Computed tomography (CT) is an essential tool in diagnostic imaging for evaluating many clinical conditions. In recent years, there have been several notable advances in CT technology that already have had or are expected to have a significant clinical impact, including extreme multidetector CT, iterative reconstruction algorithms, dual-energy CT, cone-beam CT, portable CT, and phase-contrast CT. These techniques and their clinical applications are reviewed and illustrated in this article. In addition, emerging technologies that address deficiencies in these modalities are discussed.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Am. Coll. Radiol 2013. ACR Appropriateness Criteria®. Guidelines, Reston, VA, updated Nov. 2013, accessed Nov. 10, 2013. http://www.acr.org/Quality-Safety/Appropriateness-Criteria
  2. Berrington de González A, Mahesh M, Kim KP, Bhargavan M, Lewis R. 2.  et al. 2009. Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch. Intern. Med. 169:2071–77 [Google Scholar]
  3. Fred HL. 3.  2004. Drawbacks and limitations of computed tomography: views from a medical educator. Tex. Heart Inst. J. 31:4345–48 [Google Scholar]
  4. Wiest PW, Locken JA, Heintz PH, Mettler FA Jr. 4.  2002. CT scanning: a major source of radiation exposure. Semin. Ultrasound CT MR 23:5402–10 [Google Scholar]
  5. Seute T, Leffers P, ten Velde GP, Twijnstra A. 5.  2008. Detection of brain metastases from small cell lung cancer: consequences of changing imaging techniques (CT versus MRI). Cancer 112:81827–34 [Google Scholar]
  6. Mathieu KB, Kappadath SC, White RA, Atkinson EN, Cody DD. 6.  2011. An empirical model of diagnostic X-ray attenuation under narrow-beam geometry. Med. Phys. 38:84546–55 [Google Scholar]
  7. Brooks RA, Di Chiro G. 7.  1976. Principles of computer assisted tomography (CAT) in radiographic and radioisotropic imaging. Phys. Med. Biol. 21:689–732 [Google Scholar]
  8. Baker HL Jr, Campbell JK, Houser OW, Reese DF. 8.  1975. Early experience with the EMI scanner for study of the brain. Radiology 116:02327–33 [Google Scholar]
  9. Beckmann EC. 9.  2006. CT scanning the early days. Br. J. Radiol. 79:9375–8 [Google Scholar]
  10. Barrett JF, Keat N. 10.  2004. Artifacts in CT: recognition and avoidance. Radiographics 24:61679–91 [Google Scholar]
  11. Villafana T. 11.  1991. Technologic advances in computed tomography. Curr. Opin. Radiol. 3:2275–83 [Google Scholar]
  12. Rigauts H, Marchal G, Baert AL, Hupke R. 12.  1990. Initial experience with volume CT scanning. J. Comput. Assist. Tomogr. 14:4675–82 [Google Scholar]
  13. Schardt P, Deuringer J, Freudenberger J, Hell E, Knüpfer W. 13.  et al. 2004. New X-ray tube performance in computed tomography by introducing the rotating envelope tube technology. Med. Phys. 31:92699–706 [Google Scholar]
  14. Thomton FJ, Paulson EK, Yoshizumi TT, Frush DP, Nelson RC. 14.  2003. Single versus multi-detector row CT: comparison of radiation doses and dose profiles. Acad. Radiol. 10:4379–85 [Google Scholar]
  15. Kalra MK, Maher MM, Toth TL, Hamberg LM, Blake MA. 15.  et al. 2004. Strategies for CT radiation dose optimization. Radiology 230:619–28 [Google Scholar]
  16. Kalra MK, Maher MM, Toth TL, Schmidt B, Westerman BL. 16.  et al. 2004. Techniques and applications of automatic tube current modulation for CT. Radiology 233:649–57 [Google Scholar]
  17. Saini S. 17.  2004. Multi-detector row CT: principles and practice for abdominal applications. Radiology 233:2323–27 [Google Scholar]
  18. Rogalla P, Kloeters C, Hein PA. 18.  2009. CT technology overview: 64-slice and beyond. Radiol. Clin. North Am. 47:11–11 [Google Scholar]
  19. Hurlock GS, Higashino H, Mochizuki T. 19.  2009. History of cardiac computed tomography: single to 320-detector row multislice computed tomography. Int. J. Cardiovasc. Imaging 25:Suppl. 131–42 [Google Scholar]
  20. Otero HJ, Steigner ML, Rybicki FJ. 20.  2009. The “post-64” era of coronary CT angiography: understanding new technology from physical principles. Radiol. Clin. North Am. 47:179–90 [Google Scholar]
  21. Ko BS, Wong DT, Cameron JD, Leong DP, Leung M. 21.  et al. 2014. 320-row CT coronary angiography predicts freedom from revascularisation and acts as a gatekeeper to defer invasive angiography in stable coronary artery disease: a fractional flow reserve-correlated study. Eur. Radiol. 24:738–47 [Google Scholar]
  22. Bhatnagar G, Vardhanabhuti V, Nensey RR, Sidhu HS, Morgan-Hughes G, Roobottom CA. 22.  2013. The role of multidetector computed tomography coronary angiography in imaging complications post-cardiac surgery. Clin. Radiol. 68:5e254–65 [Google Scholar]
  23. Johnson JM, Reed MS, Burbank HN, Filippi CG. 23.  2013. Quality of extracranial carotid evaluation with 256-section CT. AJNR Am. J. Neuroradiol. 34:1626–31 [Google Scholar]
  24. Levin DC, Rao VM, Parker L, Frangos AJ, Sunshine JH. 24.  2005. Recent trends in utilization of cardiovascular imaging: How important are they for radiology?. J. Am. Coll. Radiol. 2:736–39 [Google Scholar]
  25. Boone JM. 25.  2006. Multidetector CT: opportunities, challenges, and concerns associated with scanners with 64 or more detector rows. Radiology 241:334–37 [Google Scholar]
  26. Nasis A, Mottram PM, Cameron JD, Seneviratne SK. 26.  2013. Current and evolving clinical applications of multidetector cardiac CT in assessment of structural heart disease. Radiology 267:111–25 [Google Scholar]
  27. Snyder KV, Mokin M, Bates VE. 27.  2014. Neurologic applications of whole-brain volumetric multidetector computed tomography. Neurol. Clin. 32:1237–51 [Google Scholar]
  28. Frölich AM, Psychogios MN, Klotz E, Schramm R, Knauth M, Schramm P. 28.  2012. Antegrade flow across incomplete vessel occlusions can be distinguished from retrograde collateral flow using 4-dimensional computed tomographic angiography. Stroke 43:112974–79 [Google Scholar]
  29. Dorn F, Muenzel D, Meier R, Poppert H, Rummeny EJ, Huber A. 29.  2011. Brain perfusion CT for acute stroke using a 256-slice CT: improvement of diagnostic information by large volume coverage. Eur. Radiol. 21:1803–10 [Google Scholar]
  30. Furtado AD, Lau BC, Vittinghoff E, Dillon WP, Smith WS. 30.  et al. 2010. Optimal brain perfusion CT coverage in patients with acute middle cerebral artery stroke. AJNR Am. J. Neuroradiol. 31:4691–95 [Google Scholar]
  31. Goh YP, Lau KK. 31.  2012. Using the 320-multidetector computed tomography scanner for four-dimensional functional assessment of the elbow joint. Am. J. Orthop. (Belle Mead, NJ) 41:2E20–24 [Google Scholar]
  32. Kalia V, Obray RW, Filice R, Fayad LM, Murphy K, Carrino JA. 32.  2009. Functional joint imaging using 256-MDCT: technical feasibility. Am. J. Roentgenol. 192:6W295–99 [Google Scholar]
  33. de Bucourt M, Scheurig-Münkler C, Feist E, Juran R, Diekhoff T. 33.  et al. 2012. Cyst-like lesions in finger joints detected by conventional radiography: comparison with 320-row multidetector computed tomography. Arthritis Rheum. 64:41283–90 [Google Scholar]
  34. Evans JD, Politte DG, Whiting BR, O'Sullivan JA, Williamson JF. 34.  2011. Noise-resolution tradeoffs in X-ray CT imaging: a comparison of penalized alternating minimization and filtered backprojection algorithms. Med. Phys. 38:31444–58 [Google Scholar]
  35. Renker M, Nance JW Jr, Schoepf UJ, O'Brien TX, Zwerner PL. 35.  et al. 2011. Evaluation of heavily calcified vessels with coronary CT angiography: comparison of iterative and filtered back projection image reconstruction. Radiology 260:390–99 [Google Scholar]
  36. Rapalino O, Kamalian S, Kamalian S, Payabvash S, Souza LC. 36.  et al. 2012. Cranial CT with adaptive statistical iterative reconstruction: improved image quality with concomitant radiation dose reduction. AJNR Am. J. Neuroradiol. 33:609–15 [Google Scholar]
  37. Korn A, Fenchel M, Bender B, Danz S, Hauser TK. 37.  et al. 2012. Iterative reconstruction in head CT: image quality of routine and low-dose protocols in comparison with standard filtered back-projection. AJNR Am. J. Neuroradiol. 33:218–24 [Google Scholar]
  38. Vorona GA, Zuccoli G, Sutcavage T, Clayton BL, Ceschin RC, Panigrahy A. 38.  2013. The use of adaptive statistical iterative reconstruction in pediatric head CT: a feasibility study. AJNR Am. J. Neuroradiol. 34:205–11 [Google Scholar]
  39. Hara AK, Paden RG, Silva AC, Kujak JL, Lawder HJ, Pavlicek W. 39.  2009. Iterative reconstruction technique for reducing body radiation dose at CT: feasibility study. Am. J. Roentgenol. 193:764–71 [Google Scholar]
  40. Prakash P, Kalra MK, Kambadakone AK, Pien H, Hsieh J. 40.  et al. 2010. Reducing abdominal CT radiation dose with adaptive statistical iterative reconstruction technique. Investig. Radiol. 45:202–10 [Google Scholar]
  41. Sagara Y, Hara AK, Pavlicek W, Silva AC, Paden RG, Wu Q. 41.  2010. Abdominal CT: comparison of low-dose CT with adaptive statistical iterative reconstruction and routine-dose CT with filtered back projection in 53 patients. Am. J. Roentgenol. 195:713–19 [Google Scholar]
  42. Prakash P, Kalra MK, Ackman JB, Digumarthy SR, Hsieh J. 42.  et al. 2010. Diffuse lung disease: CT of the chest with adaptive statistical iterative reconstruction technique. Radiology 256:261–69 [Google Scholar]
  43. Schulz B, Beeres M, Bodelle B, Bauer R, Al-Butmeh F. 43.  et al. 2013. Performance of iterative image reconstruction in CT of the paranasal sinuses: a phantom study. AJNR Am. J. Neuroradiol. 34:1072–76 [Google Scholar]
  44. Kalra MK, Woisetschläger M, Dahlström N, Singh S, Lindblom M. 44.  et al. 2012. Radiation dose reduction with sinogram affirmed iterative reconstruction technique for abdominal computed tomography. J. Comput. Assist. Tomogr. 36:339–46 [Google Scholar]
  45. Deák Z, Grimm JM, Treitl M, Geyer LL, Linsenmaier U. 45.  et al. 2013. Filtered back projection, adaptive statistical iterative reconstruction, and a model-based iterative reconstruction in abdominal CT: an experimental clinical study. Radiology 266:197–206 [Google Scholar]
  46. Pickhardt PJ, Lubner MG, Kim DH, Tang J, Ruma JA. 46.  et al. 2012. Abdominal CT with model-based iterative reconstruction (MBIR): initial results of a prospective trial comparing ultralow-dose with standard-dose imaging. Am. J. Roentgenol. 199:1266–74 [Google Scholar]
  47. Johnson TR. 47.  2012. Dual-energy CT: general principles. Am. J. Roentgenol. 199:5 Suppl.S3–8 [Google Scholar]
  48. Kaza RK, Platt JF, Cohan RH, Caoili EM, Al-Hawary MM, Wasnik A. 48.  2012. Dual-energy CT with single- and dual-source scanners: current applications in evaluating the genitourinary tract. Radiographics 32:353–69 [Google Scholar]
  49. Karçaaltıncaba M, Aktaş A. 49.  2011. Dual-energy CT revisited with multidetector CT: review of principles and clinical applications. Diagn. Interv. Radiol. 17:181–94 [Google Scholar]
  50. Gupta R, Phan CM, Leidecker C, Brady TJ, Hirsch JA. 50.  et al. 2010. Evaluation of dual-energy CT for differentiating intracerebral hemorrhage from iodinated contrast material staining. Radiology 257:205–11 [Google Scholar]
  51. Phan CM, Yoo AJ, Hirsch JA, Nogueira RG, Gupta R. 51.  2012. Differentiation of hemorrhage from iodinated contrast in different intracranial compartments using dual-energy head CT. AJNR Am. J. Neuroradiol. 33:1088–94 [Google Scholar]
  52. Kemmling A, Nölte I, Groden C, Diehl S. 52.  2011. Dual energy bone subtraction in computed tomography angiography of extracranial-intracranial bypass: feasibility and limitations. Eur. Radiol. 21:750–56 [Google Scholar]
  53. Deng K, Liu C, Ma R, Sun C, Wang XM. 53.  et al. 2009. Clinical evaluation of dual-energy bone removal in CT angiography of the head and neck: comparison with conventional bone-subtraction CT angiography. Clin. Radiol. 64:534–41 [Google Scholar]
  54. Watanabe Y, Uotani K, Nakazawa T, Higashi M, Yamada N. 54.  et al. 2009. Dual-energy direct bone removal CT angiography for evaluation of intracranial aneurysm or stenosis: comparison with conventional digital subtraction angiography. Eur. Radiol. 19:1019–24 [Google Scholar]
  55. Ferda J, Novák M, Mírka H, Baxa J, Ferdová E. 55.  et al. 2009. The assessment of intracranial bleeding with virtual unenhanced imaging by means of dual-energy CT angiography. Eur. Radiol. 19:2518–22 [Google Scholar]
  56. Miracle AC, Mukherji SK. 56.  2009. Conebeam CT of the head and neck, part 1: physical principles. AJNR Am. J. Neuroradiol. 30:1088–95 [Google Scholar]
  57. Alspaugh J, Christodoulou E, Goodsitt M. 57.  et al. 2007. Dose and image quality of flat-panel detector volume computed tomography for sinus imaging. Med. Phys. 34:2634 [Google Scholar]
  58. Gupta R, Cheung AC, Bartling SH, Lisauskas J, Grasruck M. 58.  et al. 2008. Flat-panel volume CT: fundamental principles, technology, and applications. Radiographics 28:2009–22 [Google Scholar]
  59. O'Connell A, Conover DL, Zhang Y, Seifert P, Logan-Young W. 59.  et al. 2010. Cone-beam CT for breast imaging: radiation dose, breast coverage, and image quality. Am. J. Roentgenol. 195:496–509 [Google Scholar]
  60. Cakli H, Cingi C, Ay Y, Oghan F, Ozer T, Kaya E. 60.  2012. Use of cone beam computed tomography in otolaryngologic treatments. Eur. Arch. Otorhinolaryngol. 269:711–20 [Google Scholar]
  61. Xu J, Reh DD, Carey JP, Mahesh M, Siewerdsen JH. 61.  2012. Technical assessment of a cone-beam CT scanner for otolaryngology imaging: image quality, dose, and technique protocols. Med. Phys. 39:4932–42 [Google Scholar]
  62. Miracle AC, Mukherji SK. 62.  2009. Conebeam CT of the head and neck, part 2: clinical applications. AJNR Am. J. Neuroradiol. 30:1285–92 [Google Scholar]
  63. Reichardt B, Sarwar A, Bartling SH, Cheung A, Grasruck M. 63.  et al. 2008. Musculoskeletal applications of flat-panel volume CT. Skeletal Radiol. 37:1069–76 [Google Scholar]
  64. Zbijewski W, De Jean P, Prakash P, Ding Y, Stayman JW. 64.  et al. 2011. A dedicated cone-beam CT system for musculoskeletal extremities imaging: design, optimization, and initial performance characterization. Med. Phys. 38:4700–13 [Google Scholar]
  65. Zhu S, Tian J, Yan G, Qin C, Feng J. 65.  2009. Cone beam micro-CT system for small animal imaging and performance evaluation. Int. J. Biomed. Imaging 2009:960573 [Google Scholar]
  66. Erovic BM, Chan HH, Daly MJ, Pothier DD, Yu E. 66.  et al. 2014. Intraoperative cone-beam computed tomography and multi-slice computed tomography in temporal bone imaging for surgical treatment. Otolaryngol. Head Neck Surg. 150:107–14 [Google Scholar]
  67. Zbijewski W, Beekman FJ. 67.  2006. Efficient Monte Carlo based scatter artifact reduction in cone-beam micro-CT. IEEE Trans. Med. Imaging 25:7817–27 [Google Scholar]
  68. Siewerdsen JH, Daly MJ, Bakhtiar B, Moseley DJ, Richard S. 68.  et al. 2006. A simple, direct method for X-ray scatter estimation and correction in digital radiography and cone-beam CT. Med. Phys. 33:187–97 [Google Scholar]
  69. Peace K, Wilensky EM, Frangos S, MacMurtrie E, Shields E. 69.  et al. 2010. The use of a portable head CT scanner in the intensive care unit. J. Neurosci. Nurs. 42:109–16 [Google Scholar]
  70. Rumboldt Z, Huda W, All JW. 70.  2009. Review of portable CT with assessment of a dedicated head CT scanner. AJNR Am. J. Neuroradiol. 30:1630–36 [Google Scholar]
  71. Jackman AH, Palmer JN, Chiu AG, Kennedy DW. 71.  2008. Use of intraoperative CT scanning in endoscopic sinus surgery: a preliminary report. Am. J. Rhinol. 22:2170–74 [Google Scholar]
  72. Ginat DT, Swearingen B, Curry W, Cahill D, Madsen J, Schaefer PW. 72.  2014. 3 Tesla intraoperative MRI for brain tumor surgery. J. Magn. Reson. Imaging 39:1357–65 [Google Scholar]
  73. Carlson AP, Yonas H. 73.  2012. Portable head computed tomography scanner—technology and applications: experience with 3421 scans. J. Neuroimaging 22:4408–15 [Google Scholar]
  74. Carlson AP, Phelps J, Yonas H. 74.  2011. Alterations in surgical plan based on intraoperative portable head computed tomography imaging. J. Neuroimaging 22:324–28 [Google Scholar]
  75. Butler WE, Piaggio CM, Constantinou C, Niklason L, Gonzalez RG. 75.  et al. 1998. A mobile computed tomographic scanner with intraoperative and intensive care unit applications. Neurosurgery 42:1304–11 [Google Scholar]
  76. LaRovere KL, Brett MS, Tasker RC, Strauss KJ, Burns JP. 76.  2012. Head computed tomography scanning during pediatric neurocritical care: diagnostic yield and the utility of portable studies. Neurocrit. Care 16:251–57 [Google Scholar]
  77. Orchard J, Yeow JT. 77.  2008. Toward a flexible and portable CT scanner. Med. Image Comput. Comput. Assist. Interv. 11:Pt. 2188–95 [Google Scholar]
  78. Somenkov V, Tkalich A, Shil'shtein S. 78.  1991. Refraction contrast in X-ray introscopy. Sov. Phys. Tech. Phys. 36:1309–311 [Google Scholar]
  79. Momose A, Takeda T, Itai Y, Hirano K. 79.  1996. Phase-contrast X-ray computed tomography for observing biological soft tissues. Nat. Med. 2:473–75 [Google Scholar]
  80. Chapman D, Thomlinson W, Johnston RE, Washburn D, Pisano E. 80.  et al. 1997. Diffraction enhanced X-ray imaging. Phys. Med. Biol. 42:2015–25 [Google Scholar]
  81. Tapfer A, Bech M, Velroyen A, Meiser J, Mohr J. 81.  et al. 2012. Experimental results from a preclinical X-ray phase-contrast CT scanner. Proc. Natl. Acad. Sci. USA 109:15691–96 [Google Scholar]
  82. Zhou SA, Brahme A. 82.  2008. Development of phase-contrast X-ray imaging techniques and potential medical applications. Phys. Med. 24:3129–48 [Google Scholar]
  83. Tapfer A, Bech M, Pauwels B, Liu X, Bruyndonckx P. 83.  et al. 2011. Development of a prototype gantry system for preclinical X-ray phase-contrast computed tomography. Med. Phys. 38:115910–15 [Google Scholar]
  84. Hemberg O, Otendal M, Hertz HM. 84.  2003. Liquid-metal-jet anode electron-impact X-ray source. Appl. Phys. Lett. 83:1483e5 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error