960–70
    [Google Scholar]
  186. 186.
    Capoccia BJ, Shepherd RM, Link DC. 2006. G-CSF and AMD3100 mobilize monocytes into the blood that stimulate angiogenesis in vivo through a paracrine mechanism. Blood 108:2438–45
    [Google Scholar]
  187. 187.
    Sun X, Charbonneau C, Wei L, Yang W, Chen Q, Terek RM 2013. CXCR4-targeted therapy inhibits VEGF expression and chondrosarcoma angiogenesis and metastasis. Mol. Cancer Ther. 12:1163–70
    [Google Scholar]
  188. 188.
    Zhao S, Ren S, Jiang T, Zhu B, Li X et al. 2019. Low-dose apatinib optimizes tumor microenvironment and potentiates antitumor effect of PD-1/PD-L1 blockade in lung cancer. Cancer Immunol. Res. 7:630–43
    [Google Scholar]
  189. 189.
    Zhang Y, Wang F, Sun H-R, Huang Y-K, Gao J-P, Huang H. 2021. Apatinib combined with PD-L1 blockade synergistically enhances antitumor immune responses and promotes HEV formation in gastric cancer. J. Cancer Res. Clin. Oncol. 147:2209–22
    [Google Scholar]
  190. 190.
    Chen H, Jiang T, Lin F, Guan H, Zheng J et al. 2021. PD-1 inhibitor combined with apatinib modulate the tumor microenvironment and potentiate anti-tumor effect in mice bearing gastric cancer. Int. Immunopharmacol. 99:107929
    [Google Scholar]
  191. 191.
    Karagiannis T, Boura P, Tsapas A. 2014. Safety of dipeptidyl peptidase 4 inhibitors: a perspective review. Ther. Adv. Drug Saf. 5:138–46
    [Google Scholar]
  192. 192.
    Barreira da Silva R, Laird ME, Yatim N, Fiette L, Ingersoll MA, Albert ML. 2015. Dipeptidylpeptidase 4 inhibition enhances lymphocyte trafficking, improving both naturally occurring tumor immunity and immunotherapy. Nat. Immunol. 16:850–58
    [Google Scholar]
  193. 193.
    Hennequart M, Pilotte L, Cane S, Hoffmann D, Stroobant V et al. 2017. Constitutive IDO1 expression in human tumors is driven by cyclooxygenase-2 and mediates intrinsic immune resistance. Cancer Immunol. Res. 5:695–709
    [Google Scholar]
  194. 194.
    Fried MW, Shiffman ML, Reddy KR, Smith C, Marinos G et al. 2002. Peginterferon alfa-2a plus ribavirin for chronic hepatitis C virus infection. N. Engl. J. Med. 347:975–82
    [Google Scholar]
  195. 195.
    Lau GKK, Piratvisuth T, Luo KX, Marcellin P, Thongsawat S et al. 2005. Peginterferon alfa-2a, lamivudine, and the combination for HBeAg-positive chronic hepatitis B. N. Engl. J. Med. 352:2682–95
    [Google Scholar]
  196. 196.
    Zeuzem S, Feinman SV, Rasenack J, Heathcote EJ, Lai M-Y et al. 2000. Peginterferon alfa-2a in patients with chronic hepatitis C. N. Engl. J. Med. 343:1666–72
    [Google Scholar]
  197. 197.
    Yang M-J, Guo J, Ye Y-F, Chen S-H, Peng L-X et al. 2018. Decreased macrophage inflammatory protein (MIP)-1α and MIP-1β increase the risk of developing nasopharyngeal carcinoma. Cancer Commun 38:7
    [Google Scholar]
  198. 198.
    Sivina M, Hartmann E, Kipps TJ, Rassenti L, Krupnik D et al. 2011. CCL3 (MIP-1α) plasma levels and the risk for disease progression in chronic lymphocytic leukemia. Blood 117:1662–69
    [Google Scholar]
  199. 199.
    Allen F, Rauhe P, Askew D, Tong AA, Nthale J et al. 2017. CCL3 enhances antitumor immune priming in the lymph node via IFNγ with dependency on natural killer cells. Front. Immunol. 8:1390
    [Google Scholar]
  200. 200.
    Allen F, Bobanga ID, Barkauskas D, Myers J, Huang AY. 2016. CCL3 in the tumor microenvironment augments the antitumor immune response. J. Immunol. 196:e1393598
    [Google Scholar]
  201. 201.
    He S, Wang L, Wu Y, Li D, Zhang Y. 2010. CCL3 and CCL20-recruited dendritic cells modified by melanoma antigen gene 1 induce anti-tumor immunity against gastric cancer ex vivo and in vivo. J. Exp. Clin. Cancer Res. 29:37
    [Google Scholar]
  202. 202.
    Allen F, Bobanga ID, Rauhe P, Barkauskas D, Teich N et al. 2018. CCL3 augments tumor rejection and enhances CD8+ T cell infiltration through NK and CD103+ dendritic cell recruitment via IFNγ. OncoImmunology 7:e1393598
    [Google Scholar]
  203. 203.
    Ma YR, Ma YH. 2014. MIP-1α enhances Jurkat cell transendothelial migration by up-regulating endothelial adhesion molecules VCAM-1 and ICAM-1. Leuk. Res. 38:1327–31
    [Google Scholar]
  204. 204.
    Lee S, Choe JW, Kim HK, Sung J. 2011. High-sensitivity C-reactive protein and cancer. J. Epidemiol. 21:161–68
    [Google Scholar]
  205. 205.
    Allin KH, Nordestgaard BG. 2011. Elevated C-reactive protein in the diagnosis, prognosis, and cause of cancer. Crit. Rev. Clin. Lab. Sci. 48:155–70
    [Google Scholar]
  206. 206.
    Sproston NR, Ashworth JJ. 2018. Role of C-reactive protein at sites of inflammation and infection. Front. Immunol. 9:754
    [Google Scholar]
  207. 207.
    Shrotriya S, Walsh D, Bennani-Baiti N, Thomas S, Lorton C 2015. C-reactive protein is an important biomarker for prognosis tumor recurrence and treatment response in adult solid tumors: a systematic review. PLOS ONE 10:e0143080
    [Google Scholar]
  208. 208.
    Jimenez RV, Wright TT, Jones NR, Wu J, Gibson AW, Szalai AJ. 2018. C-reactive protein impairs dendritic cell development, maturation, and function: implications for peripheral tolerance. Front. Immunol. 9:372
    [Google Scholar]
  209. 209.
    Yoshida T, Ichikawa J, Giuroiu I, Laino AS, Hao Y et al. 2020. C reactive protein impairs adaptive immunity in immune cells of patients with melanoma. J. Immunother. Cancer 8:e000234
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-110320-110749
Loading
/content/journals/10.1146/annurev-bioeng-110320-110749
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error