1932

Abstract

Neurotechnologies for treating pain rely on electrical stimulation of the central or peripheral nervous system to disrupt or block pain signaling and have been commercialized to treat a variety of pain conditions. While their adoption is accelerating, neurotechnologies are still frequently viewed as a last resort, after many other treatment options have been explored. We review the pain conditions commonly treated with electrical stimulation, as well as the specific neurotechnologies used for treating those conditions. We identify barriers to adoption, including a limited understanding of mechanisms of action, inconsistent efficacy across patients, and challenges related to selectivity of stimulation and off-target side effects. We describe design improvements that have recently been implemented, as well as some cutting-edge technologies that may address the limitations of existing neurotechnologies. Addressing these challenges will accelerate adoption and change neurotechnologies from last-line to first-line treatments for people living with chronic pain.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-111022-121637
2023-06-08
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/25/1/annurev-bioeng-111022-121637.html?itemId=/content/journals/10.1146/annurev-bioeng-111022-121637&mimeType=html&fmt=ahah

Literature Cited

  1. 1.
    Francis J, Dingley J. 2015. Electroanaesthesia—from torpedo fish to TENS. Anaesthesia 70:193–103
    [Google Scholar]
  2. 2.
    Cambiaghi M, Sconocchia S. 2018. Scribonius Largus (probably before 1 ce–after 48 ce). J. Neurol. 265:102466–68
    [Google Scholar]
  3. 3.
    Shealy CN, Mortimer JT, Reswick JB. 1967. Electrical inhibition of pain by stimulation of the dorsal columns: preliminary clinical report. Anesth. Analg. 46:4489–91
    [Google Scholar]
  4. 4.
    Mertens P, Blond S, David R, Rigoard P. 2015. Anatomy, physiology and neurobiology of the nociception: a focus on low back pain (part A). Neurochirurgie 61:Suppl. 1S22–34
    [Google Scholar]
  5. 5.
    Borsook D, Youssef AM, Simons L, Elman I, Eccleston C. 2018. When pain gets stuck: the evolution of pain chronification and treatment resistance. Pain 159:122421–36
    [Google Scholar]
  6. 6.
    Fenton BW, Shih E, Zolton J. 2015. The neurobiology of pain perception in normal and persistent pain. Pain Manag. 5:4297–317
    [Google Scholar]
  7. 7.
    Raja SN, Carr DB, Cohen M, Finnerup NB, Flor H et al. 2020. The revised International Association for the Study of Pain definition of pain: concepts, challenges, and compromises. Pain 161:91976–82
    [Google Scholar]
  8. 8.
    Woods CG, Babiker MOE, Horrocks I, Tolmie J, Kurth I. 2015. The phenotype of congenital insensitivity to pain due to the NaV1.9 variant p.L811P. Eur. J. Hum. Genet. 23:5561–63
    [Google Scholar]
  9. 9.
    Woo AK. 2010. Depression and anxiety in pain. Rev. Pain 4:18–12
    [Google Scholar]
  10. 10.
    Stanton-Hicks M, Baron R, Boas R, Gordh T, Harden N et al. 1998. Complex regional pain syndromes: guidelines for therapy. Clin. J. Pain 14:2155–66
    [Google Scholar]
  11. 11.
    Urits I, Burshtein A, Sharma M, Testa L, Gold PA et al. 2019. Low back pain, a comprehensive review: pathophysiology, diagnosis, and treatment. Curr. Pain Headache Rep. 23:323
    [Google Scholar]
  12. 12.
    Baliga S, Treon K, Craig NJA. 2015. Low back pain: current surgical approaches. Asian Spine J. 9:4645–57
    [Google Scholar]
  13. 13.
    Jacobs WCH, Rubinstein SM, Willems PC, Moojen WA, Pellisé F et al. 2013. The evidence on surgical interventions for low back disorders, an overview of systematic reviews. Eur. Spine J. 22:91936–49
    [Google Scholar]
  14. 14.
    Taylor SS, Noor N, Urits I, Paladini A, Sadhu MS et al. 2021. Complex regional pain syndrome: a comprehensive review. Pain Ther. 10:2875–92
    [Google Scholar]
  15. 15.
    Kim H, Lee CH, Kim SH, Kim YD. 2018. Epidemiology of complex regional pain syndrome in Korea: an electronic population health data study. PLOS ONE 13:6e0198147
    [Google Scholar]
  16. 16.
    Ott S, Maihöfner C. 2018. Signs and symptoms in 1,043 patients with complex regional pain syndrome. J. Pain 19:6599–611
    [Google Scholar]
  17. 17.
    Bender SD. 2014. Orofacial pain and headache: a review and look at the commonalities topical collection on uncommon headache syndromes. Curr. Pain Headache Rep. 18:3400
    [Google Scholar]
  18. 18.
    Yap AUJ, Chua EK, Hoe JKE. 2002. Clinical TMD, pain-related disability and psychological status of TMD patients. J. Oral Rehabil. 29:4374–80
    [Google Scholar]
  19. 19.
    Ailani J, Burch RC, Robbins MS. 2021. The American Headache Society Consensus Statement: update on integrating new migraine treatments into clinical practice. Headache 61:71021–39
    [Google Scholar]
  20. 20.
    Van Deun L, De Witte M, Goessens T, Halewyck S, Ketelaer MC et al. 2020. Facial pain: a comprehensive review and proposal for a pragmatic diagnostic approach. Eur. Neurol. 83:15–16
    [Google Scholar]
  21. 21.
    Ziegler-Graham K, MacKenzie EJ, Ephraim PL, Travison TG, Brookmeyer R. 2008. Estimating the prevalence of limb loss in the United States: 2005 to 2050. Arch. Phys. Med. Rehabil. 89:3422–29
    [Google Scholar]
  22. 22.
    Hsu E, Cohen SP. 2013. Postamputation pain: epidemiology, mechanisms, and treatment. J. Pain Res. 6:121–36
    [Google Scholar]
  23. 23.
    Limakatso K, Parker R. 2021. Treatment recommendations for phantom limb pain in people with amputations: an expert consensus Delphi study. PM&R 13:111216–26
    [Google Scholar]
  24. 24.
    Awad A, Forbes J, Jermakowicz W, Eli I, Blumenkopf B, Konrad P 2013. Experience with 25 years of dorsal root entry zone lesioning at a single institution. Surg. Neurol. Int. 4:164
    [Google Scholar]
  25. 25.
    Campbell BCV, De Silva DA, Macleod MR, Coutts SB, Schwamm LH et al. 2019. Ischaemic stroke. Nat. Rev. Dis. Primers 5:170
    [Google Scholar]
  26. 26.
    Lundström E, Smits A, Terént A, Borg J. 2009. Risk factors for stroke-related pain 1 year after first-ever stroke. Eur. J. Neurol. 16:2188–93
    [Google Scholar]
  27. 27.
    O'Donnell MJ, Diener HC, Sacco RL, Panju AA, Vinisko R, Yusuf S. 2013. Chronic pain syndromes after ischemic stroke: PRoFESS trial. Stroke 44:51238–43
    [Google Scholar]
  28. 28.
    Harrison RA, Field TS. 2015. Post stroke pain: identification, assessment, and therapy. Cerebrovasc. Dis. 39:3/4190–201
    [Google Scholar]
  29. 29.
    Plecash AR, Chebini A, Ip A, Lai JJ, Mattar AA et al. 2019. Updates in the treatment of post-stroke pain. Curr. Neurol. Neurosci. Rep. 19:1186
    [Google Scholar]
  30. 30.
    Kloner RA, Chaitman B. 2017. Angina and its management. J. Cardiovasc. Pharmacol. Ther. 22:3199–209
    [Google Scholar]
  31. 31.
    Kemler MA, Barendse GA, van Kleef M, de Vet HC, Rijks CP et al. 2000. Spinal cord stimulation in patients with chronic reflex sympathetic dystrophy. N. Engl. J. Med. 343:9618–24
    [Google Scholar]
  32. 32.
    Kumar K, Taylor RS, Jacques L, Eldabe S, Meglio M et al. 2008. The effects of spinal cord stimulation in neuropathic pain are sustained: a 24-month follow-up of the prospective randomized controlled multicenter trial of the effectiveness of spinal cord stimulation. Neurosurgery 63:4762–70
    [Google Scholar]
  33. 33.
    Deer TR, Mekhail N, Provenzano D, Pope J, Krames E et al. 2014. The appropriate use of neurostimulation of the spinal cord and peripheral nervous system for the treatment of chronic pain and ischemic diseases: the neuromodulation appropriateness consensus committee. Neuromodulation 17:6515–50
    [Google Scholar]
  34. 34.
    Sdrulla AD, Guan Y, Raja SN. 2018. Spinal cord stimulation: clinical efficacy and potential mechanisms. Pain Pract. 18:81048–67
    [Google Scholar]
  35. 35.
    North RB, Kidd DH, Petrucci L, Dorsi MJ. 2005. Spinal cord stimulation electrode design: a prospective, randomized, controlled trial comparing percutaneous with laminectomy electrodes. Part II. Clinical outcomes. Neurosurgery 57:5990–95
    [Google Scholar]
  36. 36.
    North RB, Ewend MG, Lawton MT, Piantadosi S. 1991. Spinal cord stimulation for chronic, intractable pain: superiority of “multi-channel” devices. Pain 44:2119–30
    [Google Scholar]
  37. 37.
    Guan Y. 2012. Spinal cord stimulation: neurophysiological and neurochemical mechanisms of action. Curr. Pain Headache Rep. 16:3217–25
    [Google Scholar]
  38. 38.
    Moffitt MA, Lee DC, Bradley K. 2009. Spinal cord stimulation: engineering approaches to clinical and physiological challenges. Implantable Neural Prostheses 1 E Greenbaum, D Zhou 155–94. New York: Springer
    [Google Scholar]
  39. 39.
    Geurts JW, Smits H, Kemler MA, Brunner F, Kessels AGH, van Kleef M. 2013. Spinal cord stimulation for complex regional pain syndrome type. I. A prospective cohort study with long-term follow-up. Neuromodulation 16:6523–29
    [Google Scholar]
  40. 40.
    Aló KM, Redko V, Charnov J. 2002. Four year follow-up of dual electrode spinal cord stimulation for chronic pain. Neuromodulation 5:279–88
    [Google Scholar]
  41. 41.
    Kumar K, Caraway DL, Rizvi S, Bishop S. 2014. Current challenges in spinal cord stimulation. Neuromodulation 17:Suppl. 122–35
    [Google Scholar]
  42. 42.
    Deer TR, Levy RM, Kramer J, Poree L, Amirdelfan K et al. 2017. Dorsal root ganglion stimulation yielded higher treatment success rate for complex regional pain syndrome and causalgia at 3 and 12 months: a randomized comparative trial. Pain 158:4669–81
    [Google Scholar]
  43. 43.
    Graham RD, Sankarasubramanian V, Lempka SF. 2022. Dorsal root ganglion stimulation for chronic pain: hypothesized mechanisms of action. J. Pain 23:2196–211
    [Google Scholar]
  44. 44.
    Krames ES. 2014. The role of the dorsal root ganglion in the development of neuropathic pain. Pain Med. 15:101669–85
    [Google Scholar]
  45. 45.
    Eldabe S, Burger K, Moser H, Klase D, Schu S et al. 2015. Dorsal root ganglion (DRG) stimulation in the treatment of phantom limb pain (PLP). Neuromodulation 18:7610–16
    [Google Scholar]
  46. 46.
    Eldabe S, Espinet A, Wahlstedt A, Kang P, Liem L et al. 2018. Retrospective case series on the treatment of painful diabetic peripheral neuropathy with dorsal root ganglion stimulation. Neuromodulation 21:8787–92
    [Google Scholar]
  47. 47.
    Morgalla MH, Bolat A, Fortunato M, Lepski G, Chander BS. 2017. Dorsal root ganglion stimulation used for the treatment of chronic neuropathic pain in the groin: a single-center study with long-term prospective results in 34 cases. Neuromodulation 20:8753–60
    [Google Scholar]
  48. 48.
    Wall PD, Sweet WH. 1967. Temporary abolition of pain in man. Science 155:3758108–9
    [Google Scholar]
  49. 49.
    Campbell JN, Long DM. 1976. Peripheral nerve stimulation in the treatment of intractable pain. J. Neurosurg. 45:6692–99
    [Google Scholar]
  50. 50.
    Kaye AD, Ridgell S, Alpaugh ES, Mouhaffel A, Kaye AJ et al. 2021. Peripheral nerve stimulation: a review of techniques and clinical efficacy. Pain Ther. 10:2961–72
    [Google Scholar]
  51. 51.
    Novak CB, Mehdian H, von Schroeder HP. 2012. Laxity of the ulnar nerve during elbow flexion and extension. J. Hand Surg. 37:61163–67
    [Google Scholar]
  52. 52.
    Helm S, Shirsat N, Calodney A, Abd-Elsayed A, Kloth D et al. 2021. Peripheral nerve stimulation for chronic pain: a systematic review of effectiveness and safety. Pain Ther. 10:2985–1002
    [Google Scholar]
  53. 53.
    Chen YF, Bramley G, Unwin G, Hanu-Cernat D, Dretzke J et al. 2015. Occipital nerve stimulation for chronic migraine—a systematic review and meta-analysis. PLOS ONE 10:3e0116786
    [Google Scholar]
  54. 54.
    Gaziev G, Topazio L, Iacovelli V, Asimakopoulos A, Di Santo A et al. 2013. Percutaneous tibial nerve stimulation (PTNS) efficacy in the treatment of lower urinary tract dysfunctions: a systematic review. BMC Urol. 13:61
    [Google Scholar]
  55. 55.
    Johnson MI, Paley CA, Howe TE, Sluka KA. 2015. Transcutaneous electrical nerve stimulation for acute pain. Cochrane Database Syst. Rev. 2015:6CD006142
    [Google Scholar]
  56. 56.
    Lozano AM, Lipsman N, Bergman H, Brown P, Chabardes S et al. 2019. Deep brain stimulation: current challenges and future directions. Nat. Rev. Neurol. 15:3148–60
    [Google Scholar]
  57. 57.
    Lempka SF, Machado A. 2014. Deep brain and motor cortex stimulation for head and face pain. Interventional Management of Head and Face Pain: Nerve Blocks and Beyond SN Narouze 141–49. New York: Springer
    [Google Scholar]
  58. 58.
    Bittar RG, Kar-Purkayastha I, Owen SL, Bear RE, Green A et al. 2005. Deep brain stimulation for pain relief: a meta-analysis. J. Clin. Neurosci. 12:5515–19
    [Google Scholar]
  59. 59.
    Levy R, Deer TR, Henderson J. 2010. Intracranial neurostimulation for pain control: a review. Pain Phys. 13:157–65
    [Google Scholar]
  60. 60.
    Hamani C, Lozano AM. 2006. Hardware-related complications of deep brain stimulation: a review of the published literature. Stereotact. Funct. Neurosurg. 84:5/6248–51
    [Google Scholar]
  61. 61.
    Levy R, Deer TR, Henderson J. 2010. Intracranial neurostimulation for pain control: a review. Pain Phys. 13:157–65
    [Google Scholar]
  62. 62.
    Coffey RJ. 2001. Deep brain stimulation for chronic pain: results of two multicenter trials and a structured review. Pain Med. 2:3183–92
    [Google Scholar]
  63. 63.
    Knotkova H, Hamani C, Sivanesan E, Le Beuffe FME, Moon JY et al. 2021. Neuromodulation for chronic pain. Lancet 397:2111–24
    [Google Scholar]
  64. 64.
    Fontaine D, Lazorthes Y, Mertens P, Blond S, Géraud G et al. 2010. Safety and efficacy of deep brain stimulation in refractory cluster headache: a randomized placebo-controlled double-blind trial followed by a 1-year open extension. J. Headache Pain 11:123–31
    [Google Scholar]
  65. 65.
    Hosobuchi Y, Adams JE, Linchitz R. 1977. Pain relief by electrical stimulation of the central gray matter in humans and its reversal by naloxone. Science 197:4299183–86
    [Google Scholar]
  66. 66.
    Hosobuchi Y, Rossier J, Bloom F, Guillemin R. 1979. Stimulation of human periaqueductal gray for pain relief increases immunoreactive β-endorphin in ventricular fluid. Science 203:4377279–81
    [Google Scholar]
  67. 67.
    Benabid AL, Henriksen SJ, Mcginty JF, Bloom FE. 1983. Thalamic nucleus ventro-postero-lateralis inhibits nucleus parafascicularis response to noxious stimuli through a non-opioid pathway. Brain Res. 280:217–31
    [Google Scholar]
  68. 68.
    Gerhart KD, Yezierski RP, Fang ZR, Willis WD. 1983. Inhibition of primate spinothalamic tract neurons by stimulation in ventral posterior lateral (VPLc) thalamic nucleus: possible mechanisms. J. Neurophysiol. 49:2406–23
    [Google Scholar]
  69. 69.
    Tsubokawa T, Yamamoto JT, Katayama Y, Iirayama T, Sibuya H. 1984. Thalamic relay nucleus stimulation for relief of intractable pain. Clinical results and β-endorphin immunoreactivity in the cerebrospinal fluid. Pain 18:115–26
    [Google Scholar]
  70. 70.
    Young RF, Bach FW, van Norman AS, Yaksh TL. 1993. Release of β-endorphin and methionine-enkephalin into cerebrospinal fluid during deep brain stimulation for chronic pain: effects of stimulation locus and site of sampling. J. Neurosurg. 79:816–25
    [Google Scholar]
  71. 71.
    Talbot K, Madden VJ, Jones SL, Moseley GL. 2019. The sensory and affective components of pain: Are they differentially modifiable dimensions or inseparable aspects of a unitary experience? A systematic review. Br. J. Anaesth. 123:2e263–72
    [Google Scholar]
  72. 72.
    Galafassi GZ, Simm Pires de Aguiar PH, Simm RF, Franceschini PR, Filho MP et al. 2021. Neuromodulation for medically refractory neuropathic pain: spinal cord stimulation, deep brain stimulation, motor cortex stimulation, and posterior insula stimulation. World Neurosurg. 146:246–60
    [Google Scholar]
  73. 73.
    Lempka SF, Malone DA, Hu B, Baker KB, Wyant A et al. 2017. Randomized clinical trial of deep brain stimulation for poststroke pain. Ann. Neurol. 81:5653–63
    [Google Scholar]
  74. 74.
    Tsubokawa T, Katayama Y, Yamamoto T, Hirayama T, Koyama S. 1991. Chronic motor cortex stimulation for the treatment of central pain. Acta Neurochir. Suppl. 52:137–39
    [Google Scholar]
  75. 75.
    Parravano DC, Ciampi DA, Fonoff ET, Monaco B, Navarro J et al. 2019. Quality of life after motor cortex stimulation: clinical results and systematic review of the literature. Clin. Neurosurg. 84:2451–56
    [Google Scholar]
  76. 76.
    Sachs AJ, Babu H, Su YF, Miller KJ, Henderson JM. 2014. Lack of efficacy of motor cortex stimulation for the treatment of neuropathic pain in 14 patients. Neuromodulation 17:4303–11
    [Google Scholar]
  77. 77.
    Lefaucheur JP, Drouot X, Cunin P, Bruckert R, Lepetit H et al. 2009. Motor cortex stimulation for the treatment of refractory peripheral neuropathic pain. Brain 132:61463–71
    [Google Scholar]
  78. 78.
    Radic JAE, Beauprie I, Chiasson P, Kiss ZHT, Brownstone RM. 2015. Motor cortex stimulation for neuropathic pain: a randomized cross-over trial. Can. J. Neurol. Sci. 42:6401–9
    [Google Scholar]
  79. 79.
    Carroll D, Joint C, Maartens N, Shlugman D, Stein J, Aziz TZ. 2000. Motor cortex stimulation for chronic neuropathic pain: a preliminary study of 10 cases. Pain 84:431–37
    [Google Scholar]
  80. 80.
    Machado A, Azmi H, Rezai AR. 2007. Motor cortex stimulation for refractory benign pain. Clin. Neurosurg. 54:70–77
    [Google Scholar]
  81. 81.
    Fontaine D, Hamani C, Lozano A. 2009. Efficacy and safety of motor cortex stimulation for chronic neuropathic pain: critical review of the literature. J. Neurosurg. 110:2251–56
    [Google Scholar]
  82. 82.
    Henderson JM, Heit G, Fisher RS. 2010. Recurrent seizures related to motor cortex stimulator programming. Neuromodulation 13:137–43
    [Google Scholar]
  83. 83.
    Siebner HR, Funke K, Aberra AS, Antal A, Bestmann S et al. 2022. Transcranial magnetic stimulation of the brain: What is stimulated? A consensus and critical position paper. Clin. Neurophysiol. 140:59–97
    [Google Scholar]
  84. 84.
    Aberra AS, Wang B, Grill WM, Peterchev AV. 2020. Simulation of transcranial magnetic stimulation in head model with morphologically-realistic cortical neurons. Brain Stimul. 13:175–89
    [Google Scholar]
  85. 85.
    Lefaucheur JP, Aleman A, Baeken C, Benninger DH, Brunelin J et al. 2020. Evidence-based guidelines on the therapeutic use of repetitive transcranial magnetic stimulation (rTMS): an update (2014–2018). Clin. Neurophysiol. 131:2474–528
    [Google Scholar]
  86. 86.
    O'Connell NE, Marston L, Spencer S, DeSouza LH, Wand BM. 2018. Non-invasive brain stimulation techniques for chronic pain. Cochrane Database Syst. Rev. 4:8CD008208
    [Google Scholar]
  87. 87.
    Cruccu G, Garcia-Larrea L, Hansson P, Keindl M, Lefaucheur JP et al. 2016. EAN guidelines on central neurostimulation therapy in chronic pain conditions. Eur. J. Neurol. 23:101489–99
    [Google Scholar]
  88. 88.
    Truong DQ, Bikson M. 2018. Physics of transcranial direct current stimulation devices and their history. J. ECT 34:3137–43
    [Google Scholar]
  89. 89.
    Jones MR, Orhurhu V, O'Gara B, Brovman EY, Rao N et al. 2021. Racial and socioeconomic disparities in spinal cord stimulation among the Medicare population. Neuromodulation 24:3434–40
    [Google Scholar]
  90. 90.
    Lad SP, Kalanithi PS, Arrigo RT, Patil CG, Nathan JK et al. 2010. A socioeconomic survey of spinal cord stimulation (SCS) surgery. Neuromodulation 13:4265–69
    [Google Scholar]
  91. 91.
    Melzack R, Wall PD. 1965. Pain mechanisms: a new theory. Science 150:3699971–79
    [Google Scholar]
  92. 92.
    Melzack R. 2001. Pain and the neuromatrix in the brain. J. Dent. Educ. 65:121378–82
    [Google Scholar]
  93. 93.
    Goudman L, De Smedt A, Louis F, Stalmans V, Linderoth B et al. 2022. The link between spinal cord stimulation and the parasympathetic nervous system in patients with failed back surgery syndrome. Neuromodulation 25:1128–36
    [Google Scholar]
  94. 94.
    Olgin JE, Takahashi T, Wilson E, Vereckei A, Steinberg H, Zipes DP. 2002. Effects of thoracic spinal cord stimulation on cardiac autonomic regulation of the sinus and atrioventricular nodes. J. Cardiovasc. Electrophysiol. 13:5475–81
    [Google Scholar]
  95. 95.
    Shu B, He SQ, Guan Y. 2020. Spinal cord stimulation enhances microglial activation in the spinal cord of nerve-injured rats. Neurosci. Bull. 36:121441–53
    [Google Scholar]
  96. 96.
    Tilley DM, Cedeño DL, Kelley CA, Benyamin R, Vallejo R. 2016. Spinal cord stimulation modulates gene expression in the spinal cord of an animal model of peripheral nerve injury. Reg. Anesth. Pain Med. 41:6750–56
    [Google Scholar]
  97. 97.
    Forouzanfar T, Weber WEJ, Kemler M, Van Kleef M. 2003. What is a meaningful pain reduction in patients with complex regional pain syndrome type 1?. Clin. J. Pain 19:5281–85
    [Google Scholar]
  98. 98.
    Wang J, Chen Z. 2019. Neuromodulation for pain management. Neural Interface: Frontiers and Applications X Zheng 207–23. Berlin: Springer
    [Google Scholar]
  99. 99.
    North R, Shipley J. 2007. Practice parameters for the use of spinal cord stimulation in the treatment of chronic neuropathic pain. Pain Med. 8:Suppl. 4200–75
    [Google Scholar]
  100. 100.
    Martelletti P, Jensen RH, Antal A, Arcioni R, Brighina F et al. 2013. Neuromodulation of chronic headaches: position statement from the European Headache Federation. J. Headache Pain 14:186
    [Google Scholar]
  101. 101.
    Miller JP, Eldabe S, Buchser E, Johanek LM, Guan Y, Linderoth B. 2016. Parameters of spinal cord stimulation and their role in electrical charge delivery: a review. Neuromodulation 19:4373–84
    [Google Scholar]
  102. 102.
    Sheldon B, Staudt MD, Williams L, Harland TA, Pilitsis JG. 2021. Spinal cord stimulation programming: a crash course. Neurosurg. Rev. 44:2709–20
    [Google Scholar]
  103. 103.
    Chesterton LS, Barlas P, Foster NE, Lundeberg T, Wright CC, Baxter GD. 2002. Sensory stimulation (TENS): effects of parameter manipulation on mechanical pain thresholds in healthy human subjects. Pain 99:1/2253–62
    [Google Scholar]
  104. 104.
    Bjordal JM, Johnson MI, Ljunggreen AE. 2003. Transcutaneous electrical nerve stimulation (TENS) can reduce postoperative analgesic consumption. A meta-analysis with assessment of optimal treatment parameters for postoperative pain. Eur. J. Pain 7:2181–88
    [Google Scholar]
  105. 105.
    Lempka SF, Patil PG. 2018. Innovations in spinal cord stimulation for pain. Curr. Opin. Biomed. Eng. 8:51–60
    [Google Scholar]
  106. 106.
    Amon A, Alesch F. 2017. Systems for deep brain stimulation: review of technical features. J. Neural Transm. 124:91083–91
    [Google Scholar]
  107. 107.
    Meuwissen KPV, Gu JW, Zhang TC, Joosten EAJ. 2018. Burst spinal cord stimulation in peripherally injured chronic neuropathic rats: a delayed effect. Pain Pract. 18:8988–96
    [Google Scholar]
  108. 108.
    Koetsier E, Franken G, Debets J, van Kuijk SMJ, Linderoth B et al. 2020. Dorsal root ganglion stimulation in experimental painful diabetic polyneuropathy: delayed wash-out of pain relief after low-frequency (1 Hz) stimulation. Neuromodulation 23:2177–84
    [Google Scholar]
  109. 109.
    Arle JE, Mei L, Carlson KW. 2020. Fiber threshold accommodation as a mechanism of burst and high-frequency spinal cord stimulation. Neuromodulation 23:5582–93
    [Google Scholar]
  110. 110.
    Ross E, Abejõn D. 2014. Improving patient experience with spinal cord stimulation: implications of position-related changes in neurostimulation. Neuromodulation 17:Suppl. 136–41
    [Google Scholar]
  111. 111.
    Deer T, Slavin KV, Amirdelfan K, North RB, Burton AW et al. 2018. Success Using Neuromodulation With BURST (SUNBURST) study: results from a prospective, randomized controlled trial using a novel burst waveform. Neuromodulation 21:156–66
    [Google Scholar]
  112. 112.
    Linderoth B, Foreman RD. 2017. Conventional and novel spinal stimulation algorithms: hypothetical mechanisms of action and comments on outcomes. Neuromodulation 20:6525–33
    [Google Scholar]
  113. 113.
    de Ridder D, Vanneste S. 2016. Burst and tonic spinal cord stimulation: different and common brain mechanisms. Neuromodulation 19:147–59
    [Google Scholar]
  114. 114.
    Kapural L, Yu C, Doust MW, Gliner BE, Vallejo R et al. 2015. Novel 10-kHz high-frequency therapy (HF10 therapy) is superior to traditional low-frequency spinal cord stimulation for the treatment of chronic back and leg pain. Anesthesiology 123:4851–60
    [Google Scholar]
  115. 115.
    Kilgore KL, Bhadra N. 2014. Reversible nerve conduction block using kilohertz frequency alternating current. Neuromodulation 17:3242–54
    [Google Scholar]
  116. 116.
    Lempka SF, McIntyre CC, Kilgore KL, Machado AG. 2015. Computational analysis of kilohertz frequency spinal cord stimulation for chronic pain management. Anesthesiology 122:61362–76
    [Google Scholar]
  117. 117.
    Song Z, Viisanen H, Meyerson BA, Pertovaara A, Linderoth B. 2014. Efficacy of kilohertz-frequency and conventional spinal cord stimulation in rat models of different pain conditions. Neuromodulation 17:3226–34
    [Google Scholar]
  118. 118.
    Crosby ND, Janik JJ, Grill WM. 2017. Modulation of activity and conduction in single dorsal column axons by kilohertz-frequency spinal cord stimulation. J. Neurophysiol. 117:1136–47
    [Google Scholar]
  119. 119.
    Zannou AL, Khadka N, Truong DQ, Zhang T, Esteller R et al. 2019. Temperature increases by kilohertz frequency spinal cord stimulation. Brain Stimul. 12:162–72
    [Google Scholar]
  120. 120.
    Kapural L, Shah NS, Fang ZP, Mekhail N. 2022. Multicenter, double-blinded, randomized, active–sham controlled clinical study design to assess the safety and effectiveness of a novel high frequency electric nerve block system in the treatment of post-amputation pain (the QUEST study). J. Pain Res. 15:1623–31
    [Google Scholar]
  121. 121.
    Dewberry LS, Dru A, Gravenstine M, Nguyen B, Anderson J et al. 2021. Partial high frequency nerve block decreases neuropathic signaling following chronic sciatic nerve constriction injury. J. Neural Eng. 18:026009
    [Google Scholar]
  122. 122.
    Bhadra N, Kilgore KL. 2004. Direct current electrical conduction block of peripheral nerve. IEEE Trans. Neural Syst. Rehabil. Eng. 12:3313–24
    [Google Scholar]
  123. 123.
    Ackermann DM, Bhadra N, Foldes EL, Kilgore KL. 2011. Separated interface nerve electrode prevents direct current induced nerve damage. J. Neurosci. Methods 201:1173–76
    [Google Scholar]
  124. 124.
    Vrabec T, Bhadra N, van Acker G, Bhadra N, Kilgore K. 2017. Continuous direct current nerve block using multi contact high capacitance electrodes. IEEE Trans. Neural Syst. Rehabil. Eng. 25:6517–29
    [Google Scholar]
  125. 125.
    Aplin FP, Fridman GY. 2019. Implantable direct current neural modulation: theory, feasibility, and efficacy. Front. Neurosci. 13:379
    [Google Scholar]
  126. 126.
    Jones MG, Rogers ER, Harris JP, Sullivan A, Ackermann DM et al. 2021. Neuromodulation using ultra low frequency current waveform reversibly blocks axonal conduction and chronic pain. Sci. Transl. Med. 13:9890
    [Google Scholar]
  127. 127.
    Mirzakhalili E, Barra B, Capogrosso M, Lempka SF. 2020. Biophysics of temporal interference stimulation. Cell Syst. 11:6557–72.e5
    [Google Scholar]
  128. 128.
    Grossman N, Bono D, Dedic N, Kodandaramaiah SB, Rudenko A et al. 2017. Noninvasive deep brain stimulation via temporally interfering electric fields. Cell 169:61029–41.e16
    [Google Scholar]
  129. 129.
    Rampersad S, Roig-Solvas B, Yarossi M, Kulkarni PP, Santarnecchi E et al. 2019. Prospects for transcranial temporal interference stimulation in humans: a computational study. NeuroImage 202:116124
    [Google Scholar]
  130. 130.
    Howell B, McIntyre CC. 2021. Feasibility of interferential and pulsed transcranial electrical stimulation for neuromodulation at the human scale. Neuromodulation 24:5843–53
    [Google Scholar]
  131. 131.
    Ruiz-Sauri A, Orduña-Valls JM, Blasco-Serra A, Tornero-Tornero C, Cedeño DL et al. 2019. Glia to neuron ratio in the posterior aspect of the human spinal cord at thoracic segments relevant to spinal cord stimulation. J. Anat. 235:5997–1006
    [Google Scholar]
  132. 132.
    Fishman M, Cordner H, Justiz R, Provenzano D, Merrell C et al. 2021. Twelve-month results from multicenter, open-label, randomized controlled clinical trial comparing differential target multiplexed spinal cord stimulation and traditional spinal cord stimulation in subjects with chronic intractable back pain and leg pain. Pain Pract. 21:8912–23
    [Google Scholar]
  133. 133.
    Xu Q, Ford NC, He S, Huang Q, Anderson M et al. 2021. Astrocytes contribute to pain gating in the spinal cord. Sci. Adv. 7:45eabi6287
    [Google Scholar]
  134. 134.
    Telkes I, Hadanny A, DiMarzio M, Chitnis G, Paniccioli S et al. 2022. High-resolution spinal motor mapping using thoracic spinal cord stimulation in patients with chronic pain. Neurosurgery 91:3459–69
    [Google Scholar]
  135. 135.
    Raspopovic S, Capogrosso M, Petrini FM, Bonizzato M, Rigosa J et al. 2014. Restoring natural sensory feedback in real-time bidirectional hand prostheses. Sci. Transl. Med. 122:222ra19
    [Google Scholar]
  136. 136.
    Fiorella Contarino M, Bour LJ, Verhagen R, Lourens MAJ, de Bie RMA et al. 2014. Directional steering: a novel approach to deep brain stimulation. Neurology 83:1163–69
    [Google Scholar]
  137. 137.
    Trevathan JK, Baumgart IW, Nicolai EN, Gosink BA, Asp AJ et al. 2019. An injectable neural stimulation electrode made from an in-body curing polymer/metal composite. Adv. Healthc. Mater. 8:23e1900892
    [Google Scholar]
  138. 138.
    Woodington BJ, Curto VF, Yu Y-L, Martínez-Domínguez H, Coles L et al. 2021. Electronics with shape actuation for minimally invasive spinal cord stimulation. Sci. Adv. 7:26eabg7833
    [Google Scholar]
  139. 139.
    Reeder JT, Xie Z, Yang Q, Seo M-H, Yan Y et al. 2022. Soft, bioresorbable coolers for reversible conduction block of peripheral nerves. Science 377:109–15
    [Google Scholar]
  140. 140.
    Tyler Perryman L, Speck B, Montes Garcia C, Rashbaum R 2012. Injectable spinal cord stimulator system: pilot study. Tech. Reg. Anesth. Pain Manag. 16:2102–5
    [Google Scholar]
  141. 141.
    Desai MJ, Hargens LM, Breitenfeldt MD, Doth AH, Ryan MP et al. 2015. The rate of magnetic resonance imaging in patients with spinal cord stimulation. Spine 40:9e531–37
    [Google Scholar]
  142. 142.
    Rubino S, Adepoju A, Kumar V, Prusik J, Murphy N et al. 2016. MRI conditionality in patients with spinal cord stimulation devices. Stereotact. Funct. Neurosurg. 94:4254–58
    [Google Scholar]
  143. 143.
    Deer TR, Patterson DG, Baksh J, Pope JE, Mehta P et al. 2021. Novel intermittent dosing burst paradigm in spinal cord stimulation. Neuromodulation 24:3566–73
    [Google Scholar]
  144. 144.
    Metzger CS, Hammond MB, Pyles ST, Washabaugh EP, Waghmarae R et al. 2020. Pain relief outcomes using an SCS device capable of delivering combination therapy with advanced waveforms and field shapes. Expert Rev. Med. Devices 17:9951–57
    [Google Scholar]
  145. 145.
    Holsheimer J, den Boer JA, Struijk JJ, Rozeboom AR. 1994. MR assessment of the normal position of the spinal cord in the spinal canal. Am. J. Neuroradiol. 15:5951–59
    [Google Scholar]
  146. 146.
    Davies C, Komoroski C, Roy L. 2018. Evaluation of an innovative spinal cord stimulator platform for the treatment of chronic pain. Pain Manag. 8:3167–74
    [Google Scholar]
  147. 147.
    Mekhail N, Levy RM, Deer TR, Kapural L, Li S et al. 2020. Long-term safety and efficacy of closed-loop spinal cord stimulation to treat chronic back and leg pain (Evoke): a double-blind, randomised, controlled trial. Lancet Neurol. 19:2123–34
    [Google Scholar]
  148. 148.
    Nair DR, Morrell MJ, Skarpaas TL, Murro AM, Park YD et al. 2020. Nine-year prospective efficacy and safety of brain-responsive neurostimulation for focal epilepsy. Neurology 95:9e1244–56
    [Google Scholar]
  149. 149.
    Prosky J, Cagle J, Sellers KK, Gilron R, de Hemptinne C et al. 2021. Practical closed-loop strategies for deep brain stimulation: lessons from chronic pain. Front. Neurosci. 15:762097
    [Google Scholar]
  150. 150.
    Price JB, Rusheen AE, Barath AS, Rojas Cabrera JM, Shin H et al. 2020. Clinical applications of neurochemical and electrophysiological measurements for closed-loop neurostimulation. Neurosurg. Focus 49:1e6
    [Google Scholar]
  151. 151.
    Cernera S, Alcantara JD, Opri E, Cagle JN, Eisinger RS et al. 2021. Wearable sensor–driven responsive deep brain stimulation for essential tremor. Brain Stimul. 14:61434–43
    [Google Scholar]
  152. 152.
    Fagundes-Pereyra WJ, Teixeira MJ, Reyns N, Touzet G, Dantas Set al 2010. Motor cortex electric stimulation for the treatment of neuropathic pain. Arq. Neuropsiquiatr 68:6923–29
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-111022-121637
Loading
/content/journals/10.1146/annurev-bioeng-111022-121637
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error