1932

Abstract

Electrical stimulation to manipulate the central nervous system (CNS) has been applied as early as the 1750s to produce visual sensations of light. Deep brain stimulation (DBS), cochlear implants, visual prosthetics, and functional electrical stimulation (FES) are being applied in the clinic to treat a wide array of neurological diseases, disorders, and injuries. This review describes the history of electrical stimulation of the CNS microenvironment; recent advances in electrical stimulation of the CNS, including DBS to treat essential tremor, Parkinson's disease, and depression; FES for the treatment of spinal cord injuries; and alternative electrical devices to restore vision and hearing via neuroprosthetics (retinal and cochlear implants). It also discusses the role of electrical cues during development and following injury and, importantly, manipulation of these endogenous cues to support regeneration of neural tissue.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-121813-120655
2014-07-11
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/16/1/annurev-bioeng-121813-120655.html?itemId=/content/journals/10.1146/annurev-bioeng-121813-120655&mimeType=html&fmt=ahah

Literature Cited

  1. Faul M, Xu L, Wald M, Coronado V. 1.  2010. Traumatic Brain Injury in the United States: Emergency Department Visits, Hospitalizations and Deaths 2002–2006 Atlanta: CDC Prevention
  2. Coronado VG, McGuire LC, Sarmiento K, Bell J, Lionbarger MR. 2.  et al. 2012. Trends in traumatic brain injury in the U.S. and the public health response: 1995–2009. J. Saf. Res. 43:299–307 [Google Scholar]
  3. Finkelstein E, Corso PS, Miller TR. 3.  2006. The Incidence and Economic Burden of Injuries in the United States Oxford, UK: Oxford Univ. Press181
  4. Zuo J, Neubauer D, Dyess K, Ferguson TA, Muir D. 4.  1998. Degradation of chondroitin sulfate proteoglycan enhances the neurite-promoting potential of spinal cord tissue. Exp. Neurol. 154:654–62 [Google Scholar]
  5. Schmidt CE, Leach JB. 5.  2003. Neural tissue engineering: strategies for repair and regeneration. Annu. Rev. Biomed. Eng. 5:293–347 [Google Scholar]
  6. Pham QP, Sharma U, Mikos AG. 6.  2006. Electrospinning of polymeric nanofibers for tissue engineering applications: a review. Tissue Eng. 12:1197–211 [Google Scholar]
  7. Willerth SM, Johnson PJ, Maxwell DJ, Parsons SR, Doukas ME, Sakiyama-Elbert SE. 7.  2007. Rationally designed peptides for controlled release of nerve growth factor from fibrin matrices. J. Biomed. Mater. Res. A 80:13–23 [Google Scholar]
  8. Martina M, Hutmacher DW. 8.  2007. Biodegradable polymers applied in tissue engineering research: a review. Polym. Int. 56:145–57 [Google Scholar]
  9. Reitz C, Brayne C, Mayeux R. 9.  2011. Epidemiology of Alzheimer disease. Nat. Rev. Neurol. 7:137–52 [Google Scholar]
  10. Alzheimer's Assoc. 10.  2010. 2010 Alzheimer's disease facts and figures. Alzheimer's Dement. 6:158–94 [Google Scholar]
  11. Nussbaum RL, Ellis CE. 11.  2003. Alzheimer's disease and Parkinson's disease. N. Engl. J. Med. 348:1356–64 [Google Scholar]
  12. de Lau LM, Breteler M. 12.  2006. Epidemiology of Parkinson's disease. Lancet Neurol. 5:525–35 [Google Scholar]
  13. Natl. Collab. Cent. Chronic Cond 2006. Parkinson's Disease: National Clinical Guideline for Diagnosis and Management in Primary and Secondary Care. London: Royal Coll. Physicians
  14. Chang JC, Brewer GJ, Wheeler BC. 14.  2003. A modified microstamping technique enhances polylysine transfer and neuronal cell patterning. Biomaterials 24:2863–70 [Google Scholar]
  15. D'Souza W, Quinn S, Fryer J, Taylor B, Ficker D. 15.  et al. 2012. The prevalence and demographic distribution of treated epilepsy: a community-based study in Tasmania, Australia. Acta Neurol. Scand. 125:96–104 [Google Scholar]
  16. Cascino GD. 16.  1994. Epilepsy: contemporary perspectives on evaluation and treatment. Mayo Clin. Proc. 69:1199–211 [Google Scholar]
  17. Spencer S, Huh L. 17.  2008. Outcomes of epilepsy surgery in adults and children. Lancet Neurol. 7:525–37 [Google Scholar]
  18. Louis ED. 18.  2005. Essential tremor. Lancet Neurol. 4:100–10 [Google Scholar]
  19. Louis ED, Ford B, Wendt KJ, Cameron G. 19.  1998. Clinical characteristics of essential tremor: data from a community-based study. Mov. Disord. 13:803–8 [Google Scholar]
  20. Zesiewicz TA, Shaw JD, Allison KG, Staffetti JS, Okun MS, Sullivan KL. 20.  2013. Update on treatment of essential tremor. Curr. Treat. Options Neurol. 15:410–23 [Google Scholar]
  21. Vos T, Flaxman AD, Naghavi M, Lozano R, Michaud C. 21.  et al. 2012. Years lived with disability (YLDs) for 1160 sequelae of 289 diseases and injuries 1990–2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet 380:2163–96 [Google Scholar]
  22. Kessler RC, Demler O, Frank RG, Olfson M, Pincus HA. 22.  et al. 2005. Prevalence and treatment of mental disorders, 1990 to 2003. N. Engl. J. Med. 352:2515–23 [Google Scholar]
  23. Thase ME. 23.  2006. Preventing relapse and recurrence of depression: a brief review of therapeutic options. CNS Spectr. 11:12–21 [Google Scholar]
  24. Karasu TB, Gelenberg A, Merriam A, Wang P. 24.  2000. Treatment of patients with major depressive disorder. American Psychiatric Association Practice Guidelines for the Treatment of Psychiatric Disorders: Compendium413–95 Arlington, VA: Am. Psychiatr. Assoc. [Google Scholar]
  25. DeRubeis RJ, Siegle GJ, Hollon SD. 25.  2008. Cognitive therapy versus medication for depression: treatment outcomes and neural mechanisms. Nat. Rev. Neurosci. 9:788–96 [Google Scholar]
  26. Barker JL. 26.  1982. Multiple excitability functions in cultured mouse spinal neurones. Electroencephalogr. Clin. Neurophysiol. Suppl. 36:19–29 [Google Scholar]
  27. McGinnis ME, Vanable JW Jr. 27.  1986. Voltage gradients in newt limb stumps. Prog. Clin. Biol. Res. 210:231–38 [Google Scholar]
  28. Hotary KB, Robinson KR. 28.  1990. Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140:149–60 [Google Scholar]
  29. Hotary KB, Robinson KR. 29.  1994. Endogenous electrical currents and voltage gradients in Xenopus embryos and the consequences of their disruption. Dev. Biol. 166:789–800 [Google Scholar]
  30. Shi R, Borgens R. 30.  1995. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101–14 [Google Scholar]
  31. McCaig CD, Rajnicek AM, Song B, Zhao M. 31.  2005. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85:943–78 [Google Scholar]
  32. Pai VP, Aw S, Shomrat T, Lemire JM, Levin M. 32.  2012. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139:313–23 [Google Scholar]
  33. Blackiston DJ, McLaughlin KA, Levin M. 33.  2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527–36 [Google Scholar]
  34. Levin M. 34.  2012. Molecular bioelectricity in developmental biology: new tools and recent discoveries. Bioessays 34:205–17 [Google Scholar]
  35. Chiang M, Robinson KR, Vanable JW Jr. 35.  1992. Electrical fields in the vicinity of epithelial wounds in the isolated bovine eye. Exp. Eye Res. 54:999–1003 [Google Scholar]
  36. Metcalf M, Borgens RB. 36.  1994. Weak applied voltages interfere with amphibian morphogenesis and pattern. J. Exp. Zool. 268:323–38 [Google Scholar]
  37. Adams DS, Levin M. 37.  2013. Endogenous voltage gradients as mediators of cell-cell communication: strategies for investigating bioelectrical signals during pattern formation. Cell Tissue Res. 352:95–122 [Google Scholar]
  38. Fritsch G, Hitzig E. 38.  1870. Ueber die elektrische Erregbarkeit des Grosshirns. Arch. Anat. Physiol. Wiss. Med. 37:330–32 [Google Scholar]
  39. Bartholow R. 39.  1874. Experimental investigations into functions of the human brain. Am. J. Med. Sci. 67:305–13 [Google Scholar]
  40. Penfield W. 40.  1936. Epilepsy and surgical therapy. Arch. Neurol. Psychiatry 36:449–84 [Google Scholar]
  41. Gildenberg P. 41.  2000. Fifty Years of Stereotactic and Functional Neurosurgery Philadelphia: Lippincott, Williams & Wilkins
  42. Gardner J. 42.  2013. A history of deep brain stimulation: technological innovation and the role of clinical assessment tools. Soc. Stud. Sci. 43:707–28 [Google Scholar]
  43. Olds J, Milner P. 43.  1954. Positive reinforcement produced by electrical stimulation of septal area and other regions of rat brain. J. Comp. Physiol. Psychol. 47:419–27 [Google Scholar]
  44. Chambers WW. 44.  1947. Electrical stimulation of the interior of the cerebellum in the cat. Am. J. Anat. 80:55–93 [Google Scholar]
  45. Chapman W, Livingston R, Livingston K. 45.  1948. The effect on respirations and blood pressure of electrical stimulation of the orbital surface of the frontal lobe and of frontal lobotomy in man. J. Clin. Investig. 27:529–30 [Google Scholar]
  46. Andersson B. 46.  1951. The effect and localisation of electrical stimulation of certain parts of the brain stem in sheep and goats. Acta Physiol. Scand. 23:8–23 [Google Scholar]
  47. Clark G, Ward JW. 47.  1948. Responses elicited from the cortex of monkeys by electrical stimulation through fixed electrodes. Brain 71:332–42 [Google Scholar]
  48. Chatrian GE, Petersen MC, Uihlein A. 48.  1960. Electrical stimulation of the human brain through implanted electrodes: preliminary observations. Dis. Nerv. Syst. 21:321–26 [Google Scholar]
  49. Wetzel N, Snider RS. 49.  1957. Electrical stimulation of the human cerebellum. Surg. Forum 7:533–35 [Google Scholar]
  50. Merton P, Morton H, Hill D, Marsden C. 50.  1982. Scope of a technique for electrical stimulation of human brain, spinal cord, and muscle. Lancet 320:597–600 [Google Scholar]
  51. McIntyre C, Savasta M, Kerkerian-Le Goff L, Vitek J. 51.  2004. Uncovering the mechanism(s) of action of deep brain stimulation: activation, inhibition, or both. Clin. Neurophysiol. 115:1239–48 [Google Scholar]
  52. Beurrier C, Bioulac B, Audin J, Hammond C. 52.  2001. High-frequency stimulation produces a transient blockade of voltage-gated currents in subthalamic neurons. J. Neurophysiol. 85:1351–56 [Google Scholar]
  53. Dostrovsky J, Levy R, Wu J, Hutchison W, Tasker R, Lozano A. 53.  2000. Microstimulation-induced inhibition of neuronal firing in human globus pallidus. J. Neurophysiol. 84:570–74 [Google Scholar]
  54. Hashimoto T, Elder CM, Okun MS, Patrick SK, Vitek JL. 54.  2003. Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. J. Neurosci. 23:1916–23 [Google Scholar]
  55. Logothetis NK, Augath M, Murayama Y, Rauch A, Sultan F. 55.  et al. 2010. The effects of electrical microstimulation on cortical signal propagation. Nat. Neurosci. 13:1283–91 [Google Scholar]
  56. Kringelbach ML, Green AL, Owen SL, Schweder PM, Aziz TZ. 56.  2010. Sing the mind electric—principles of deep brain stimulation. Eur. J. Neurosci. 32:1070–79 [Google Scholar]
  57. Kringelbach ML, Jenkinson N, Owen SL, Aziz TZ. 57.  2007. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8:623–35 [Google Scholar]
  58. Lehéricy S, Tijssen MA, Vidailhet M, Kaji R, Meunier S. 58.  2013. The anatomical basis of dystonia: current view using neuroimaging. Mov. Disord. 28:944–57 [Google Scholar]
  59. Jankovic J. 59.  2013. Medical treatment of dystonia. Mov. Disord. 28:1001–12 [Google Scholar]
  60. Bittar RG, Yianni J, Wang S, Liu X, Nandi D. 60.  et al. 2005. Deep brain stimulation for generalised dystonia and spasmodic torticollis. J. Clin. Neurosci. 12:12–16 [Google Scholar]
  61. Mera T, Vitek J, Giuffrida J. 61.  2013. Deep brain stimulation programming in Parkinson's disease using functional motor symptom response tuning maps. Mov. Disord. 28:Suppl. S1S439 [Google Scholar]
  62. Miocinovic S, Somayajula S, Chitnis S, Vitek JL. 62.  2013. History, applications, and mechanisms of deep brain stimulation. JAMA Neurol. 70:163–71 [Google Scholar]
  63. Schuurman PR, Bosch DA, Bossuyt PM, Bonsel GJ, Van Someren EJ. 63.  et al. 2000. A comparison of continuous thalamic stimulation and thalamotomy for suppression of severe tremor. N. Engl. J. Med. 342:461–68 [Google Scholar]
  64. Bronstein JM, Tagliati M, Alterman RL, Lozano AM, Volkmann J. 64.  et al. 2011. Deep brain stimulation for Parkinson disease: an expert consensus and review of key issues. Arch. Neurol. 68:165 [Google Scholar]
  65. Betchen S, Kaplitt M. 65.  2003. Future and current surgical therapies in Parkinson's disease. Curr. Opin. Neurol. 16:487–93 [Google Scholar]
  66. de Sousa S, Massano J. 66.  2013. Motor complications in Parkinson's disease: a comprehensive review of emergent management strategies. CNS Neurol. Disord. Drug Targets 12:1017–49 [Google Scholar]
  67. Suthana N, Fried I. 67.  2014. Deep brain stimulation for enhancement of learning and memory. Neuroimage 85:Pt. 3996–1002 [Google Scholar]
  68. Natl. Inst. Neurol. Dis. Stroke (NINDS) 2012. Deep brain stimulation for Parkinson's disease NINDS, Bethesda, MD, updated May 14, 2014. http://www.ninds.nih.gov/disorders/deep_brain_stimulation/deep_brain_stimulation.htm
  69. Holtzheimer PE, Kelley ME, Gross RE. 69.  et al. 2012. Subcallosal cingulate deep brain stimulation for treatment-resistant unipolar and bipolar depression. Arch. Gen. Psychiatry 69:150–58 [Google Scholar]
  70. Hamani C, McAndrews M, Cohn M, Oh M, Zumsteg D. 70.  et al. 2008. Memory enhancement induced by hypothalamic/fornix deep brain stimulation. Ann. Neurol. 63:119–23 [Google Scholar]
  71. Schlaepfer T, Cohen M, Frick C, Kosel M, Brodesser D. 71.  et al. 2008. Deep brain stimulation to reward circuitry alleviates anhedonia in refractory major depression. Neuropsychopharmacology 33:368–77 [Google Scholar]
  72. Laxton AW, Lozano AM. 72.  2013. Deep brain stimulation for the treatment of Alzheimer disease and dementias. World Neurosurg. 80:S28.e1–S28.e8 [Google Scholar]
  73. Zhong XL, Yu JT, Zhang Q, Wang ND, Tan L. 73.  2011. Deep brain stimulation for epilepsy in clinical practice and in animal models. Brain Res. Bull. 85:81–88 [Google Scholar]
  74. Lakhan SE, Callaway E. 74.  2010. Deep brain stimulation for obsessive-compulsive disorder and treatment-resistant depression: systematic review. BMC Res. Notes 3:60 [Google Scholar]
  75. Ooms P, Mantione M, Figee M, Schuurman PR, Van den Munckhof P, Denys D. 75.  2014. Deep brain stimulation for obsessive–compulsive disorders: long-term analysis of quality of life. J. Neurol. Neurosurg. Psychiatry 85:153–58 [Google Scholar]
  76. Faingold CL. 76.  2008. Electrical stimulation therapies for CNS disorders and pain are mediated by competition between different neuronal networks in the brain. Med. Hypotheses 71:668–81 [Google Scholar]
  77. Grover P, Pereira E, Green A, Brittain J, Owen S. 77.  et al. 2009. Deep brain stimulation for cluster headache. J. Clin. Neurosci. 16:861–66 [Google Scholar]
  78. Visser-Vandewalle V, Temel Y, Boon P, Vreeling F, Colle H. 78.  et al. 2003. Chronic bilateral thalamic stimulation: a new therapeutic approach in intractable Tourette syndrome. Report of three cases. J. Neurosurg. 99:1094–100 [Google Scholar]
  79. Porta M, Cavanna AE, Zekaj E, D'Adda F, Servello D. 79.  2013. Selection of patients with Tourette syndrome for deep brain stimulation surgery. Behav. Neurol. 27:125–31 [Google Scholar]
  80. Mayberg H, Lozano A, Voon V, McNeely H, Seminowicz D. 80.  et al. 2005. Deep brain stimulation for treatment-resistant depression. Neuron 45:651–60 [Google Scholar]
  81. Fisher R, Salanova V, Witt T, Worth R, Henry T. 81.  et al. 2010. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia 51:899–908 [Google Scholar]
  82. Lega BC, Halpern CH, Jaggi JL, Baltuch GH. 82.  2010. Deep brain stimulation in the treatment of refractory epilepsy: update on current data and future directions. Neurobiol. Dis. 38:354–60 [Google Scholar]
  83. Chen N, Yan N, Liu C, Ge Y, Zhang J, Meng F. 83.  2013. Neuroprotective effects of electrical stimulation of the anterior nucleus of the thalamus for hippocampus neurons in intractable epilepsy. Med. Hypotheses 80:517–19 [Google Scholar]
  84. Sani S, Jobe K, Smith A, Kordower JH, Bakay RA. 84.  2007. Deep brain stimulation for treatment of obesity in rats. J. Neurosurg. 107:809–13 [Google Scholar]
  85. Halpern CH, Wolf JA, Bale TL, Stunkard AJ, Danish SF. 85.  et al. 2008. Deep brain stimulation in the treatment of obesity. J. Neurosurg. 109:625–34 [Google Scholar]
  86. Sankar T, Tierney TS, Hamani C. 86.  2012. Novel applications of deep brain stimulation. Surg. Neurol. Int. 3:S26–33 [Google Scholar]
  87. Ponce FA, Lozano AM. 87.  2010. Deep brain stimulation state of the art and novel stimulation targets. Prog. Brain Res. 184:311–24 [Google Scholar]
  88. Plonsey R. 88.  2006. Volume conductor theory. Biomedical Engineering Fundamentals JD Bronzino 20–120-8 Boca Raton, FL: CRC [Google Scholar]
  89. Kringelbach M, Jenkinson N, Owen S, Aziz T. 89.  2007. Translational principles of deep brain stimulation. Nat. Rev. Neurosci. 8:623–35 [Google Scholar]
  90. Grill W. 90.  2006. Electrical stimulation of the central nervous system. Biomedical Engineering Fundamentals JD Bronzino 30–130-15 Boca Raton, FL: CRC [Google Scholar]
  91. Bejjani B, Houeto J, Hariz M, Yelnik J, Mesnage V. 91.  et al. 2002. Aggressive behavior induced by intraoperative stimulation in the triangle of Sano. Neurology 59:1425–27 [Google Scholar]
  92. Bejjani B, Damier P, Arnulf I, Thivard L, Bonnet A. 92.  et al. 1999. Transient acute depression induced by high-frequency deep-brain stimulation. N. Engl. J. Med. 340:1476–80 [Google Scholar]
  93. Temel Y, Van Lankveld J, Boon P, Spincemaille G, Van der Linden C, Visser-Vandewalle V. 93.  2004. Deep brain stimulation of the thalamus can influence penile erection. Int. J. Impot. Res. 16:91–94 [Google Scholar]
  94. McConnell GC, Rees HD, Levey AI, Gutekunst C-A, Gross RE, Bellamkonda RV. 94.  2009. Implanted neural electrodes cause chronic, local inflammation that is correlated with local neurodegeneration. J. Neural Eng. 6:056003 [Google Scholar]
  95. Wagner T, Valero-Cabre A, Pascual-Leone A. 95.  2007. Noninvasive human brain stimulation. Annu. Rev. Biomed. Eng. 9:527–65 [Google Scholar]
  96. Dayan E, Censor N, Buch ER, Sandrini M, Cohen LG. 96.  2013. Noninvasive brain stimulation: from physiology to network dynamics and back. Nat. Neurosci. 16:838–44 [Google Scholar]
  97. Ridding MC, Rothwell JC. 97.  2007. Is there a future for therapeutic use of transcranial magnetic stimulation?. Nat. Rev. Neurosci. 8:559–67 [Google Scholar]
  98. Myczkowski ML, Dias ÁM, Luvisotto T, Arnaut D, Bellini BB. 98.  et al. 2012. Effects of repetitive transcranial magnetic stimulation on clinical, social, and cognitive performance in postpartum depression. Neuropsychiatr. Dis. Treat. 8:491–500 [Google Scholar]
  99. Vandermeeren Y. 99.  2011. Noninvasive brain stimulation for stroke(NIBSstroke) Clin. trial NCT01503073, Univ. Hosp. Mont-Godinne, Belg. http://clinicaltrials.gov/show/NCT01503073 [Google Scholar]
  100. Editors 2010. Insights of the decade: stepping away from the trees for a look at the forest. Science 330:60111612–13 [Google Scholar]
  101. Fenno L, Yizhar O, Deisseroth K. 101.  2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412 [Google Scholar]
  102. Deisseroth K. 102.  2010. Optogenetics. Nat. Methods 8:26–29 [Google Scholar]
  103. Towne C, Montgomery K, Iyer S, Deisseroth K, Delp S. 103.  2013. Optogenetic control of targeted peripheral axons in freely moving animals. PLoS ONE 8:8e72691 [Google Scholar]
  104. Natl. Inst. Deaf. Other Commun. Dis. (NIDCD) 2011. Cochlear implants Fact Sheet, NIH Pub. No. 11-4798, NIDCD, Bethesda, MD. https://www.nidcd.nih.gov/staticresources/health/hearing/FactSheetCochlearImplant.pdf
  105. Jellinek S, Scheiber T. 105.  1930. Eine neue Methode des Hoerens [A new method of hearing]. Wien. Klin. Wochenschr. 43:417 [Google Scholar]
  106. Hallpike CS, Hartridge H. 106.  1937. Electrical stimulation of the human cochlea. Nature 139:192 [Google Scholar]
  107. Eisen M. 107.  2003. Djourno, Eyries, and the first implanted electrical neural stimulator to restore hearing. Otol. Neurotol. 24:500–6 [Google Scholar]
  108. Fretz RJ, Fravel RP. 108.  1985. Design and function: a physical and electrical description of the 3M House cochlear implant system. Ear Hear. 6:Suppl. 314S–19S [Google Scholar]
  109. Von Ilberg C, Baumann U, Kiefer J, Tillein J, Adunka O. 109.  2011. Electric-acoustic stimulation of the auditory system: a review of the first decade. Audiol. Neurotol. 16:Suppl. 21–30 [Google Scholar]
  110. Pfingst B, Bowling S, Colesa D, Garadat S, Raphael Y. 110.  et al. 2011. Cochlear infrastructure for electrical hearing. Hear. Res. 281:65–73 [Google Scholar]
  111. Adunka O, Kiefer J. 111.  2005. Wie funktioniert der Sprachprozessor von Cochlea-Implantaten? [How does a cochlear implant speech processor work?]. Laryngo-Rhino-Otologie 84:841–51 [Google Scholar]
  112. Briggs R, Eder H, Seligman P, Cowan R, Plant K. 112.  et al. 2008. Initial clinical experience with a totally implantable cochlear implant research device. Otol. Neurotol. 29:114–19 [Google Scholar]
  113. Gordon KA, Jiwani S, Papsin BC. 113.  2011. What is the optimal timing for bilateral cochlear implantation in children?. Cochlear Implants Int. 12:Suppl. 2S8–14 [Google Scholar]
  114. Papsin B, Gordon K. 114.  2008. Bilateral cochlear implants should be the standard for children with bilateral sensorineural deafness. Curr. Opin. Otolaryngol. Head Neck Surg. 16:69–74 [Google Scholar]
  115. Semenov YR, Martinez-Monedero R, Niparko JK. 115.  2012. Cochlear implants: clinical and societal outcomes. Otolaryngol. Clin. North Am. 45:959–81 [Google Scholar]
  116. Clark JH, Yeagle J, Arbaje AI, Lin FR, Niparko JK, Francis HW. 116.  2012. Cochlear implant rehabilitation in older adults: literature review and proposal of a conceptual framework. J. Am. Geriatr. Soc. 60:1936–45 [Google Scholar]
  117. Moore D, Shannon R. 117.  2009. Beyond cochlear implants: awakening the deafened brain. Nat. Neurosci. 12:686–91 [Google Scholar]
  118. Schwartz M, Otto S, Shannon R, Hitselberger W, Brackmann D. 118.  2008. Auditory brainstem implants. Neurotherapeutics 5:128–36 [Google Scholar]
  119. Battmer R, Linz B, Lenarz T. 119.  2009. A review of device failure in more than 23 years of clinical experience of a cochlear implant program with more than 3,400 implantees. Otol. Neurotol. 30:455–63 [Google Scholar]
  120. Seligman P. 120.  2009. Prototype to product—developing a commercially viable neural prosthesis. J. Neural Eng. 6:065006 [Google Scholar]
  121. Fallon J, Irvine D, Shepherd R. 121.  2009. Neural prostheses and brain plasticity. J. Neural Eng. 6:065008 [Google Scholar]
  122. Ifukube T. 122.  2009. Artificial organs: recent progress in artificial hearing and vision. J. Artif. Organs 12:8–16 [Google Scholar]
  123. Swan EEL, Mescher MJ, Sewell WF, Tao SL, Borenstein JT. 123.  2008. Inner ear drug delivery for auditory applications. Adv. Drug Deliv. Rev. 60:1583–99 [Google Scholar]
  124. Mannoor M, Jiang Z, James T, Kong Y, Malatesta K. 124.  et al. 2013. 3D printed bionic ears. Nano Lett. 13:2634–39 [Google Scholar]
  125. Sekirnjak C, Hottowy P, Sher A, Dabrowski W, Litke A, Chichilnisky E. 125.  2008. High-resolution electrical stimulation of primate retina for epiretinal implant design. J. Neurosci. 28:4446–56 [Google Scholar]
  126. Galvani L. 126.  1791. De viribus electricitatis in motu musculari commentarius [Effect of electricity on muscular motion]. Bononiensi Sci. Artium Inst. Atque Acad. Commentarii 7:363–418 [Google Scholar]
  127. Tassicker G. 127.  1956. Preliminary report on a retinal stimulator. Br. J. Physiol. Opt. 13:102–5 [Google Scholar]
  128. Button J, Putnam T. 128.  1962. Visual responses to cortical stimulation in the blind. J. Iowa State Med. Soc. 52:17–21 [Google Scholar]
  129. Gerding H. 129.  2007. A new approach towards a minimal invasive retina implant. J. Neural Eng. 4:S30–37 [Google Scholar]
  130. Loudin J, Simanovskii D, Vijayraghavan K, Sramek C, Butterwick A. 130.  et al. 2007. Optoelectronic retinal prosthesis: system design and performance. J. Neural Eng. 4:S72–84 [Google Scholar]
  131. Maynard E. 131.  2001. Visual prostheses. Annu. Rev. Biomed. Eng. 3:145–68 [Google Scholar]
  132. Eiber C, Lovell N, Suaning G. 132.  2013. Attaining higher resolution visual prosthetics: a review of the factors and limitations. J. Neural Eng. 10:011002 [Google Scholar]
  133. Thomson EE, Carra R, Nicolelis MA. 133.  2013. Perceiving invisible light through a somatosensory cortical prosthesis. Nat. Commun. 4:1482 [Google Scholar]
  134. Fernández E, Pelayo F, Romero S, Bongard M, Marin C. 134.  et al. 2005. Development of a cortical visual neuroprosthesis for the blind: the relevance of neuroplasticity. J. Neural Eng. 2:R1–12 [Google Scholar]
  135. Cohen E. 135.  2007. Prosthetic interfaces with the visual system: biological issues. J. Neural Eng. 4:R14–31 [Google Scholar]
  136. Corredor R, Goldberg J. 136.  2009. Electrical activity enhances neuronal survival and regeneration. J. Neural Eng. 6:055001 [Google Scholar]
  137. Silverthorn DU, Ober W, Garrison C, Silverthorn A. 137.  2001. The immune system. Human Physiology: An Integrated Approach685–715 Upper Saddle River, NJ: Prentice Hall [Google Scholar]
  138. Sofroniew MV, Vinters HV. 138.  2010. Astrocytes: biology and pathology. Acta Neuropathol. 119:7–35 [Google Scholar]
  139. Silver J, Miller JH. 139.  2004. Regeneration beyond the glial scar. Nat. Rev. Neurosci. 5:146–56 [Google Scholar]
  140. Faulkner JR, Herrmann JE, Woo MJ, Tansey KE, Doan NB, Sofroniew MV. 140.  2004. Reactive astrocytes protect tissue and preserve function after spinal cord injury. J. Neurosci. 24:2143–55 [Google Scholar]
  141. Stokols S, Tuszynski MH. 141.  2006. Freeze-dried agarose scaffolds with uniaxial channels stimulate and guide linear axonal growth following spinal cord injury. Biomaterials 27:443–51 [Google Scholar]
  142. Stokols S, Tuszynski MH. 142.  2004. The fabrication and characterization of linearly oriented nerve guidance scaffolds for spinal cord injury. Biomaterials 25:5839–46 [Google Scholar]
  143. Novikov LN, Novikova LN, Mosahebi A, Wiberg M, Terenghi G, Kellerth JO. 143.  2002. A novel biodegradable implant for neuronal rescue and regeneration after spinal cord injury. Biomaterials 23:3369–76 [Google Scholar]
  144. Teng YD, Lavik EB, Qu X, Park KI, Ourednik J. 144.  et al. 2002. Functional recovery following traumatic spinal cord injury mediated by a unique polymer scaffold seeded with neural stem cells. Proc. Natl. Acad. Sci. USA 99:3024–29 [Google Scholar]
  145. Grill R, Murai K, Blesch A, Gage F, Tuszynski M. 145.  1997. Cellular delivery of neurotrophin-3 promotes corticospinal axonal growth and partial functional recovery after spinal cord injury. J. Neurosci. 17:5560–72 [Google Scholar]
  146. Wrathall JR, Lytle JM. 146.  2008. Stem cells in spinal cord injury. Dis. Markers 24:239–50 [Google Scholar]
  147. McDonald JW, Liu X-Z, Qu Y, Liu S, Mickey SK. 147.  et al. 1999. Transplanted embryonic stem cells survive, differentiate and promote recovery in injured rat spinal cord. Nat. Med. 5:1410–12 [Google Scholar]
  148. Keirstead HS, Nistor G, Bernal G, Totoiu M, Cloutier F. 148.  et al. 2005. Human embryonic stem cell-derived oligodendrocyte progenitor cell transplants remyelinate and restore locomotion after spinal cord injury. J. Neurosci. 25:4694–705 [Google Scholar]
  149. Iwanami A, Kaneko S, Nakamura M, Kanemura Y, Mori H. 149.  et al. 2005. Transplantation of human neural stem cells for spinal cord injury in primates. J. Neurosci. Res. 80:182–90 [Google Scholar]
  150. Cummings BJ, Uchida N, Tamaki SJ, Salazar DL, Hooshmand M. 150.  et al. 2005. Human neural stem cells differentiate and promote locomotor recovery in spinal cord-injured mice. Proc. Natl. Acad. Sci. USA 102:14069–74 [Google Scholar]
  151. Tsuji O, Miura K, Okada Y, Fujiyoshi K, Mukaino M. 151.  et al. 2010. Therapeutic potential of appropriately evaluated safe-induced pluripotent stem cells for spinal cord injury. Proc. Natl. Acad. Sci. USA 107:12704–9 [Google Scholar]
  152. Short D, El Masry W, Jones P. 152.  2000. High dose methylprednisolone in the management of acute spinal cord injury: a systematic review from a clinical perspective. Spinal Cord 38:273–86 [Google Scholar]
  153. Bracken MB. 153.  2002. Steroids for acute spinal cord injury. Cochrane Database Syst. Rev. 3:3 [Google Scholar]
  154. Bracken MB, Shepard MJ, Collins WF, Holford TR, Young W. 154.  et al. 1990. A randomized, controlled trial of methylprednisolone or naloxone in the treatment of acute spinal-cord injury: results of the Second National Acute Spinal Cord Injury Study. N. Engl. J. Med. 322:1405–11 [Google Scholar]
  155. Jain A, Kim YT, McKeon RJ, Bellamkonda RV. 155.  2006. In situ gelling hydrogels for conformal repair of spinal cord defects, and local delivery of BDNF after spinal cord injury. Biomaterials 27:497–504 [Google Scholar]
  156. Taylor SJ, McDonald JW III, Sakiyama-Elbert SE. 156.  2004. Controlled release of neurotrophin-3 from fibrin gels for spinal cord injury. J. Control. Release 98:281–94 [Google Scholar]
  157. Johnson PJ, Parker SR, Sakiyama-Elbert SE. 157.  2009. Controlled release of neurotrophin-3 from fibrin-based tissue engineering scaffolds enhances neural fiber sprouting following subacute spinal cord injury. Biotechnol. Bioeng. 104:1207–14 [Google Scholar]
  158. Bradbury EJ, Moon LD, Popat RJ, King VR, Bennett GS. 158.  et al. 2002. Chondroitinase ABC promotes functional recovery after spinal cord injury. Nature 416:636–40 [Google Scholar]
  159. Widenfalk J, Lipson A, Jubran M, Hofstetter C, Ebendal T. 159.  et al. 2003. Vascular endothelial growth factor improves functional outcome and decreases secondary degeneration in experimental spinal cord contusion injury. Neuroscience 120:951–60 [Google Scholar]
  160. McDonald JW, Sadowsky C. 160.  2002. Spinal-cord injury. Lancet 359:417–25 [Google Scholar]
  161. Jones LL, Oudega M, Bunge MB, Tuszynski MH. 161.  2001. Neurotrophic factors, cellular bridges and gene therapy for spinal cord injury. J. Physiol. 533:83–89 [Google Scholar]
  162. Tetzlaff W, Okon EB, Karimi-Abdolrezaee S, Hill CE, Sparling JS. 162.  et al. 2011. A systematic review of cellular transplantation therapies for spinal cord injury. J. Neurotrauma 28:1611–82 [Google Scholar]
  163. Sahni V, Kessler JA. 163.  2010. Stem cell therapies for spinal cord injury. Nat. Rev. Neurol. 6:363–72 [Google Scholar]
  164. Kwon BK, Okon E, Hillyer J, Mann C, Baptiste D. 164.  et al. 2011. A systematic review of non-invasive pharmacologic neuroprotective treatments for acute spinal cord injury. J. Neurotrauma 28:1545–88 [Google Scholar]
  165. Kwon BK, Okon EB, Plunet W, Baptiste D, Fouad K. 165.  et al. 2011. A systematic review of directly applied biologic therapies for acute spinal cord injury. J. Neurotrauma 28:1589–610 [Google Scholar]
  166. Kantrowitz A. 166.  1960. Functioning autogenous muscle used experimentally as an auxiliary ventricle. ASAIO J. 6:305–7 [Google Scholar]
  167. Popovic M, Curt A, Keller T, Dietz V. 167.  2001. Functional electrical stimulation for grasping and walking: indications and limitations. Spinal Cord 39:403–12 [Google Scholar]
  168. Snoek G, IJzerman M, Stoffers T, Zilvold G. 168.  2000. Use of the NESS Handmaster to restore handfunction in tetraplegia: clinical experiences in ten patients. Spinal Cord 38:244–49 [Google Scholar]
  169. Alon G, McBride K. 169.  2003. Persons with C5 or C6 tetraplegia achieve selected functional gains using a neuroprosthesis. Arch. Phys. Med. Rehab. 84:119–24 [Google Scholar]
  170. Prochazka A, Gauthier M, Wieler M, Kenwell Z. 170.  1997. The bionic glove: an electrical stimulator garment that provides controlled grasp and hand opening in quadriplegia. Arch. Phys. Med. Rehabil. 78:608–14 [Google Scholar]
  171. Peckham PH, Knutson JS. 171.  2005. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–60 [Google Scholar]
  172. Handa Y, Hoshimiya N. 172.  1987. Functional electrical stimulation for the control of the upper extremities. Med. Prog. Technol. 12:51–63 [Google Scholar]
  173. Handa Y, Handa T, Ichie M, Murakami H, Hoshimiya N. 173.  et al. 1991. Functional electrical stimulation (FES) systems for restoration of motor function of paralyzed muscles—versatile systems and a portable system. Front. Med. Biol. Eng. 4:241–55 [Google Scholar]
  174. Knutson JS, Naples GG, Peckham PH, Keith MW. 174.  2002. Electrode fracture rates and occurrences of infection and granuloma associated with percutaneous intramuscular electrodes in upper-limb functional electrical stimulation applications. J. Rehabil. Res. Dev. 39:671–84 [Google Scholar]
  175. Peckham PH, Knutson JS. 175.  2005. Functional electrical stimulation for neuromuscular applications. Annu. Rev. Biomed. Eng. 7:327–60 [Google Scholar]
  176. Keith MW, Peckham PH, Thrope GB, Stroh KC, Smith B. 176.  et al. 1989. Implantable functional neuromuscular stimulation in the tetraplegic hand. J. Hand Surg. 14:524–30 [Google Scholar]
  177. Smith B, Peckham PH, Keith MW, Roscoe DD. 177.  1987. An externally powered, multichannel, implantable stimulator for versatile control of paralyzed muscle. IEEE Trans. Biomed. Eng. 34:499–508 [Google Scholar]
  178. Johnson MW, Peckham PH, Bhadra N, Kilgore KL, Gazdik MM. 178.  et al. 1999. Implantable transducer for two-degree of freedom joint angle sensing. IEEE Trans. Rehabil. Eng. 7:349–59 [Google Scholar]
  179. Mulcahey M, Betz RR, Smith BT, Weiss AA, Davis SE. 179.  1997. Implanted functional electrical stimulation hand system in adolescents with spinal injuries: an evaluation. Arch. Phys. Med. Rehabil. 78:597–607 [Google Scholar]
  180. Hobby J, Taylor P, Esnouf J. 180.  2001. Restoration of tetraplegic hand function by use of the neurocontrol Freehand System. J. Hand Surg. Br. 26:459–64 [Google Scholar]
  181. Cornwall R, Hausman MR. 181.  2004. Implanted neuroprostheses for restoration of hand function in tetraplegic patients. J. Am. Acad. Orthop. Surg. 12:72–79 [Google Scholar]
  182. Liberson W, Holmquest H. 182.  1961. Functional electrotherapy: stimulation of the peroneal nerve synchronized with the swing phase of the gait of hemiplegic patients. Arch. Phys. Med. Rehabil. 42:101–5 [Google Scholar]
  183. Burridge J, Taylor P, Hagan S, Swain I. 183.  1997. Experience of clinical use of the Odstock dropped foot stimulator. Artif. Organs 21:254–60 [Google Scholar]
  184. Lyons GM, Sinkjaer T, Burridge JH, Wilcox DJ. 184.  2002. A review of portable FES-based neural orthoses for the correction of drop foot. IEEE Trans. Neural Syst. Rehabil. Eng. 10:260–79 [Google Scholar]
  185. Taylor PN, Burridge JH, Dunkerley AL, Wood DE, Norton JA. 185.  et al. 1999. Clinical use of the Odstock dropped foot stimulator: its effect on the speed and effort of walking. Arch. Phys. Med. Rehabil. 80:1577–83 [Google Scholar]
  186. Hansen M, Haugland MK, Sinkjaer T. 186.  2004. Evaluating robustness of gait event detection based on machine learning and natural sensors. IEEE Trans. Rehabil. Eng. 12:81–88 [Google Scholar]
  187. Swain ID, Mann GE, Taylor PN, Wood DE, Wright PA. 187.  2003. Clinical use of FES to improve walking in people with multiple sclerosis. Proc. 8th Annu. Conf. Int. Funct. Electr. Stimul. Soc., Maroochydore, Aust., July 1–5. http://ifess.org/proceedings/IFESS2003/IFESS2003_010_Swain.pdf [Google Scholar]
  188. Wieler M, Stein RB, Ladouceur M, Whittaker M, Smith AW. 188.  et al. 1999. Multicenter evaluation of electrical stimulation systems for walking. Arch. Phys. Med. Rehabil. 80:495–500 [Google Scholar]
  189. Kottink AI, Hermens HJ, Nene AV, Tenniglo MJ, Van der Aa HE. 189.  et al. 2007. A randomized controlled trial of an implantable 2-channel peroneal nerve stimulator on walking speed and activity in poststroke hemiplegia. Arch. Phys. Med. Rehabil. 88:971–78 [Google Scholar]
  190. Kenney L, Bultstra G, Buschman R, Taylor P, Mann G. 190.  et al. 2002. An implantable two channel drop foot stimulator: initial clinical results. Artif. Organs 26:267–70 [Google Scholar]
  191. Van der Aa H, Bultstra G, Verloop A, Kenney L, Holsheimer J. 191.  et al. 2002. Application of a dual channel peroneal nerve stimulator in a patient with a “central” drop foot. Acta Neurochi. Suppl. 79:105–7 [Google Scholar]
  192. Taylor P, Mann G, Wood D, Hobby J. 192.  2003. Pilot study to evaluate the safety and efficacy of an implanted dropped foot stimulator (IMPULSE). Proc. 8th Annu. Conf. Int. Funct. Electr. Stimul. Soc., Maroochydore, Aust., July 1–5 http://ifess.org/proceedings/IFESS2003/IFESS2003_044_Taylor.pdf [Google Scholar]
  193. Sheffler LR, Taylor PN, Bailey SN, Gunzler DD, Buurke JH. 193.  et al. 2013. Effect of post-stroke ambulation training with surface peroneal nerve stimulation versus usual care using quantitative gait analysis. PM&R 5:Suppl.S130 [Google Scholar]
  194. Sheffler LR, Bailey SN, Wilson RD, Chae J. 194.  2013. Spatiotemporal, kinematic, and kinetic effects of a peroneal nerve stimulator versus an ankle foot orthosis in hemiparetic gait. Neurorehabil. Neural Repair 27:403–10 [Google Scholar]
  195. Popovic MR, Keller T. 195.  2005. Modular transcutaneous functional electrical stimulation system. Med. Eng. Phys. 27:81–92 [Google Scholar]
  196. Popovic MR, Thrasher TA, Adams M, Takes V, Zivanovic V, Tonack MI. 196.  2005. Functional electrical therapy: retraining grasping in spinal cord injury. Spinal Cord 44:143–51 [Google Scholar]
  197. Lynch CL, Popovic MR. 197.  2008. Functional electrical stimulation. IEEE Control Syst. 28:40–50 [Google Scholar]
  198. Lissy D, Kukke S. 198.  2001. Preliminary performance of a surgically implanted neuroprosthesis for standing and transfers—Where do we stand?. Development 38:609–17 [Google Scholar]
  199. Davis JA Jr, Triolo RJ, Uhlir JP, Bhadra N, Lissy DA. 199.  et al. 2001. Surgical technique for installing an eight-channel neuroprosthesis for standing. Clin. Orthop. Relat. Res. 385:237–52 [Google Scholar]
  200. Solomonow M, Aguilar E, Reisin E, Baratta R, Best R. 200.  et al. 1997. Reciprocating gait orthosis powered with electrical muscle stimulation (RGO II). Part I: Performance evaluation of 70 paraplegic patients. Orthopedics 20:315–24 [Google Scholar]
  201. Stein RB, Peckham PH, Popović D. 201.  1992. Neural Prostheses: Replacing Motor Function After Disease or Disability New York: Oxford Univ. Press
  202. Graupe D, Kohn KH. 202.  1998. Functional neuromuscular stimulator for short-distance ambulation by certain thoracic-level spinal-cord-injured paraplegics. Surg. Neurol. 50:202–7 [Google Scholar]
  203. Martin R, Sadowsky C, Obst K, Meyer B, McDonald J. 203.  2012. Functional electrical stimulation in spinal cord injury: from theory to practice. Top. Spinal Cord Inj. Rehabil. 18:28–33 [Google Scholar]
  204. Navarro X, Krueger TB, Lago N, Micera S, Stieglitz T, Dario P. 204.  2005. A critical review of interfaces with the peripheral nervous system for the control of neuroprostheses and hybrid bionic systems. J. Peripher. Nerv. Syst. 10:229–58 [Google Scholar]
  205. Kilgore KL, Peckham PH, Keith MW, Montague FW, Hart RL. 205.  et al. 2003. Durability of implanted electrodes and leads in an upper-limb neuroprosthesis. J. Rehabil. Res. Dev. 40:457–68 [Google Scholar]
  206. Memberg WD, Peckham PH, Keith M. 206.  1994. A surgically-implanted intramuscular electrode for an implantable neuromuscular stimulation system. IEEE Trans. Rehabil. Eng. 2:80–91 [Google Scholar]
  207. Ragnarsson K. 207.  2007. Functional electrical stimulation after spinal cord injury: current use, therapeutic effects and future directions. Spinal Cord 46:255–74 [Google Scholar]
  208. Dietz V, Nef T, Rymer WZ. 208.  2012. Neurorehabilitation Technology London: Springer485
  209. del-Ama AJ, Koutsou AD, Moreno JC, de-los-Reyes A, Gil-Agudo A, Pons JL. 209.  2012. Review of hybrid exoskeletons to restore gait following spinal cord injury. J. Rehabil. Res. Dev. 49:497–514 [Google Scholar]
  210. Esquenazi A, Talaty M, Packel A, Saulino M. 210.  2012. The ReWalk powered exoskeleton to restore ambulatory function to individuals with thoracic-level motor-complete spinal cord injury. Am. J. Phys. Med. Rehabil. 91:911–21 [Google Scholar]
  211. Kobetic R, To CS, Schnellenberger JR, Audu ML, Bulea TC. 211.  et al. 2009. Development of hybrid orthosis for standing, walking, and stair climbing after spinal cord injury. J. Rehabil. Res. Dev. 46:447–62 [Google Scholar]
  212. Ferris DP, Czerniecki JM, Hannaford B. 212.  2005. An ankle-foot orthosis powered by artificial pneumatic muscles. J. Appl. Biomech. 21:189 [Google Scholar]
  213. Carmena JM. 213.  2013. Advances in neuroprosthetic learning and control. PLoS Biol. 11:e1001561 [Google Scholar]
  214. Bamford JA, Mushahwar VK. 214.  2011. Intraspinal microstimulation for the recovery of function following spinal cord injury. Prog. Brain Res. 194:227–39 [Google Scholar]
  215. Bamford JA, Putman CT, Mushahwar VK. 215.  2011. Muscle plasticity in rat following spinal transection and chronic intraspinal microstimulation. IEEE Trans. Neural Syst. Rehabil. Eng. 19:79–83 [Google Scholar]
  216. Mushahwar VK, Collins DF, Prochazka A. 216.  2000. Spinal cord microstimulation generates functional limb movements in chronically implanted cats. Exp. Neurol. 163:422–29 [Google Scholar]
  217. Mushahwar VK, Horch KW. 217.  2000. Muscle recruitment through electrical stimulation of the lumbo-sacral spinal cord. IEEE Trans. Rehabil. Eng. 8:22–29 [Google Scholar]
  218. Mushahwar VK, Horch KW. 218.  2000. Selective activation of muscle groups in the feline hindlimb through electrical microstimulation of the ventral lumbo-sacral spinal cord. IEEE Trans. Rehabil. Eng. 8:11–21 [Google Scholar]
  219. Mushahwar VK, Gillard DM, Gauthier MJ, Prochazka A. 219.  2002. Intraspinal micro stimulation generates locomotor-like and feedback-controlled movements. IEEE Trans. Neural Syst. Rehabil. Eng. 10:68–81 [Google Scholar]
  220. Cogan S. 220.  2008. Neural stimulation and recording electrodes. Annu. Rev. Biomed. Eng. 10:275–309 [Google Scholar]
  221. Cogan SF, Guzelian AA, Agnew WF, Yuen TG, McCreery DB. 221.  2004. Over-pulsing degrades activated iridium oxide films used for intracortical neural stimulation. J. Neurosci. Methods 137:141–50 [Google Scholar]
  222. Borgens RB, Jaffe LF, Cohen MJ. 222.  1980. Large and persistent electrical currents enter the transected lamprey spinal cord. Proc. Natl. Acad. Sci. USA 77:1209–13 [Google Scholar]
  223. Borgens RB, Roederer E, Cohen MJ. 223.  1981. Enhanced spinal cord regeneration in lamprey by applied electric fields. Science 213:611–17 [Google Scholar]
  224. Borgens RB, Callahan L, Rouleau M. 224.  1987. Anatomy of axolotl flank integument during limb bud development with special reference to a transcutaneous current predicting limb formation. J. Exp. Zool. 244:203–14 [Google Scholar]
  225. Borgens RB, Toombs JP, Blight AR, McGinnis ME, Bauer MS. 225.  et al. 1993. Effects of applied electric fields on clinical cases of complete paraplegia in dogs. Restor. Neurol. Neurosci. 5:305–22 [Google Scholar]
  226. Borgens RB, Blight AR, Murphy D, Stewart L. 226.  1986. Transected dorsal column axons within the guinea pig spinal cord regenerate in the presence of an applied electric field. J. Comp. Neurol. 250:168–80 [Google Scholar]
  227. Borgens RB, Toombs JP, Breur G, Widmer WR, Waters D. 227.  et al. 1999. An imposed oscillating electrical field improves the recovery of function in neurologically complete paraplegic dogs. J. Neurotrauma 16:639–57 [Google Scholar]
  228. Shapiro S, Borgens R, Pascuzzi R, Roos K, Groff M. 228.  et al. 2005. Oscillating field stimulation for complete spinal cord injury in humans: a Phase 1 trial. J. Neurosurg. Spine 2:3–10 [Google Scholar]
  229. Shapiro S. 229.  2012. A review of oscillating field stimulation to treat human spinal cord injury. World Neurosurg. In press. doi:10.1016/j.wneu.2012.11.039
  230. Al-Majed AA, Brushart TM, Gordon T. 230.  2000. Electrical stimulation accelerates and increases expression of BDNF and trkB mRNA in regenerating rat femoral motoneurons. Eur. J. Neurosci. 12:4381–90 [Google Scholar]
  231. Al-Majed AA, Neumann CM, Brushart TM, Gordon T. 231.  2000. Brief electrical stimulation promotes the speed and accuracy of motor axonal regeneration. J. Neurosci. 20:2602–8 [Google Scholar]
  232. Ahlborn P, Schachner M, Irintchev A. 232.  2007. One hour electrical stimulation accelerates functional recovery after femoral nerve repair. Exp. Neurol. 208:137–44 [Google Scholar]
  233. Geremia NM, Gordon T, Brushart TM, Al-Majed AA, Verge VM. 233.  2007. Electrical stimulation promotes sensory neuron regeneration and growth-associated gene expression. Exp. Neurol. 205:347–59 [Google Scholar]
  234. Brushart TM, Jari R, Verge V, Rohde C, Gordon T. 234.  2005. Electrical stimulation restores the specificity of sensory axon regeneration. Exp. Neurol. 194:221–29 [Google Scholar]
  235. Gordon T, Brushart TM, Chan KM. 235.  2008. Augmenting nerve regeneration with electrical stimulation. Neurol. Res. 30:1012–22 [Google Scholar]
  236. Gordon T, Amirjani N, Edwards DC, Chan KM. 236.  2010. Brief post-surgical electrical stimulation accelerates axon regeneration and muscle reinnervation without affecting the functional measures in carpal tunnel syndrome patients. Exp. Neurol. 223:192–202 [Google Scholar]
  237. Ingvar S. 237.  1920. Reaction of cells to the galvanic current in tissue cultures. Proc. Soc. Exp. Biol. Med. 17:198–99 [Google Scholar]
  238. Jaffe LF, Poo MM. 238.  1979. Neurites grow faster towards the cathode than the anode in a steady field. J. Exp. Zool. 209:115–28 [Google Scholar]
  239. McCaig CD. 239.  1990. Nerve branching is induced and oriented by a small applied electric field. J. Cell Sci. 95:Pt. 4605–15 [Google Scholar]
  240. Cork RJ, McGinnis ME, Tsai J, Robinson KR. 240.  1994. The growth of PC12 neurites is biased towards the anode of an applied electrical field. J. Neurobiol. 25:1509–16 [Google Scholar]
  241. Hinkle L, McCaig CD, Robinson KR. 241.  1981. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 314:121–35 [Google Scholar]
  242. Wood MD, Willits RK. 242.  2009. Applied electric field enhances DRG neurite growth: influence of stimulation media, surface coating and growth supplements. J. Neural Eng. 6:046003 [Google Scholar]
  243. Cormie P, Robinson KR. 243.  2007. Embryonic zebrafish neuronal growth is not affected by an applied electric field in vitro. Neurosci. Lett. 411:128–32 [Google Scholar]
  244. Patel N, Poo MM. 244.  1982. Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2:483–96 [Google Scholar]
  245. Robinson KR, Cormie P. 245.  2008. Electric field effects on human spinal injury: Is there a basis in the in vitro studies?. Dev. Neurobiol. 68:274–80 [Google Scholar]
  246. Rajnicek AM, Gow NA, McCaig CD. 246.  1992. Electric field-induced orientation of rat hippocampal neurones in vitro. Exp. Physiol. 77:229–32 [Google Scholar]
  247. Davenport RW, McCaig CD. 247.  1993. Hippocampal growth cone responses to focally applied electric fields. J. Neurobiol. 24:89–100 [Google Scholar]
  248. Yao L, McCaig CD, Zhao M. 248.  2009. Electrical signals polarize neuronal organelles, direct neuron migration, and orient cell division. Hippocampus 19:855–68 [Google Scholar]
  249. Henrich-Noack P, Voigt N, Prilloff S, Fedorov A, Sabel B. 249.  2013. Transcorneal electrical stimulation alters morphology and survival of retinal ganglion cells after optic nerve damage. Neurosci. Lett. 543:1–6 [Google Scholar]
  250. McCaig CD. 250.  1986. Electric fields, contact guidance and the direction of nerve growth. J. Embryol. Exp. Morphol. 94:245–55 [Google Scholar]
  251. Rajnicek AM, Robinson KR, McCaig CD. 251.  1998. The direction of neurite growth in a weak DC electric field depends on the substratum: contributions of adhesivity and net surface charge. Dev. Biol. 203:412–23 [Google Scholar]
  252. Schmidt CE, Shastri VR, Vacanti JP, Langer R. 252.  1997. Stimulation of neurite outgrowth using an electrically conducting polymer. Proc. Natl. Acad. Sci. USA 94:8948–53 [Google Scholar]
  253. Lee JY, Bashur CA, Goldstein AS, Schmidt CE. 253.  2009. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–35 [Google Scholar]
  254. Jaffe L. 254.  1977. Electrophoresis along cell membranes. Nature 265:600–2 [Google Scholar]
  255. Poo M, Robinson K. 255.  1977. Electrophoresis of concanavalin-A receptors along embryonic muscle-cell membrane. Nature 265:602–5 [Google Scholar]
  256. Stewart R, Erskine L, McCaig C. 256.  1995. Calcium channel subtypes and intracellular calcium stores modulate electric field-stimulated and field-oriented nerve growth. Dev. Biol. 171:340–51 [Google Scholar]
  257. McCaig C, Sangster L, Stewart R. 257.  2000. Neurotrophins enhance electric field-directed growth cone guidance and directed nerve branching. Dev. Dyn. 217:299–308 [Google Scholar]
  258. Rajnicek A, McCaig C. 258.  2001. cAMP and protein kinase A signaling underlie growth cone turning in a physiological electric field. Proc. Soc. Neurosci. Abstr. 27:795.19 [Google Scholar]
  259. Song B, Zhao M, Forrester J, McCaig C. 259.  2000. Wound-induced electric fields promote early sprouting of corneal nerves. J. Physiol. 528:79P [Google Scholar]
  260. Rajnicek AM, Foubister LE, McCaig CD. 260.  2006. Temporally and spatially coordinated roles for Rho, Rac, Cdc42 and their effectors in growth cone guidance by a physiological electric field. J. Cell Sci. 119:1723–35 [Google Scholar]
  261. Rajnicek AM, Foubister LE, McCaig CD. 261.  2006. Growth cone steering by a physiological electric field requires dynamic microtubules, microfilaments and Rac-mediated filopodial asymmetry. J. Cell Sci. 119:1736–45 [Google Scholar]
  262. McCaig C, Song B, Rajnicek A. 262.  2009. Electrical dimensions in cell science. J. Cell Sci. 122:4267–76 [Google Scholar]
  263. Huang J, Ye Z, Hu X, Lu L, Luo Z. 263.  2010. Electrical stimulation induces calcium-dependent release of NGF from cultured Schwann cells. Glia 58:622–31 [Google Scholar]
  264. Huang J, Lu L, Zhang J, Hu X, Zhang Y. 264.  et al. 2012. Electrical stimulation to conductive scaffold promotes axonal regeneration and remyelination in a rat model of large nerve defect. PLoS ONE 7:e39526 [Google Scholar]
  265. Seggio A, Narayanaswamy A, Roysam B, Thompson DM. 265.  2010. Local orientation of Schwann cells directs neurite outgrowth. J. Neural Eng. 7:046001 [Google Scholar]
  266. Martini R, Xin Y, Schachner M. 266.  1994. Restricted localization of L1 and N-CAM at sites of contact between Schwann cells and neurites in culture. Glia 10:70–74 [Google Scholar]
  267. Seilheimer B, Persohn E, Schachner M. 267.  1989. Antibodies to the L1 adhesion molecule inhibit Schwann cell ensheathment of neurons in vitro. J. Cell Biol. 109:3095–103 [Google Scholar]
  268. Seilheimer B, Persohn E, Schachner M. 268.  1989. Neural cell adhesion molecule expression is regulated by Schwann cell-neuron interactions in culture. J. Cell Biol. 108:1909–15 [Google Scholar]
  269. Ard M, Bunge R, Bunge M. 269.  1987. Comparison of the Schwann cell surface and Schwann cell extracellular matrix as promoters of neurite growth. J. Neurocytol. 16:539–55 [Google Scholar]
  270. Bunge RP. 270.  1987. Tissue culture observations relevant to the study of axon–Schwann cell interactions during peripheral nerve development and repair. J. Exp. Biol. 132:21–34 [Google Scholar]
  271. Bunge MB, Bunge RP, Kleitman N, Dean AC. 271.  1989. Role of peripheral nerve extracellular matrix in Schwann cell function and in neurite regeneration. Dev. Neurosci. 11:348–60 [Google Scholar]
  272. Bunge RP. 272.  1991. Schwann cells in central regeneration. Ann. N.Y. Acad. Sci. 633:229–33 [Google Scholar]
  273. Eldridge CF, Bunge MB, Bunge RP, Wood PM. 273.  1987. Differentiation of axon-related Schwann cells in vitro. I. Ascorbic acid regulates basal lamina assembly and myelin formation. J. Cell Biol. 105:1023–34 [Google Scholar]
  274. Huang J, Hu X, Lu L, Ye Z, Zhang Q, Luo Z. 274.  2010. Electrical regulation of Schwann cells using conductive polypyrrole/chitosan polymers. J. Biomed. Mater. Res. A 93:164–74 [Google Scholar]
  275. Huang L, Cormie P, Messerli MA, Robinson KR. 275.  2009. The involvement of Ca2+ and integrins in directional responses of zebrafish keratocytes to electric fields. J. Cell Physiol. 219:162–72 [Google Scholar]
  276. McKasson MJ, Huang L, Robinson KR. 276.  2008. Chick embryonic Schwann cells migrate anodally in small electrical fields. Exp. Neurol. 211:585–87 [Google Scholar]
  277. Pierret P, Quenneville N, Vandaele S, Abbaszadeh R, Doucet G. 277.  et al. 1998. Trophic and tropic effects of striatal astrocytes on cografted mesencephalic dopamine neurons and their axons. J. Neurosci. Res. 51:23–40 [Google Scholar]
  278. Gomes F, Spohr T, Martinez R, Moura Neto V. 278.  2001. Cross-talk between neurons and glia: highlights on soluble factors. Braz. J. Med. Biol. Res. 34:611–20 [Google Scholar]
  279. Ishibashi T, Dakin K, Stevens B, Lee P, Kozlov S. 279.  et al. 2006. Astrocytes promote myelination in response to electrical impulses. Neuron 49:823–32 [Google Scholar]
  280. Borgens RB, Shi R, Mohr TJ, Jaeger CB. 280.  1994. Mammalian cortical astrocytes align themselves in a physiological voltage gradient. Exp. Neurol. 128:41–49 [Google Scholar]
  281. Alexander JK, Fuss B, Colello RJ. 281.  2006. Electric field-induced astrocyte alignment directs neurite outgrowth. Neuron Glia Biol. 2:93–103 [Google Scholar]
  282. Neugebauer KM, Tomaselli KJ, Lilien J, Reichardt LF. 282.  1988. N-cadherin, NCAM, and integrins promote retinal neurite outgrowth on astrocytes in vitro. J. Cell Biol. 107:1177–87 [Google Scholar]
  283. Bakiri Y, Attwell D, Karadottir R. 283.  2009. Electrical signalling properties of oligodendrocyte precursor cells. Neuron Glia Biol. 5:3–11 [Google Scholar]
  284. Fields RD. 284.  2008. Oligodendrocytes changing the rules: action potentials in glia and oligodendrocytes controlling action potentials. Neuroscientist 14:540–43 [Google Scholar]
  285. Gary D, Malone M, Capestany P, Houdayer T, McDonald J. 285.  2012. Electrical stimulation promotes the survival of oligodendrocytes in mixed cortical cultures. J. Neurosci. Res. 90:72–83 [Google Scholar]
  286. Guenard V, Kleitman N, Morrissey TK, Bunge RP, Aebischer P. 286.  1992. Syngeneic Schwann cells derived from adult nerves seeded in semipermeable guidance channels enhance peripheral nerve regeneration. J. Neurosci. 12:3310–20 [Google Scholar]
  287. Hadlock T, Sundback C, Hunter D, Cheney M, Vacanti JP. 287.  2000. A polymer foam conduit seeded with Schwann cells promotes guided peripheral nerve regeneration. Tissue Eng. 6:119–27 [Google Scholar]
  288. Ramon-Cueto A, Plant GW, Avila J, Bunge MB. 288.  1998. Long-distance axonal regeneration in the transected adult rat spinal cord is promoted by olfactory ensheathing glia transplants. J. Neurosci. 18:3803–15 [Google Scholar]
  289. McCaig CD, Rajnicek AM. 289.  1991. Electrical fields, nerve growth and nerve regeneration. Exp. Physiol. 76:473–94 [Google Scholar]
  290. Koppes AN, Nordberg AL, Paolillo G, Goodsell N, Darwish H. 290.  et al. 2014. Electrical stimulation of Schwann cells promotes sustained increases in neurite outgrowth. Tissue Eng. A 20:494–506 [Google Scholar]
  291. Levin M. 291.  2007. Large-scale biophysics: ion flows and regeneration. Trends Cell Biol. 17:261–70 [Google Scholar]
  292. Beane WS, Morokuma J, Adams DS, Levin M. 292.  2011. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18:77–89 [Google Scholar]
  293. Spitzer NC. 293.  2006. Electrical activity in early neuronal development. Nature 444:707–12 [Google Scholar]
  294. Babona-Pilipos R, Droujinine IA, Popovic MR, Morshead CM. 294.  2011. Adult subependymal neural precursors, but not differentiated cells, undergo rapid cathodal migration in the presence of direct current electric fields. PLoS ONE 6:e23808 [Google Scholar]
  295. Meng X, Arocena M, Penninger J, Gage FH, Zhao M, Song B. 295.  2011. PI3K mediated electrotaxis of embryonic and adult neural progenitor cells in the presence of growth factors. Exp. Neurol. 227:210–17 [Google Scholar]
  296. Yamada M, Tanemura K, Okada S, Iwanami A, Nakamura M. 296.  et al. 2007. Electrical stimulation modulates fate determination of differentiating embryonic stem cells. Stem Cells 25:562–70 [Google Scholar]
  297. Stone SS, Teixeira CM, DeVito LM, Zaslavsky K, Josselyn SA. 297.  et al. 2011. Stimulation of entorhinal cortex promotes adult neurogenesis and facilitates spatial memory. J. Neurosci. 31:13469–84 [Google Scholar]
  298. Hamani C, Stone SS, Garten A, Lozano AM, Winocur G. 298.  2011. Memory rescue and enhanced neurogenesis following electrical stimulation of the anterior thalamus in rats treated with corticosterone. Exp. Neurol. 232:100–4 [Google Scholar]
  299. Lois N, Reid B, Song B, Zhao M, Forrester J, McCaig C. 299.  2010. Electric currents and lens regeneration in the rat. Exp. Eye Res. 90:316–23 [Google Scholar]
  300. Zhao M, Song B, Pu J, Wada T, Reid B. 300.  et al. 2006. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442:457–60 [Google Scholar]
  301. Zhao M, Dick A, Forrester JV, McCaig CD. 301.  1999. Electric field-directed cell motility involves up-regulated expression and asymmetric redistribution of the epidermal growth factor receptors and is enhanced by fibronectin and laminin. Mol. Biol. Cell 10:1259–76 [Google Scholar]
  302. Zhao M, Agius-Fernandez A, Forrester JV, McCaig CD. 302.  1996. Directed migration of corneal epithelial sheets in physiological electric fields. Investig. Ophthalmol. Vis. Sci. 37:2548–58 [Google Scholar]
  303. Rajnicek AM, Foubister LE, McCaig CD. 303.  2007. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev. Biol. 312:448–60 [Google Scholar]
  304. Yao L, Shanley L, McCaig C, Zhao M. 304.  2008. Small applied electric fields guide migration of hippocampal neurons. J. Cell Physiol. 216:527–35 [Google Scholar]
  305. McCaig C, Rajnicek A, Song B, Zhao M. 305.  2005. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85:943–78 [Google Scholar]
  306. Reid B, Song B, McCaig CD, Zhao M. 306.  2005. Wound healing in rat cornea: the role of electric currents. FASEB J. 19:379–86 [Google Scholar]
  307. Barker A, Jaffe L, Vanable J. 307.  1982. The glabrous epidermis of cavies contains a powerful battery. Am. J. Physiol. Regul. Integr. Comp. Physiol. 242:R358–66 [Google Scholar]
  308. Schwartz RG, Enwemeka CS, Kloth LC, Unger PG, Feedar JA. 308.  1991. Electrotherapy for wound healing. Rehab Manag. 4:38–46 [Google Scholar]
  309. Feedar JA, Kloth LC, Gentzkow GD. 309.  1991. Chronic dermal ulcer healing enhanced with monophasic pulsed electrical stimulation. Phys. Ther. 71:639–49 [Google Scholar]
  310. Kloth LC, McCulloch JM. 310.  1996. Promotion of wound healing with electrical stimulation. Adv. Wound Care 9:42–45 [Google Scholar]
  311. Song B, Zhao M, Forrester J, McCaig C. 311.  2004. Nerve regeneration and wound healing are stimulated and directed by an endogenous electrical field in vivo. J. Cell Sci. 117:4681–90 [Google Scholar]
  312. Wang E, Zhao M, Forrester JV, McCaig CD. 312.  2003. Bi-directional migration of lens epithelial cells in a physiological electrical field. Exp. Eye Res. 76:29–37 [Google Scholar]
  313. Wang E, Zhao M, Forrester JV, McCaig CD. 313.  2003. Electric fields and MAP kinase signaling can regulate early wound healing in lens epithelium. Investig. Ophthalmol. Vis. Sci. 44:244–49 [Google Scholar]
  314. Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. 314.  2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117:397–405 [Google Scholar]
  315. Bourguignon GJ, Bourguignon LY. 315.  1987. Electric stimulation of protein and DNA synthesis in human fibroblasts. FASEB J. 1:398–402 [Google Scholar]
  316. Bourguignon GJ, Jy W, Bourguignon LY. 316.  1989. Electric stimulation of human fibroblasts causes an increase in Ca2+ influx and the exposure of additional insulin receptors. J. Cell Physiol. 140:379–85 [Google Scholar]
  317. Song B, Zhao M, Forrester JV, McCaig CD. 317.  2002. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. USA 99:13577–82 [Google Scholar]
  318. Rajnicek A, Foubister L, McCaig C. 318.  2007. Prioritising guidance cues: directional migration induced by substratum contours and electrical gradients is controlled by a rho/cdc42 switch. Dev. Biol. 312:448–60 [Google Scholar]
  319. Laxton AW, Tang-Wai DF, McAndrews MP, Zumsteg D, Wennberg R. 319.  et al. 2010. A Phase I trial of deep brain stimulation of memory circuits in Alzheimer's disease. Ann. Neurol. 68:521–34 [Google Scholar]
  320. Green T, Faulkner A, Rosen S. 320.  2012. Frequency selectivity of contralateral residual acoustic hearing in bimodal cochlear implant users, and limitations on the ability to match the pitch of electric and acoustic stimuli. Int. J. Audiol. 51:389–98 [Google Scholar]
  321. Abbott JJ, Meek SG. 321.  2007. Digital emulation of pulse frequency modulation for neuroprosthetic sensory feedback. IEEE Trans. Neural Syst. Rehabil. Eng. 15:131–35 [Google Scholar]
  322. Wallace G, Higgins M, Moulton S, Wang C. 322.  2012. Nanobionics: the impact of nanotechnology on implantable medical bionic devices. Nanoscale 4:4327–47 [Google Scholar]
  323. Ghasemi-Mobarakeh L, Prabhakaran M, Morshed M, Nasr-Esfahani M, Baharvand H. 323.  et al. 2011. Application of conductive polymers, scaffolds and electrical stimulation for nerve tissue engineering. J. Tissue Eng. Regen. Med. 5:E17–35 [Google Scholar]
  324. Ghasemi-Mobarakeh L, Prabhakaran M, Morshed M, Nasr-Esfahani M, Ramakrishna S. 324.  2009. Electrical stimulation of nerve cells using conductive nanofibrous scaffolds for nerve tissue engineering. Tissue Eng. Part A 15:3605–19 [Google Scholar]
  325. Green R, Baek S, Poole-Warren L, Martens P. 325.  2010. Conducting polymer-hydrogels for medical electrode applications. Sci. Technol. Adv. Mater. 11:1–13 [Google Scholar]
  326. Green R, Lovell N, Wallace G, Poole-Warren L. 326.  2008. Conducting polymers for neural interfaces: challenges in developing an effective long-term implant. Biomaterials 29:3393–99 [Google Scholar]
  327. Evans A, Thompson B, Wallace G, Millard R, O'Leary S. 327.  et al. 2009. Promoting neurite outgrowth from spiral ganglion neuron explants using polypyrrole/BDNF-coated electrodes. J. Biomed. Mater. Res. A 91A:241–50 [Google Scholar]
  328. Kim D, Wiler J, Anderson D, Kipke D, Martin D. 328.  2010. Conducting polymers on hydrogel-coated neural electrode provide sensitive neural recordings in auditory cortex. Acta Biomater. 6:57–62 [Google Scholar]
  329. Richardson R, Wise A, Thompson B, Flynn B, Atkinson P. 329.  et al. 2009. Polypyrrole-coated electrodes for the delivery of charge and neurotrophins to cochlear neurons. Biomaterials 30:2614–24 [Google Scholar]
  330. Kam N, Jan E, Kotov N. 330.  2009. Electrical stimulation of neural stem cells mediated by humanized carbon nanotube composite made with extracellular matrix protein. Nano Lett. 9:273–78 [Google Scholar]
  331. Park S, Park J, Sim S, Sung M, Kim K. 331.  et al. 2011. Enhanced differentiation of human neural stem cells into neurons on graphene. Adv. Mater. 23:H263–67 [Google Scholar]
  332. Zhang Y, Ali SF, Dervishi E, Xu Y, Li Z. 332.  et al. 2010. Cytotoxicity effects of graphene and single-wall carbon nanotubes in neural phaeochromocytoma-derived PC12 cells. ACS Nano 4:3181–86 [Google Scholar]
  333. Huang Y, Wu H, Tai N, Wang T. 333.  2012. Carbon nanotube rope with electrical stimulation promotes the differentiation and maturity of neural stem cells. Small 8:2869–77 [Google Scholar]
  334. Lee J, Bashur C, Goldstein A, Schmidt C. 334.  2009. Polypyrrole-coated electrospun PLGA nanofibers for neural tissue applications. Biomaterials 30:4325–35 [Google Scholar]
  335. Li N, Zhang Q, Gao S, Song Q, Huang R. 335.  et al. 2013. Three-dimensional graphene foam as a biocompatible and conductive scaffold for neural stem cells. Sci. Rep. 3:160 [Google Scholar]
  336. Behan B, DeWitt D, Bogdanowicz D, Koppes A, Bale S, Thompson D. 336.  2011. Single-walled carbon nanotubes alter Schwann cell behavior differentially within 2D and 3D environments. J. Biomed. Mater. Res. A 96A:46–57 [Google Scholar]
/content/journals/10.1146/annurev-bioeng-121813-120655
Loading
/content/journals/10.1146/annurev-bioeng-121813-120655
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error