1932

Abstract

Liver disease is an important clinical problem, impacting 600 million people worldwide. It is the 11th-leading cause of death in the world. Despite constant improvement in treatment and diagnostics, the aging population and accumulated risk factors led to increased morbidity due to nonalcoholic fatty liver disease and steatohepatitis. Liver transplantation, first established in the 1960s, is the second-most-common solid organ transplantation and is the gold standard for the treatment of liver failure. However, less than 10% of the global need for liver transplantation is met at the current rates of transplantation due to the paucity of available organs. Cell- and tissue-based therapies present an alternative to organ transplantation. This review surveys the approaches and tools that have been developed, discusses the distinctive challenges that exist for cell- and tissue-based therapies, and examines the future directions of regenerative therapies for the treatment of liver disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-112619-044026
2021-07-13
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-112619-044026.html?itemId=/content/journals/10.1146/annurev-bioeng-112619-044026&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Marcellin P, Kutala BK. 2018. Liver diseases: a major, neglected global public health problem requiring urgent actions and large-scale screening. Liver Int 38:2–6
    [Google Scholar]
  2. 2. 
    Sepanlou SG, Safiri S, Bisignano C, Ikuta KS, Merat S et al. 2020. The global, regional, and national burden of cirrhosis by cause in 195 countries and territories, 1990–2017: a systematic analysis for the Global Burden of Disease Study 2017. Lancet Gastroenterol. Hepatol. 5:3245–66
    [Google Scholar]
  3. 3. 
    Desai AP, Mohan P, Roubal AM, Bettencourt R, Loomba R. 2018. Geographic variability in liver disease-related mortality rates in the United States. Am. J. Med. 131:728–34
    [Google Scholar]
  4. 4. 
    Paik JM, Golabi P, Younossi Y, Saleh N, Nhyira A, Younos Z. 2020. The growing burden of disability related to chronic liver disease in the United States: data from the Global Burden of Disease Study 2007–2017. Hepatol. Commun. 5:74959
    [Google Scholar]
  5. 5. 
    Asrani SK, Devarbhavi H, Eaton J, Kamath PS. 2019. Burden of liver diseases in the world. J. Hepatol. 70:151–71
    [Google Scholar]
  6. 6. 
    Dienstag JL, Cosimi AB. 2012. Liver transplantation—a vision realized. N. Engl. J. Med. 367:1483–85
    [Google Scholar]
  7. 7. 
    Michalopoulos GK. 2007. Liver regeneration. J. Cell Physiol. 213:286–300
    [Google Scholar]
  8. 8. 
    Michalopoulos GK, DeFrances MC. 1997. Liver regeneration. Science 276:60–66
    [Google Scholar]
  9. 9. 
    Toniutto P, Zanetto A, Ferrarese A, Burra P. 2017. Current challenges and future directions for liver transplantation. Liver Int 37:317–27
    [Google Scholar]
  10. 10. 
    Olthoff KM, Smith AR, Abecassis M, Baker T, Emond JC et al. 2015. Defining long-term outcomes with living donor liver transplantation in North America. Ann. Surg. 262:465–75
    [Google Scholar]
  11. 11. 
    Stravitz RT, Lee WM. 2019. Acute liver failure. Lancet 394:869–81
    [Google Scholar]
  12. 12. 
    Kandiah PA, Subramanian RM. 2019. Extracorporeal devices. Crit. Care Clin. 35:135–50
    [Google Scholar]
  13. 13. 
    Lee KC, Stadlbauer V, Jalan R. 2016. Extracorporeal liver support devices for listed patients. Liver Transpl 22:839–48
    [Google Scholar]
  14. 14. 
    Banales JM, Prieto J, Medina JF. 2006. Cholangiocyte anion exchange and biliary bicarbonate excretion. World J. Gastroenterol. 12:3496–511
    [Google Scholar]
  15. 15. 
    Masyuk AI, Masyuk MT, LaRusso NF. 2018. Physiology of cholangiocytes. Physiology of the Gastrointestinal Tract, ed. FK Ghishan, HM Said 1003–23 London: Academic
    [Google Scholar]
  16. 16. 
    Poisson J, Lemoinne S, Boulanger C, Durand F, Moreau R et al. 2017. Liver sinusoidal endothelial cells: physiology and role in liver diseases. J. Hepatol. 66:212–27
    [Google Scholar]
  17. 17. 
    DeLeve LD, Maretti-Mira AC. 2017. Liver sinusoidal endothelial cell: an update. Semin. Liver Dis. 37:377–87
    [Google Scholar]
  18. 18. 
    Geerts A. 2004. On the origin of stellate cells: mesodermal, endodermal or neuro-ectodermal?. J. Hepatol. 40:331–34
    [Google Scholar]
  19. 19. 
    Friedman SL. 2008. Hepatic stellate cells: protean, multifunctional, and enigmatic cells of the liver. Physiol. Rev. 88:125–72
    [Google Scholar]
  20. 20. 
    Kubes P, Jenne C. 2018. Immune responses in the liver. Annu. Rev. Immunol. 36:247–77
    [Google Scholar]
  21. 21. 
    Sasse D, Katz N, Jungermann K. 1975. Functional heterogeneity of rat liver parenchyma and of isolated hepatocytes. FEBS Lett 57:83–38
    [Google Scholar]
  22. 22. 
    Katz N, Jungermann K. 1976. Autoregulatory shift from fructolysis to lactate gluconeogenisis in rat hepatocyte suspensions. The problem of metabolic zonation of liver parenchyma. Z. Phys. Chem. 357:3359–75
    [Google Scholar]
  23. 23. 
    Colnot S, Perret C. 2010. Liver zonation. Molecular Pathology of Liver Diseases S Monga 7–16 Boston: Springer
    [Google Scholar]
  24. 24. 
    Halpern KB, Shenhav R, Matcovitch-Natan O, Tóth B, Lemze D et al. 2017. Single-cell spatial reconstruction reveals global division of labour in the mammalian liver. Nature 542:352–56
    [Google Scholar]
  25. 25. 
    Aizarani N, Saviano A, Sagar Mailly L, Durand S et al. 2019. A human liver cell atlas reveals heterogeneity and epithelial progenitors. Nature 572:199–204
    [Google Scholar]
  26. 26. 
    Ben-Moshe S, Itzkovitz S. 2019. Spatial heterogeneity in the mammalian liver. Nat. Rev. Gastroenterol. Hepatol. 16:395–410
    [Google Scholar]
  27. 27. 
    Higgins GM, Anderson RM. 1931. Experimental pathology of the liver. I. Restoration of the liver of the white rat following partial surgical removal. Arch. Pathol. 12:186–202
    [Google Scholar]
  28. 28. 
    Miyaoka Y, Ebato K, Kato H, Arakawa S, Shimizu S et al. 2012. Hypertrophy and unconventional cell division of hepatocytes underlie liver regeneration. Curr. Biol. 22:1166–75
    [Google Scholar]
  29. 29. 
    Gaub J, Iversen J. 1984. Rat-liver regeneration after 90-percent partial-hepatectomy. Hepatology 4:902–4
    [Google Scholar]
  30. 30. 
    Ober EA, Lemaigre FP. 2018. Development of the liver: insights into organ and tissue morphogenesis. J. Hepatol. 68:1049–62
    [Google Scholar]
  31. 31. 
    Zajicek G, Oren R, Weinreb M 1985. The streaming liver. Liver 5:293–300
    [Google Scholar]
  32. 32. 
    Font-Burgada J, Shalapour S, Ramaswamy S, Hsueh B, Rossell D et al. 2015. Hybrid periportal hepatocytes regenerate the injured liver without giving rise to cancer. Cell 162:766–79
    [Google Scholar]
  33. 33. 
    Pu WJ, Zhang H, Huang XZ, Tian XY, He LJ et al. 2016. Mfsd2a+ hepatocytes repopulate the liver during injury and regeneration. Nat. Commun. 7:13369
    [Google Scholar]
  34. 34. 
    Wang BM, Nusse R. 2015. Self-renewing diploid Axin2+ cells fuel homeostatic renewal of the liver. Hepatology 62:547a
    [Google Scholar]
  35. 35. 
    Sun T, Pikiolek M, Orsini V, Bergling S, Holwerda S et al. AXIN2+ pericentral hepatocytes have limited contributions to liver homeostasis and regeneration. Cell Stem Cell 26:97–107
    [Google Scholar]
  36. 36. 
    Planas-Paz L, Orsini V, Boulter L, Calabrese D, Pikiolek M et al. 2016. The RSPO-LGR4/5-ZNRF3/RNF43 module controls liver zonation and size. Nat. Cell Biol. 18:467–79
    [Google Scholar]
  37. 37. 
    Chen F, Jimenez RJ, Sharma K, Luu HY, Hsu BY et al. 2020. Broad distribution of hepatocyte proliferation in liver homeostasis and regeneration. Cell Stem Cell 26:27–33.e4
    [Google Scholar]
  38. 38. 
    Lin S, Nascimento EM, Gajera CR, Chen L, Neuhofer P et al. 2018. Distributed hepatocytes expressing telomerase repopulate the liver in homeostasis and injury. Nature 556:244–48
    [Google Scholar]
  39. 39. 
    Rhim JA, Sandgren EP, Degen JL, Palmiter RD, Brinster RL. 1994. Replacement of diseased mouse liver by hepatic cell transplantation. Science 263:1149–52
    [Google Scholar]
  40. 40. 
    Lesage G, Glaser SS, Gubba S, Robertson WE, Phinizy JL et al. 1996. Regrowth of the rat biliary tree after 70% partial hepatectomy is coupled to increased secretin-induced ductal secretion. Gastroenterology 111:1633–44
    [Google Scholar]
  41. 41. 
    Michalopoulos GK, Barua L, Bowen WC. 2005. Transdifferentiation of rat hepatocytes into biliary cells after bile duct ligation and toxic biliary injury. Hepatology 41:535–44
    [Google Scholar]
  42. 42. 
    Tarlow BD, Pelz C, Naugler WE, Wakefield L, Wilson EM et al. 2014. Bipotential adult liver progenitors are derived from chronically injured mature hepatocytes. Cell Stem Cell 15:605–18
    [Google Scholar]
  43. 43. 
    Yanger K, Zong Y, Maggs LR, Shapira SN, Maddipati R et al. 2013. Robust cellular reprogramming occurs spontaneously during liver regeneration. Genes Dev 27:719–24
    [Google Scholar]
  44. 44. 
    Schaub JR, Huppert KA, Kurial SNT, Hsu BY, Cast AE et al. 2018. De novo formation of the biliary system by TGFβ-mediated hepatocyte transdifferentiation. Nature 557:247–51
    [Google Scholar]
  45. 45. 
    Sekiya S, Suzuki A. 2014. Hepatocytes, rather than cholangiocytes, can be the major source of primitive ductules in the chronically injured mouse liver. Am. J. Pathol. 184:1468–78
    [Google Scholar]
  46. 46. 
    Malato Y, Naqvi S, Schurmann N, Ng R, Wang B et al. 2011. Fate tracing of mature hepatocytes in mouse liver homeostasis and regeneration. J. Clin. Investig. 121:4850–60
    [Google Scholar]
  47. 47. 
    Yanger K, Knigin D, Zong YW, Maggs L, Gu GQ et al. 2014. Adult hepatocytes are generated by self-duplication rather than stem cell differentiation. Cell Stem Cell 15:340–49
    [Google Scholar]
  48. 48. 
    Jors S, Jeliazkova P, Ringelhan M, Thalhammer J, Durl S et al. 2015. Lineage fate of ductular reactions in liver injury and carcinogenesis. J. Clin. Investig. 125:2445–57
    [Google Scholar]
  49. 49. 
    Kamimoto K, Kaneko K, Kok CYY, Okada H, Miyajima A, Itoh T. 2016. Heterogeneity and stochastic growth regulation of biliary epithelial cells dictate dynamic epithelial tissue remodeling. eLife 5:e15034
    [Google Scholar]
  50. 50. 
    He JB, Lu HQ, Zou QL, Luo LF. 2014. Regeneration of liver after extreme hepatocyte loss occurs mainly via biliary transdifferentiation in zebrafish. Gastroenterology 146:789–800.e8
    [Google Scholar]
  51. 51. 
    Choi TY, Ninov N, Stainier DYR, Shin D. 2014. Extensive conversion of hepatic biliary epithelial cells to hepatocytes after near total loss of hepatocytes in zebrafish. Gastroenterology 146:776–88
    [Google Scholar]
  52. 52. 
    Raven A, Lu WY, Man TY, Ferreira-Gonzalez S, O'Duibhir E et al. 2017. Cholangiocytes act as facultative liver stem cells during impaired hepatocyte regeneration. Nature 547:350–54
    [Google Scholar]
  53. 53. 
    Deng X, Zhang X, Li WP, Feng RX, Li L et al. 2018. Chronic liver injury induces conversion of biliary epithelial cells into hepatocytes. Cell Stem Cell 23:114–22.e3
    [Google Scholar]
  54. 54. 
    Manco R, Clerbaux LA, Verhulst S, Nader MB, Sempoux C et al. 2019. Reactive cholangiocytes differentiate into proliferative hepatocytes with efficient DNA repair in mice with chronic liver injury. J. Hepatol. 70:1180–91
    [Google Scholar]
  55. 55. 
    Farber E. 1956. Similarities in the sequence of early histological changes induced in the liver of the rat by ethionine, 2-acetylamino-fluorene, and 3′-methyl-4-dimethylaminoazobenzene. Cancer Res 16:142–48
    [Google Scholar]
  56. 56. 
    Lowes K, Brennan B, Yeoh GC, Olvnyk J. 1998. Oval cell numbers in human chronic liver diseases are directly related to disease severity. Hepatology 28:524a
    [Google Scholar]
  57. 57. 
    He ZP, Tan WQ, Tang YF, Feng MF. 2003. Differentiation of putative hepatic stem cells derived from adult rats into mature hepatocytes in the presence of epidermal growth factor and hepatocyte growth factor. Differentiation 71:281–90
    [Google Scholar]
  58. 58. 
    Wang X, Foster M, Al-Dhalimy M, Lagasse E, Finegold M, Grompe M. 2003. The origin and liver repopulating capacity of murine oval cells. Mol. Ther. 7:S75
    [Google Scholar]
  59. 59. 
    Han XM, Wang Y, Pu WJ, Huang XZ, Qiu L et al. 2019. Lineage tracing reveals the bipotency of SOX9+ hepatocytes during liver regeneration. Stem Cell Rep 12:624–38
    [Google Scholar]
  60. 60. 
    Okabe M, Tsukahara Y, Tanaka M, Suzuki K, Saito S et al. 2009. Potential hepatic stem cells reside in EpCAM+ cells of normal and injured mouse liver. Development 136:1951–60
    [Google Scholar]
  61. 61. 
    Kakinuma S, Ohta H, Kamiya A, Yamazaki Y, Oikawa T et al. 2009. Analyses of cell surface molecules on hepatic stem/progenitor cells in mouse fetal liver. J. Hepatol. 51:127–38
    [Google Scholar]
  62. 62. 
    Sackett SD, Li ZD, Hurtt R, Gao Y, Wells RG et al. 2009. Foxl1 is a marker of bipotential hepatic progenitor cells in mice. Hepatology 49:920–29
    [Google Scholar]
  63. 63. 
    Dorrell C, Erker L, Lanxon-Cookson KM, Abraham SL, Victoroff T et al. 2008. Surface markers for the murine oval cell response. Hepatology 48:1282–91
    [Google Scholar]
  64. 64. 
    Qiu Q, Hernandez JC, Dean AM, Rao PH, Darlington GJ. 2011. CD24-positive cells from normal adult mouse liver are hepatocyte progenitor cells. Stem Cells Dev 20:2177–88
    [Google Scholar]
  65. 65. 
    Suzuki A, Sekiya S, Onishi M, Oshima N, Kiyonari H et al. 2008. Flow cytometric isolation and clonal identification of self-renewing bipotent hepatic progenitor cells in adult mouse liver. Hepatology 48:1964–78
    [Google Scholar]
  66. 66. 
    Huch M, Dorrell C, Boj SF, van Es JH, Li VSW et al. 2013. In vitro expansion of single Lgr5+ liver stem cells induced by Wnt-driven regeneration. Nature 494:247–50
    [Google Scholar]
  67. 67. 
    Koo BK, Clevers H. 2014. Stem cells marked by the R-spondin receptor LGR5. Gastroenterology 147:289–302
    [Google Scholar]
  68. 68. 
    Barker N, van Es JH, Kuipers J, Kujala P, van den Born M et al. 2007. Identification of stem cells in small intestine and colon by marker gene Lgr5. Nature 449:1003–7
    [Google Scholar]
  69. 69. 
    Planas-Paz L, Sun T, Pikiolek M, Cochran NR, Bergling S et al. 2019. YAP, but not RSPO-LGR4/5, signaling in biliary epithelial cells promotes a ductular reaction in response to liver injury. Cell Stem Cell 25:39–53.e10
    [Google Scholar]
  70. 70. 
    Prior N, Hindley CJ, Rost F, Melendez E, Lau WWY et al. 2019. Lgr5+ stem and progenitor cells reside at the apex of a heterogeneous embryonic hepatoblast pool. Development 146:dev174557
    [Google Scholar]
  71. 71. 
    Overturf K, al- Dhalimy M, Ou CN, Finegold M, Grompe M. 1997. Serial transplantation reveals the stem-cell-like regenerative potential of adult mouse hepatocytes. Am. J. Pathol. 151:1273–80
    [Google Scholar]
  72. 72. 
    Iansante V, Mitry RR, Filippi C, Fitzpatrick E, Dhawan A. 2018. Human hepatocyte transplantation for liver disease: current status and future perspectives. Pediatr. Res. 83:232–40
    [Google Scholar]
  73. 73. 
    Song G, Pacher M, Balakrishnan A, Yuan Q, Tsay HC et al. 2016. Direct reprogramming of hepatic myofibroblasts into hepatocytes in vivo attenuates liver fibrosis. Cell Stem Cell 18:797–808
    [Google Scholar]
  74. 74. 
    Rezvani M, Espanol-Suner R, Malato Y, Dumont L, Grimm AA et al. 2016. In vivo hepatic reprogramming of myofibroblasts with AAV vectors as a therapeutic strategy for liver fibrosis. Cell Stem Cell 18:809–16
    [Google Scholar]
  75. 75. 
    Strom SC, Chowdhury JR, Fox IJ. 1999. Hepatocyte transplantation for the treatment of human disease. Semin. Liver Dis. 19:39–48
    [Google Scholar]
  76. 76. 
    Rajvanshi P, Kerr A, Bhargava KK, Burk RD, Gupta S. 1996. Efficacy and safety of repeated hepatocyte transplantation for significant liver repopulation in rodents. Gastroenterology 111:1092–102
    [Google Scholar]
  77. 77. 
    Matas AJ, Sutherland DE, Steffes MW, Mauer SM, Sowe A et al. 1976. Hepatocellular transplantation for metabolic deficiencies: decrease of plasms bilirubin in Gunn rats. Science 192:892–94
    [Google Scholar]
  78. 78. 
    Yoshida Y, Tokusashi Y, Lee GH, Ogawa K. 1996. Intrahepatic transplantation of normal hepatocytes prevents Wilson's disease in Long-Evans cinnamon rats. Gastroenterology 111:1654–60
    [Google Scholar]
  79. 79. 
    Sutherland DE, Numata M, Matas AJ, Simmons RL, Najarian JS. 1977. Hepatocellular transplantation in acute liver failure. Surgery 82:124–32
    [Google Scholar]
  80. 80. 
    Gramignoli R, Tahan V, Dorko K, Venkataramanan R, Fox IJ et al. 2014. Rapid and sensitive assessment of human hepatocyte functions. Cell Transplant 23:1545–56
    [Google Scholar]
  81. 81. 
    Asonuma K, Gilbert JC, Stein JE, Takeda T, Vacanti JP. 1992. Quantitation of transplanted hepatic mass necessary to cure the Gunn rat model of hyperbilirubinemia. J. Pediatr. Surg. 27:298–301
    [Google Scholar]
  82. 82. 
    Vacanti JP, Kulig KM. 2014. Liver cell therapy and tissue engineering for transplantation. Semin. Pediatr. Surg. 23:150–55
    [Google Scholar]
  83. 83. 
    Dhawan A, Mitry RR, Hughes RD, Lehec S, Terry C et al. 2004. Hepatocyte transplantation for inherited factor VII deficiency. Transplantation 78:1812–14
    [Google Scholar]
  84. 84. 
    Muraca M, Gerunda G, Neri D, Vilei MT, Granato A et al. 2002. Hepatocyte transplantation as a treatment for glycogen storage disease type 1a. Lancet 359:317–18
    [Google Scholar]
  85. 85. 
    Stephenne X, Najimi M, Sibille C, Nassogne MC, Smets F, Sokal EM. 2006. Sustained engraftment and tissue enzyme activity after liver cell transplantation for argininosuccinate lyase deficiency. Gastroenterology 130:1317–23
    [Google Scholar]
  86. 86. 
    Kasai S, Sawa M, Kondoh K, Ebata H, Mito M. 1987. Intrasplenic hepatocyte transplantation in mammals. Transplant. Proc. 19:992–94
    [Google Scholar]
  87. 87. 
    Gustafson EK, Elgue G, Hughes RD, Mitry RR, Sanchez J et al. 2011. The instant blood-mediated inflammatory reaction characterized in hepatocyte transplantation. Transplantation 91:632–38
    [Google Scholar]
  88. 88. 
    Nygaard S, Barzel A, Haft A, Major A, Finegold M et al. 2016. A universal system to select gene-modified hepatocytes in vivo. Sci. Transl. Med. 8:342ra379
    [Google Scholar]
  89. 89. 
    Mito M, Kusano M, Kawaura Y. 1992. Hepatocyte transplantation in man. Transplant. Proc. 24:3052–53
    [Google Scholar]
  90. 90. 
    Huse SM, Gruppuso PA, Boekelheide K, Sanders JA. 2015. Patterns of gene expression and DNA methylation in human fetal and adult liver. BMC Genom 16:981
    [Google Scholar]
  91. 91. 
    Song W, Lu YC, Frankel AS, An D, Schwartz RE, Ma M. 2015. Engraftment of human induced pluripotent stem cell-derived hepatocytes in immunocompetent mice via 3D co-aggregation and encapsulation. Sci. Rep. 5:16884
    [Google Scholar]
  92. 92. 
    Gridelli B, Vizzini G, Pietrosi G, Luca A, Spada M et al. 2012. Efficient human fetal liver cell isolation protocol based on vascular perfusion for liver cell-based therapy and case report on cell transplantation. Liver Transpl 18:226–37
    [Google Scholar]
  93. 93. 
    Habibullah CM, Syed IH, Qamar A, Taher-Uz Z. 1994. Human fetal hepatocyte transplantation in patients with fulminant hepatic failure. Transplantation 58:951–52
    [Google Scholar]
  94. 94. 
    Pietrosi G, Vizzini G, Gerlach J, Chinnici C, Luca A et al. 2015. Phases I-II matched case-control study of human fetal liver cell transplantation for treatment of chronic liver disease. Cell Transplant 24:1627–38
    [Google Scholar]
  95. 95. 
    Abu Rmilah A, Zhou W, Nelson E, Lin L, Amiot B, Nyberg SL 2019. Understanding the marvels behind liver regeneration. Wiley Interdiscip. Rev. Dev. Biol. 8:e340
    [Google Scholar]
  96. 96. 
    Ramboer E, De Craene B, De Kock J, Vanhaecke T, Berx G et al. 2014. Strategies for immortalization of primary hepatocytes. J. Hepatol. 61:925–43
    [Google Scholar]
  97. 97. 
    Levy G, Bomze D, Heinz S, Ramachandran SD, Noerenberg A et al. 2015. Long-term culture and expansion of primary human hepatocytes. Nat. Biotechnol. 33:1264–71
    [Google Scholar]
  98. 98. 
    Smalley M, Leiper K, Tootle R, McCloskey P, O'Hare MJ, Hodgson H 2001. Immortalization of human hepatocytes by temperature-sensitive SV40 large-T antigen. In Vitro Cell Dev. Biol. Anim. 37:166–68
    [Google Scholar]
  99. 99. 
    Ford CE, Hamerton JL, Barnes DWH, Loutit JF. 1956. Cytological identification of radiation-chimaeras. Nature 177:452–54
    [Google Scholar]
  100. 100. 
    Nowell PC, Cole LJ, Habermeyer JG, Roan PL. 1956. Growth and continued function of rat marrow cells in X-radiated mice. Cancer Res 16:258–61
    [Google Scholar]
  101. 101. 
    Gengozian N, Urso IS, Congdon CC, Conger AD, Makinodan T. 1957. Thymus specificity in lethally irradiated mice treated with rat bone marrow. Proc. Soc. Exp. Biol. Med. 96:714–20
    [Google Scholar]
  102. 102. 
    Fujii H, Hirose T, Oe S, Yasuchika K, Azuma H et al. 2002. Contribution of bone marrow cells to liver regeneration after partial hepatectomy in mice. J. Hepatol. 36:653–59
    [Google Scholar]
  103. 103. 
    De Silvestro G, Vicarioto M, Donadel C, Menegazzo M, Marson P, Corsini A. 2004. Mobilization of peripheral blood hematopoietic stem cells following liver resection surgery. Hepatogastroenterology 51:805–10
    [Google Scholar]
  104. 104. 
    Alison MR, Poulsom R, Jeffery R, Dhillon AP, Quaglia A et al. 2000. Hepatocytes from non-hepatic adult stem cells. Nature 406:257
    [Google Scholar]
  105. 105. 
    Lagasse E, Connors H, Al-Dhalimy M, Reitsma M, Dohse M et al. 2000. Purified hematopoietic stem cells can differentiate into hepatocytes in vivo. Nat. Med. 6:1229–34
    [Google Scholar]
  106. 106. 
    Wang X, Willenbring H, Akkari Y, Torimaru Y, Foster M et al. 2003. Cell fusion is the principal source of bone-marrow-derived hepatocytes. Nature 422:897–901
    [Google Scholar]
  107. 107. 
    Vassilopoulos G, Wang PR, Russell DW. 2003. Transplanted bone marrow regenerates liver by cell fusion. Nature 422:901–4
    [Google Scholar]
  108. 108. 
    Pedone E, Olteanu VA, Marucci L, Munoz-Martin MI, Youssef SA et al. 2017. Modeling dynamics and function of bone marrow cells in mouse liver regeneration. Cell Rep 18:107–21
    [Google Scholar]
  109. 109. 
    van Poll D, Parekkadan B, Cho CH, Berthiaume F, Nahmias Y et al. 2008. Mesenchymal stem cell-derived molecules directly modulate hepatocellular death and regeneration in vitro and in vivo. Hepatology 47:1634–43
    [Google Scholar]
  110. 110. 
    Qu M, Yuan X, Liu D, Ma Y, Zhu J et al. 2017. Bone marrow-derived mesenchymal stem cells attenuate immune-mediated liver injury and compromise virus control during acute hepatitis B virus infection in mice. Stem Cells Dev 26:818–27
    [Google Scholar]
  111. 111. 
    Cho KA, Lim GW, Joo SY, Woo SY, Seoh JY et al. 2011. Transplantation of bone marrow cells reduces CCl4-induced liver fibrosis in mice. Liver Int 31:932–39
    [Google Scholar]
  112. 112. 
    Ueno T, Nakamura T, Torimura T, Sata M. 2006. Angiogenic cell therapy for hepatic fibrosis. Med. Mol. Morphol. 39:16–21
    [Google Scholar]
  113. 113. 
    Takahashi K, Tanabe K, Ohnuki M, Narita M, Ichisaka T et al. 2007. Induction of pluripotent stem cells from adult human fibroblasts by defined factors. Cell 131:861–72
    [Google Scholar]
  114. 114. 
    Iwamuro M, Komaki T, Kubota Y, Seita M, Kawamoto H et al. 2010. Hepatic differentiation of mouse iPS cells in vitro. Cell Transplant 19:841–47
    [Google Scholar]
  115. 115. 
    Schwartz RE, Bram Y, Frankel A. 2016. Pluripotent stem cell-derived hepatocyte-like cells: a tool to study infectious disease. Curr. Pathobiol. Rep. 4:147–56
    [Google Scholar]
  116. 116. 
    Schwartz RE, Fleming HE, Khetani SR, Bhatia SN. 2014. Pluripotent stem cell-derived hepatocyte-like cells. Biotechnol. Adv. 32:504–13
    [Google Scholar]
  117. 117. 
    Schwartz RE, Linehan JL, Painschab MS, Hu WS, Verfaillie CM, Kaufman DS. 2005. Defined conditions for development of functional hepatic cells from human embryonic stem cells. Stem Cells Dev 14:643–55
    [Google Scholar]
  118. 118. 
    Rashid ST, Corbineau S, Hannan N, Marciniak SJ, Miranda E et al. 2010. Modeling inherited metabolic disorders of the liver using human induced pluripotent stem cells. J. Clin. Investig. 120:3127–36
    [Google Scholar]
  119. 119. 
    Cayo MA, Mallanna SK, Di Furio F, Jing R, Tolliver LB et al. 2017. A drug screen using human iPSC-derived hepatocyte-like cells reveals cardiac glycosides as a potential treatment for hypercholesterolemia. Cell Stem Cell 20:478–89.e475
    [Google Scholar]
  120. 120. 
    Shlomai A, Schwartz RE, Ramanan V, Bhatta A, de Jong YP et al. 2014. Modeling host interactions with hepatitis B virus using primary and induced pluripotent stem cell-derived hepatocellular systems. PNAS 111:12193–98
    [Google Scholar]
  121. 121. 
    Schwartz RE, Trehan K, Andrus L, Sheahan TP, Ploss A et al. 2012. Modeling hepatitis C virus infection using human induced pluripotent stem cells. PNAS 109:2544–48
    [Google Scholar]
  122. 122. 
    Helsen N, Debing Y, Paeshuyse J, Dallmeier K, Boon R et al. 2016. Stem cell-derived hepatocytes: A novel model for hepatitis E virus replication. J. Hepatol. 64:565–73
    [Google Scholar]
  123. 123. 
    Ng S, Schwartz RE, March S, Galstian A, Gural N et al. 2015. Human iPSC-derived hepatocyte-like cells support Plasmodium liver-stage infection in vitro. Stem Cell Rep 4:348–59
    [Google Scholar]
  124. 124. 
    Takebe T, Zhang RR, Koike H, Kimura M, Yoshizawa E et al. 2014. Generation of a vascularized and functional human liver from an iPSC-derived organ bud transplant. Nat. Protoc. 9:396–409
    [Google Scholar]
  125. 125. 
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:481–84
    [Google Scholar]
  126. 126. 
    Gore A, Li Z, Fung HL, Young JE, Agarwal S et al. 2011. Somatic coding mutations in human induced pluripotent stem cells. Nature 471:63–67
    [Google Scholar]
  127. 127. 
    Yoshihara M, Araki R, Kasama Y, Sunayama M, Abe M et al. 2017. Hotspots of de novo point mutations in induced pluripotent stem cells. Cell Rep 21:308–15
    [Google Scholar]
  128. 128. 
    D'Antonio M, Benaglio P, Jakubosky D, Greenwald WW, Matsui H et al. 2018. Insights into the mutational burden of human induced pluripotent stem cells from an integrative multi-omics approach. Cell Rep 24:883–94
    [Google Scholar]
  129. 129. 
    Azuma H, Paulk N, Ranade A, Dorrell C, Al-Dhalimy M et al. 2007. Robust expansion of human hepatocytes in Fah−/−/Rag2−/−/Il2rg−/− mice. Nat. Biotechnol. 25:903–10
    [Google Scholar]
  130. 130. 
    Kim SS, Utsunomiya H, Koski JA, Wu BM, Cima MJ et al. 1998. Survival and function of hepatocytes on a novel three-dimensional synthetic biodegradable polymer scaffold with an intrinsic network of channels. Ann. Surg. 228:8–13
    [Google Scholar]
  131. 131. 
    Chen AA, Thomas DK, Ong LL, Schwartz RE, Golub TR, Bhatia SN 2011. Humanized mice with ectopic artificial liver tissues. PNAS 108:11842–47
    [Google Scholar]
  132. 132. 
    Christoffersson J, Aronsson C, Jury M, Selegard R, Aili D, Mandenius CF 2018. Fabrication of modular hyaluronan-PEG hydrogels to support 3D cultures of hepatocytes in a perfused liver-on-a-chip device. Biofabrication 11:015013
    [Google Scholar]
  133. 133. 
    Jiang J, Kojima N, Guo L, Naruse K, Makuuchi M et al. 2004. Efficacy of engineered liver tissue based on poly-L-lactic acid scaffolds and fetal mouse liver cells cultured with oncostatin M, nicotinamide, and dimethyl sulfoxide. Tissue Eng 10:1577–86
    [Google Scholar]
  134. 134. 
    Mooney DJ, Sano K, Kaufmann PM, Majahod K, Schloo B et al. 1997. Long-term engraftment of hepatocytes transplanted on biodegradable polymer sponges. J. Biomed. Mater. Res. 37:413–20
    [Google Scholar]
  135. 135. 
    Feng ZQ, Chu X, Huang NP, Wang T, Wang Y et al. 2009. The effect of nanofibrous galactosylated chitosan scaffolds on the formation of rat primary hepatocyte aggregates and the maintenance of liver function. Biomaterials 30:2753–63
    [Google Scholar]
  136. 136. 
    Nahmias Y, Schwartz RE, Hu WS, Verfaillie CM, Odde DJ. 2006. Endothelium-mediated hepatocyte recruitment in the establishment of liver-like tissue in vitro. Tissue Eng 12:1627–38
    [Google Scholar]
  137. 137. 
    Peng WC, Logan CY, Fish M, Anbarchian T, Aguisanda F et al. 2018. Inflammatory cytokine TNFα promotes the long-term expansion of primary hepatocytes in 3D culture. Cell 175:1607–19 1615.
    [Google Scholar]
  138. 138. 
    Detzel CJ, Kim Y, Rajagopalan P. 2011. Engineered three-dimensional liver mimics recapitulate critical rat-specific bile acid pathways. Tissue Eng. Part A 17:677–89
    [Google Scholar]
  139. 139. 
    Xiong AM, Austin TW, Lagasse E, Uchida N, Tamaki S et al. 2008. Isolation of human fetal liver progenitors and their enhanced proliferation by three-dimensional coculture with endothelial cells. Tissue Eng. Part A 14:995–1006
    [Google Scholar]
  140. 140. 
    Stevens KR, Scull MA, Ramanan V, Fortin CL, Chaturvedi RR et al. 2017. In situ expansion of engineered human liver tissue in a mouse model of chronic liver disease. Sci. Transl. Med. 9:eaah5505
    [Google Scholar]
  141. 141. 
    Ijima H, Nakamura S, Bual RP, Yoshida K. 2019. Liver-specific extracellular matrix hydrogel promotes liver-specific functions of hepatocytes in vitro and survival of transplanted hepatocytes in vivo. J. Biosci. Bioeng. 128:365–72
    [Google Scholar]
  142. 141a. 
    Kim SS, Kaihara S, Benvenuto MS, Kim BS, Mooney DJ, Vacanti JP 1999. Small intestinal submucosa as a small-caliber venous graft: a novel model for hepatocyte transplantation on synthetic biodegradable polymer scaffolds with direct access to the portal venous system. J. Pediatr. Surg 34:12428
    [Google Scholar]
  143. 142. 
    Komori J, Boone L, DeWard A, Hoppo T, Lagasse E. 2012. The mouse lymph node as an ectopic transplantation site for multiple tissues. Nat. Biotechnol. 30:976–83
    [Google Scholar]
  144. 143. 
    Lee HM, Cusick RA, Utsunomiya H, Ma PX, Langer R, Vacanti JP. 2003. Effect of implantation site on hepatocytes heterotopically transplanted on biodegradable polymer scaffolds. Tissue Eng 9:1227–32
    [Google Scholar]
  145. 144. 
    DeWard AD, Komori J, Lagasse E. 2014. Ectopic transplantation sites for cell-based therapy. Curr. Opin. Organ Transpl. 19:169–74
    [Google Scholar]
  146. 145. 
    Yokoyama T, Ohashi K, Kuge H, Kanehiro H, Iwata H et al. 2006. In vivo engineering of metabolically active hepatic tissues in a neovascularized subcutaneous cavity. Am. J. Transpl. 6:50–59
    [Google Scholar]
  147. 146. 
    Cima LG, Ingber DE, Vacanti JP, Langer R. 1991. Hepatocyte culture on biodegradable polymeric substrates. Biotechnol. Bioeng. 38:145–58
    [Google Scholar]
  148. 147. 
    Mooney DJ, Kaufmann PM, Sano K, Schwendeman SP, Majahod K et al. 1996. Localized delivery of epidermal growth factor improves the survival of transplanted hepatocytes. Biotechnol. Bioeng. 50:422–29
    [Google Scholar]
  149. 148. 
    Jitraruch S, Dhawan A, Hughes RD, Filippi C, Soong D et al. 2014. Alginate microencapsulated hepatocytes optimised for transplantation in acute liver failure. PLOS ONE 9:e113609
    [Google Scholar]
  150. 149. 
    Mooney DJ, Sano K, Kaufmann PM, McNamara K, Vacanti JP, Langer R. 1995. Integrating cell transplantation and controlled drug delivery technologies to engineer liver tissue. MRS Proc 385:43–48
    [Google Scholar]
  151. 150. 
    Laschke MW, Menger MD. 2012. Vascularization in tissue engineering: angiogenesis versus inosculation. Eur. Surg. Res. 48:85–92
    [Google Scholar]
  152. 151. 
    Baranski JD, Chaturvedi RR, Stevens KR, Eyckmans J, Carvalho B et al. 2013. Geometric control of vascular networks to enhance engineered tissue integration and function. PNAS 110:7586–91
    [Google Scholar]
  153. 152. 
    Grigoryan B, Paulsen SJ, Corbett DC, Sazer DW, Fortin CL et al. 2019. Multivascular networks and functional intravascular topologies within biocompatible hydrogels. Science 364:458–64
    [Google Scholar]
  154. 153. 
    Sudo R. 2014. Multiscale tissue engineering for liver reconstruction. Organogenesis 10:216–24
    [Google Scholar]
  155. 154. 
    Ott HC, Matthiesen TS, Goh SK, Black LD, Kren SM et al. 2008. Perfusion-decellularized matrix: using nature's platform to engineer a bioartificial heart. Nat. Med. 14:213–21
    [Google Scholar]
  156. 155. 
    Uygun BE, Soto-Gutierrez A, Yagi H, Izamis ML, Guzzardi MA et al. 2010. Organ reengineering through development of a transplantable recellularized liver graft using decellularized liver matrix. Nat. Med. 16:814–20
    [Google Scholar]
  157. 156. 
    De Vree JML, Ottenhoff R, Bosma PJ, Smith AJ, Aten J, Oude Elferink RPJ 2000. Correction of liver disease by hepatocyte transplantation in a mouse model of progressive familial intrahepatic cholestasis. Gastroenterology 119:61720–30
    [Google Scholar]
  158. 157. 
    Ye X, Robinson MB, Batshaw ML, Furth EE, Smith I, Wilson JM. 1996. Prolonged metabolic correction in adult ornithine transcarbamylase-deficient mice with adenoviral vectors. J. Biol. Chem. 271:73639–46
    [Google Scholar]
  159. 158. 
    Malhi H, Joseph B, Schilsky ML, Gupta S. 2008. Development of cell therapy strategies to overcome copper toxicity in the LEC rat model of Wilson disease. Regen. Med. 3:165–73
    [Google Scholar]
  160. 159. 
    Cobourn CS, Makowka L, Falk JA, Falk RE. 1987. Allogeneic intrasplenic hepatocyte transplantation in the Gunn rat using cyclosporine A immunosuppression. Transplant. Proc. 19:1002–3
    [Google Scholar]
  161. 160. 
    Eguchi S, Rozga J, Lebow LT, Chen SC, Wang CC et al. 1996. Treatment of hypercholesterolemia in the Watanabe rabbit using allogeneic hepatocellular transplantation under a regeneration stimulus. Transplantation 62:588–93
    [Google Scholar]
  162. 161. 
    Kocken JM, Rinkes IHMB, Bijma AM, de Roos WK, Bouwman E et al. 1996. Correction of an inborn error of metabolism by intraportal hepatocyte transplantation in a dog model. Exp. Transplant. 62:3358–64
    [Google Scholar]
  163. 162. 
    Kocken JM, Rinkes IHMB, Bijma AM, De Roos WK, Bouwman E et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–62
    [Google Scholar]
  164. 163. 
    Bataller R, Brenner DA. 2005. Liver fibrosis. J. Clin. Investig. 115:209–18
    [Google Scholar]
  165. 164. 
    Ding BS, Cao Z, Lis R, Nolan DJ, Guo P et al. 2014. Divergent angiocrine signals from vascular niche balance liver regeneration and fibrosis. Nature 505:97–102
    [Google Scholar]
  166. 165. 
    Yanguas SC, Cogliati B, Willebrords J, Maes M, Colle I et al. 2016. Experimental models of liver fibrosis. Arch. Toxicol. 90:1025–48
    [Google Scholar]
  167. 166. 
    Olsen AL, Bloomer SA, Chan EP, Gaca MD, Georges PC et al. 2011. Hepatic stellate cells require a stiff environment for myofibroblastic differentiation. Am. J. Physiol. Gastrointest. Liver Physiol. 301:G110–18
    [Google Scholar]
  168. 167. 
    Leite SB, Roosens T, El Taghdouini A, Mannaerts I, Smout AJ et al. 2016. Novel human hepatic organoid model enables testing of drug-induced liver fibrosis in vitro. Biomaterials 78:1–10
    [Google Scholar]
  169. 168. 
    Feaver RE, Cole BK, Lawson MJ, Hoang SA, Marukian S et al. 2016. Development of an in vitro human liver system for interrogating nonalcoholic steatohepatitis. JCI Insight 1:e90954
    [Google Scholar]
  170. 169. 
    van Grunsven LA. 2017. 3D in vitro models of liver fibrosis. Adv. Drug Deliv. Rev. 121:133–46
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-112619-044026
Loading
/content/journals/10.1146/annurev-bioeng-112619-044026
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error