1932

Abstract

The recent discovery and subsequent development of the CRISPR–Cas9 (clustered regularly interspaced short palindromic repeat–CRISPR-associated protein 9) platform as a precise genome editing tool have transformed biomedicine. As these CRISPR-based tools have matured, multiple stages of the gene editing process and the bioengineering of human cells and tissues have advanced. Here, we highlight recent intersections in the development of biomaterials and genome editing technologies. These intersections include the delivery of macromolecules, where biomaterial platforms have been harnessed to enable nonviral delivery of genome engineering tools to cells and tissues in vivo. Further, engineering native-like biomaterial platforms for cell culture facilitates complex modeling of human development and disease when combined with genome engineering tools. Deeper integration of biomaterial platforms in these fields could play a significant role in enabling new breakthroughs in the application of gene editing for the treatment of human disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-bioeng-122019-121602
2021-07-13
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/bioeng/23/1/annurev-bioeng-122019-121602.html?itemId=/content/journals/10.1146/annurev-bioeng-122019-121602&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Wei T, Cheng Q, Farbiak L, Anderson DG, Langer R, Siegwart DJ. 2020. Delivery of tissue-targeted scalpels: opportunities and challenges for in vivo CRISPR/Cas-based genome editing. ACS Nano 14:89243–62
    [Google Scholar]
  2. 2. 
    Ringel T, Frey N, Ringnalda F, Janjuha S, Cherkaoui S et al. 2020. Genome-scale CRISPR screening in human intestinal organoids identifies drivers of TGF-β resistance. Cell Stem Cell 26:3431–40.e8
    [Google Scholar]
  3. 3. 
    Fellmann C, Gowen BG, Lin P-C, Doudna JA, Corn JE. 2017. Cornerstones of CRISPR-Cas in drug discovery and therapy. Nat. Rev. Drug Discov. 16:289–100
    [Google Scholar]
  4. 4. 
    Gulei D, Raduly L, Berindan-Neagoe I, Calin GA. 2019. CRISPR-based RNA editing: diagnostic applications and therapeutic options. Expert Rev. Mol. Diagn. 19:283–88
    [Google Scholar]
  5. 5. 
    Kumlehn J, Pietralla J, Hensel G, Pacher M, Puchta H. 2018. The CRISPR/Cas revolution continues: from efficient gene editing for crop breeding to plant synthetic biology. J. Integr. Plant Biol. 60:121127–53
    [Google Scholar]
  6. 6. 
    Barrangou R, Doudna JA. 2016. Applications of CRISPR technologies in research and beyond. Nat. Biotechnol. 34:9933–41
    [Google Scholar]
  7. 7. 
    O'Connell MR, Oakes BL, Sternberg SH, East-Seletsky A, Kaplan M, Doudna JA. 2014. Programmable RNA recognition and cleavage by CRISPR/Cas9. Nature 516:7530263–66
    [Google Scholar]
  8. 8. 
    Gaudelli NM, Komor AC, Rees HA, Packer MS, Badran AH et al. 2017. Programmable base editing of A·T to G·C in genomic DNA without DNA cleavage. Nature 551:7681464–71
    [Google Scholar]
  9. 9. 
    Anzalone AV, Randolph PB, Davis JR, Sousa AA, Koblan LW et al. 2019. Search-and-replace genome editing without double-strand breaks or donor DNA. Nature 576:7785149–57
    [Google Scholar]
  10. 10. 
    Hilton IB, D'Ippolito AM, Vockley CM, Thakore PI, Crawford GE et al. 2015. Epigenome editing by a CRISPR-Cas9-based acetyltransferase activates genes from promoters and enhancers. Nat. Biotechnol. 33:5510–17
    [Google Scholar]
  11. 11. 
    Thakore PI, Black JB, Hilton IB, Gersbach CA. 2016. Editing the epigenome: technologies for programmable transcription and epigenetic modulation. Nat. Methods 13:2127–37
    [Google Scholar]
  12. 12. 
    Pickar-Oliver A, Gersbach CA 2019. The next generation of CRISPR-Cas technologies and applications. Nat. Rev. Mol. Cell Biol. 20:8490–507
    [Google Scholar]
  13. 13. 
    Gomes S, Leonor IB, Mano JF, Reis RL, Kaplan DL. 2012. Natural and genetically engineered proteins for tissue engineering. Prog. Polym. Sci. 37:11–17
    [Google Scholar]
  14. 14. 
    Sengupta D, Heilshorn SC. 2010. Protein-engineered biomaterials: highly tunable tissue engineering scaffolds. Tissue Eng. Part B Rev. 16:3285–93
    [Google Scholar]
  15. 15. 
    English MA, Soenksen LR, Gayet RV, de Puig H, Angenent-Mari NM et al. 2019. Programmable CRISPR-responsive smart materials. Science 365:6455780–85
    [Google Scholar]
  16. 16. 
    Xu J, Dong Q, Yu Y, Niu B, Ji D et al. 2018. Mass spider silk production through targeted gene replacement in Bombyx mori. PNAS 115:358757–62
    [Google Scholar]
  17. 17. 
    Jansson R, Lau CH, Ishida T, Ramström M, Sandgren M, Hedhammar M. 2016. Functionalized silk assembled from a recombinant spider silk fusion protein (Z-4RepCT) produced in the methylotrophic yeast Pichia pastoris. Biotechnol. J. 11:5687–99
    [Google Scholar]
  18. 18. 
    Kelwick RJR, Webb AJ, Freemont PS. 2020. Biological materials: the next frontier for cell-free synthetic biology. Front. Bioeng. Biotechnol. 8:399
    [Google Scholar]
  19. 19. 
    Cumbers J. 2020. Inspired by nature, Zymergen brews high-performance bio-electronics. Forbes Apr. 12. https://www.forbes.com/sites/johncumbers/2020/04/12/inspired-by-nature-zymergen-brews-high-performance-bio-electronics/#2077a9ab2f18
    [Google Scholar]
  20. 20. 
    Le Feuvre RA, Scrutton NS 2018. A living foundry for synthetic biological materials: a synthetic biology roadmap to new advanced materials. Synth. Syst. Biotechnol. 3:2105–12
    [Google Scholar]
  21. 21. 
    Dalkara D, Byrne LC, Klimczak RR, Visel M, Yin L et al. 2013. In vivo-directed evolution of a new adeno-associated virus for therapeutic outer retinal gene delivery from the vitreous. Sci. Transl. Med. 5:189189ra76
    [Google Scholar]
  22. 22. 
    van Haasteren J, Li J, Scheideler OJ, Murthy N, Schaffer DV. 2020. The delivery challenge: fulfilling the promise of therapeutic genome editing. Nat. Biotechnol. 38:7845–55
    [Google Scholar]
  23. 23. 
    Mingozzi F, High KA. 2017. Overcoming the host immune response to adeno-associated virus gene delivery vectors: the race between clearance, tolerance, neutralization, and escape. Annu. Rev. Virol. 4:511–34
    [Google Scholar]
  24. 24. 
    Charlesworth CT, Deshpande PS, Dever DP, Camarena J, Lemgart VT et al. 2019. Identification of preexisting adaptive immunity to Cas9 proteins in humans. Nat. Med. 25:2249–54
    [Google Scholar]
  25. 25. 
    Nelson CE, Wu Y, Gemberling MP, Oliver ML, Waller MA et al. 2019. Long-term evaluation of AAV-CRISPR genome editing for Duchenne muscular dystrophy. Nat. Med. 25:3427–32
    [Google Scholar]
  26. 26. 
    Li L, Hu S, Chen X 2018. Non-viral delivery systems for CRISPR/Cas9-based genome editing: challenges and opportunities. Biomaterials 171:207–18
    [Google Scholar]
  27. 27. 
    Goswami R, Subramanian G, Silayeva L, Newkirk I, Doctor D et al. 2019. Gene therapy leaves a vicious cycle. Front. Oncol. 9:297
    [Google Scholar]
  28. 28. 
    Rui Y, Wilson DR, Green JJ. 2019. Non-viral delivery to enable genome editing. Trends Biotechnol 37:3281–93
    [Google Scholar]
  29. 29. 
    Nelson CE, Gersbach CA. 2016. Engineering delivery vehicles for genome editing. Annu. Rev. Chem. Biomol. Eng. 7:637–62
    [Google Scholar]
  30. 30. 
    Stewart MP, Lorenz A, Dahlman J, Sahay G. 2016. Challenges in carrier-mediated intracellular delivery: moving beyond endosomal barriers. WIREs Nanomed. Nanobiotechnol. 8:3465–78
    [Google Scholar]
  31. 31. 
    Lino CA, Harper JC, Carney JP, Timlin JA. 2018. Delivering CRISPR: a review of the challenges and approaches. Drug Deliv 25:11234–57
    [Google Scholar]
  32. 32. 
    Tong S, Moyo B, Lee CM, Leong K, Bao G 2019. Engineered materials for in vivo delivery of genome-editing machinery. Nat. Rev. Mater. 4:11726–37
    [Google Scholar]
  33. 33. 
    Chew WL, Tabebordbar M, Cheng JKW, Mali P, Wu EY et al. 2016. A multi-functional AAV-CRISPR-Cas9 and its host response. Nat. Methods 13:10868–74
    [Google Scholar]
  34. 34. 
    Carlson-Stevermer J, Abdeen AA, Kohlenberg L, Goedland M, Molugu K et al. 2017. Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing. Nat. Commun. 8:11711
    [Google Scholar]
  35. 35. 
    Hendel A, Bak RO, Clark JT, Kennedy AB, Ryan DE et al. 2015. Chemically modified guide RNAs enhance CRISPR-Cas genome editing in human primary cells. Nat. Biotechnol. 33:9985–89
    [Google Scholar]
  36. 36. 
    Lim D, Sreekanth V, Cox KJ, Law BK, Wagner BK et al. 2020. Engineering designer beta cells with a CRISPR-Cas9 conjugation platform. Nat. Commun. 11:14043
    [Google Scholar]
  37. 37. 
    Vakulskas CA, Behlke MA. 2019. Evaluation and reduction of CRISPR off-target cleavage events. Nucleic Acid Ther 29:4167–74
    [Google Scholar]
  38. 38. 
    Toy R, Hayden E, Shoup C, Baskaran H, Karathanasis E. 2011. Effect of particle size, density and shape on margination of nanoparticles in microcirculation. Nanotechnology 22:11115101
    [Google Scholar]
  39. 39. 
    Alexis F, Pridgen E, Molnar LK, Farokhzad OC 2008. Factors affecting the clearance and biodistribution of polymeric nanoparticles. Mol. Pharm. 5:4505–15
    [Google Scholar]
  40. 40. 
    Hoshyar N, Gray S, Han H, Bao G 2016. The effect of nanoparticle size on in vivo pharmacokinetics and cellular interaction. Nanomedicine 11:6673–92
    [Google Scholar]
  41. 41. 
    Duan X, Li Y. 2013. Physicochemical characteristics of nanoparticles affect circulation, biodistribution, cellular internalization, and trafficking. Small 9:9–101521–32
    [Google Scholar]
  42. 42. 
    Jiang W, Kim BYS, Rutka JT, Chan WCW. 2008. Nanoparticle-mediated cellular response is size-dependent. Nat. Nanotechnol. 3:3145–50
    [Google Scholar]
  43. 43. 
    Kinnear C, Moore TL, Rodriguez-Lorenzo L, Rothen-Rutishauser B, Petri-Fink A. 2017. Form follows function: nanoparticle shape and its implications for nanomedicine. Chem. Rev. 117:1711476–521
    [Google Scholar]
  44. 44. 
    Jo DH, Kim JH, Lee TG, Kim JH. 2015. Size, surface charge, and shape determine therapeutic effects of nanoparticles on brain and retinal diseases. Nanomed. Nanotechnol. Biol. Med. 11:71603–11
    [Google Scholar]
  45. 45. 
    Wang P, Zhang L, Zheng W, Cong L, Guo Z et al. 2018. Thermo-triggered release of CRISPR-Cas9 system by lipid-encapsulated gold nanoparticles for tumor therapy. Angew. Chem. Int. Ed. 57:61491–96
    [Google Scholar]
  46. 46. 
    Caldorera-Moore M, Guimard N, Shi L, Roy K 2010. Designer nanoparticles: incorporating size, shape, and triggered release into nanoscale drug carriers. Expert Opin. Drug Deliv. 7:4479–95
    [Google Scholar]
  47. 47. 
    Cai W, Luo T, Mao L, Wang M. 2020. Spatiotemporal delivery of CRISPR/Cas9 genome editing machinery using stimuli-responsive vehicles. Angew. Chem. Int. Ed.
    [Google Scholar]
  48. 48. 
    Wu Y, Zheng J, Zeng Q, Zhang T, Xing D. 2020. Light-responsive charge-reversal nanovector for high-efficiency in vivo CRISPR/Cas9 gene editing with controllable location and time. Nano Res 13:92399–406
    [Google Scholar]
  49. 49. 
    Yoo J, Park C, Yi G, Lee D, Koo H 2019. Active targeting strategies using biological ligands for nanoparticle drug delivery systems. Cancers 11:5640
    [Google Scholar]
  50. 50. 
    Zhen S, Li X. 2020. Liposomal delivery of CRISPR/Cas9. Cancer Gene Ther 27:7515–27
    [Google Scholar]
  51. 51. 
    Guidotti G, Brambilla L, Rossi D. 2017. Cell-penetrating peptides: from basic research to clinics. Trends Pharmacol. Sci. 38:4406–24
    [Google Scholar]
  52. 52. 
    Shi N-Q, Qi X-R, Xiang B, Zhang Y. 2014. A survey on “Trojan Horse” peptides: opportunities, issues and controlled entry to “Troy. .” J. Control. Release 194:53–70
    [Google Scholar]
  53. 53. 
    Park H, Oh J, Shim G, Cho B, Chang Y et al. 2019. In vivo neuronal gene editing via CRISPR-Cas9 amphiphilic nanocomplexes alleviates deficits in mouse models of Alzheimer's disease. Nat. Neurosci. 22:4524–28
    [Google Scholar]
  54. 54. 
    Ramakrishna S, Kwaku Dad A-B, Beloor J, Gopalappa R, Lee S-K, Kim H 2014. Gene disruption by cell-penetrating peptide-mediated delivery of Cas9 protein and guide RNA. Genome Res 24:61020–27
    [Google Scholar]
  55. 55. 
    Lobba MJ, Fellmann C, Marmelstein AM, Maza JC, Kissman EN et al. 2020. Site-specific bioconjugation through enzyme-catalyzed tyrosine-cysteine bond formation. ACS Cent. Sci. 6:91564–71
    [Google Scholar]
  56. 56. 
    Narayanan K, Yen SK, Dou Q, Padmanabhan P, Sudhaharan T et al. 2013. Mimicking cellular transport mechanism in stem cells through endosomal escape of new peptide-coated quantum dots. Sci. Rep. 3:2184
    [Google Scholar]
  57. 57. 
    Chen G, Abdeen AA, Wang Y, Shahi PK, Robertson S et al. 2019. A biodegradable nanocapsule delivers a Cas9 ribonucleoprotein complex for in vivo genome editing. Nat. Nanotechnol. 14:10974–80
    [Google Scholar]
  58. 58. 
    Green JJ, Langer R, Anderson DG. 2008. A combinatorial polymer library approach yields insight into nonviral gene delivery. Acc. Chem. Res. 41:6749–59
    [Google Scholar]
  59. 59. 
    Dahlman JE, Kauffman KJ, Xing Y, Shaw TE, Mir FF et al. 2017. Barcoded nanoparticles for high throughput in vivo discovery of targeted therapeutics. PNAS 114:82060–65
    [Google Scholar]
  60. 60. 
    Sago CD, Lokugamage MP, Paunovska K, Vanover DA, Monaco CM et al. 2018. High-throughput in vivo screen of functional mRNA delivery identifies nanoparticles for endothelial cell gene editing. PNAS 115:42E9944–52
    [Google Scholar]
  61. 61. 
    Chew WL. 2018. Immunity to CRISPR Cas9 and Cas12a therapeutics. WIREs Syst. Biol. Med. 10:1e1408
    [Google Scholar]
  62. 62. 
    Crudele JM, Chamberlain JS. 2018. Cas9 immunity creates challenges for CRISPR gene editing therapies. Nat. Commun. 9:13497
    [Google Scholar]
  63. 63. 
    Li A, Tanner MR, Lee CM, Hurley AE, Giorgi MD et al. 2020. AAV-CRISPR gene editing is negated by pre-existing immunity to Cas9. Mol. Ther. 28:61432–41
    [Google Scholar]
  64. 64. 
    Fadeel B. 2019. Hide and seek: nanomaterial interactions with the immune system. Front. Immunol. 10:133
    [Google Scholar]
  65. 65. 
    O'Brien K, Breyne K, Ughetto S, Laurent LC, Breakefield XO. 2020. RNA delivery by extracellular vesicles in mammalian cells and its applications. Nat. Rev. Mol. Cell Biol. 21:585–606
    [Google Scholar]
  66. 66. 
    Rodriguez PL, Harada T, Christian DA, Pantano DA, Tsai RK, Discher DE. 2013. Minimal “self” peptides that inhibit phagocytic clearance and enhance delivery of nanoparticles. Science 339:6122971–75
    [Google Scholar]
  67. 67. 
    Lee K, Conboy M, Park HM, Jiang F, Kim HJ et al. 2017. Nanoparticle delivery of Cas9 ribonucleoprotein and donor DNA in vivo induces homology-directed DNA repair. Nat. Biomed. Eng. 1:11889–901
    [Google Scholar]
  68. 68. 
    Hsieh Y-C, Wang H-E, Lin W-W, Roffler SR, Cheng T-C et al. 2018. Pre-existing anti-polyethylene glycol antibody reduces the therapeutic efficacy and pharmacokinetics of PEGylated liposomes. Theranostics 8:113164–75
    [Google Scholar]
  69. 69. 
    Verhoef JJF, Carpenter JF, Anchordoquy TJ, Schellekens H. 2014. Potential induction of anti-PEG antibodies and complement activation toward PEGylated therapeutics. Drug Discov. Today 19:121945–52
    [Google Scholar]
  70. 70. 
    Van Haute D, Berlin JM. 2017. Challenges in realizing selectivity for nanoparticle biodistribution and clearance: lessons from gold nanoparticles. Ther. Deliv. 8:9763–74
    [Google Scholar]
  71. 71. 
    Schluck M, Hammink R, Figdor CG, Verdoes M, Weiden J. 2019. Biomaterial-based activation and expansion of tumor-specific T cells. Front. Immunol. 10:931
    [Google Scholar]
  72. 72. 
    Monette A, Ceccaldi C, Assaad E, Lerouge S, Lapointe R. 2016. Chitosan thermogels for local expansion and delivery of tumor-specific T lymphocytes towards enhanced cancer immunotherapies. Biomaterials 75:237–49
    [Google Scholar]
  73. 73. 
    Heathman TRJ, Nienow AW, McCall MJ, Coopman K, Kara B, Hewitt CJ 2015. The translation of cell-based therapies: clinical landscape and manufacturing challenges. Regen. Med. 10:149–64
    [Google Scholar]
  74. 74. 
    Zakrzewski W, Dobrzyński M, Szymonowicz M, Rybak Z. 2019. Stem cells: past, present, and future. Stem Cell Res. Ther. 10:68
    [Google Scholar]
  75. 75. 
    Salg GA, Giese NA, Schenk M, Hüttner FJ, Felix K et al. 2019. The emerging field of pancreatic tissue engineering: a systematic review and evidence map of scaffold materials and scaffolding techniques for insulin-secreting cells. J. Tissue Eng. https://doi.org/10.1177/2041731419884708
    [Crossref] [Google Scholar]
  76. 76. 
    Rohaan MW, Wilgenhof S, Haanen JBAG. 2019. Adoptive cellular therapies: the current landscape. Virchows Arch 474:4449–61
    [Google Scholar]
  77. 77. 
    Facklam AL, Volpatti LR, Anderson DG. 2020. Biomaterials for personalized cell therapy. Adv. Mater. 32:131902005
    [Google Scholar]
  78. 78. 
    Palucka AK, Coussens LM. 2016. The basis of oncoimmunology. Cell 164:61233–47
    [Google Scholar]
  79. 79. 
    Ribas A. 2015. Releasing the brakes on cancer immunotherapy. N. Engl. J. Med. 373:1490–92
    [Google Scholar]
  80. 80. 
    Holzinger A, Abken H. 2020. Advances and challenges of CAR T cells in clinical trials. Recent Results Cancer Res 214:93–128
    [Google Scholar]
  81. 81. 
    Piscopo NJ, Mueller KP, Das A, Hematti P, Murphy WL et al. 2018. Bioengineering solutions for manufacturing challenges in CAR T cells. Biotechnol. J. 13:21700095
    [Google Scholar]
  82. 82. 
    Jin C, Fotaki G, Ramachandran M, Nilsson B, Essand M, Yu D 2016. Safe engineering of CAR T cells for adoptive cell therapy of cancer using long-term episomal gene transfer. EMBO Mol. Med. 8:7702–11
    [Google Scholar]
  83. 83. 
    Roth TL, Puig-Saus C, Yu R, Shifrut E, Carnevale J et al. 2018. Reprogramming human T cell function and specificity with non-viral genome targeting. Nature 559:7714405–9
    [Google Scholar]
  84. 84. 
    Nguyen DN, Roth TL, Li PJ, Chen PA, Apathy R et al. 2020. Polymer-stabilized Cas9 nanoparticles and modified repair templates increase genome editing efficiency. Nat. Biotechnol. 38:144–49
    [Google Scholar]
  85. 85. 
    Olden BR, Cheng Y, Yu JL, Pun SH. 2018. Cationic polymers for non-viral gene delivery to human T cells. J. Control. Release 282:140–47
    [Google Scholar]
  86. 86. 
    O'Connor RS, Hao X, Shen K, Bashour K, Akimova T et al. 2012. Substrate rigidity regulates human T cell activation and proliferation. J. Immunol 189:31330–39
    [Google Scholar]
  87. 87. 
    Hammink R, Mandal S, Eggermont LJ, Nooteboom M, Willems PHGM et al. 2017. Controlling T-cell activation with synthetic dendritic cells using the multivalency effect. ACS Omega 2:3937–45
    [Google Scholar]
  88. 88. 
    Cheung AS, Zhang DKY, Koshy ST, Mooney DJ. 2018. Scaffolds that mimic antigen-presenting cells enable ex vivo expansion of primary T cells. Nat. Biotechnol. 36:2160–69
    [Google Scholar]
  89. 89. 
    Abdeen AA, Saha K. 2017. Manufacturing cell therapies using engineered biomaterials. Trends Biotechnol 35:10971–82
    [Google Scholar]
  90. 90. 
    Stephan MT, Moon JJ, Um SH, Bershteyn A, Irvine DJ. 2010. Therapeutic cell engineering with surface-conjugated synthetic nanoparticles. Nat. Med. 16:91035–41
    [Google Scholar]
  91. 91. 
    Huang B, Abraham WD, Zheng Y, Bustamante López SC, Luo SS, Irvine DJ. 2015. Active targeting of chemotherapy to disseminated tumors using nanoparticle-carrying T cells. Sci. Transl. Med. 7:291291ra94
    [Google Scholar]
  92. 92. 
    Smith TT, Moffett HF, Stephan SB, Opel CF, Dumigan AG et al. 2017. Biopolymers codelivering engineered T cells and STING agonists can eliminate heterogeneous tumors. J. Clin. Investig. 127:62176–91
    [Google Scholar]
  93. 93. 
    Stephan SB, Taber AM, Jileaeva I, Pegues EP, Sentman CL, Stephan MT. 2015. Biopolymer implants enhance the efficacy of adoptive T-cell therapy. Nat. Biotechnol. 33:197–101
    [Google Scholar]
  94. 94. 
    Coon ME, Stephan SB, Gupta V, Kealey CP, Stephan MT. 2020. Nitinol thin films functionalized with CAR-T cells for the treatment of solid tumours. Nat. Biomed. Eng. 4:2195–206
    [Google Scholar]
  95. 95. 
    Smith TT, Stephan SB, Moffett HF, McKnight LE, Ji W et al. 2017. In situ programming of leukaemia-specific T cells using synthetic DNA nanocarriers. Nat. Nanotechnol. 12:8813–20
    [Google Scholar]
  96. 96. 
    Borowicz S, Van Scoyk M, Avasarala S, Karuppusamy Rathinam MK, Tauler J et al. 2014. The soft agar colony formation assay. J. Vis. Exp. 92:e51998
    [Google Scholar]
  97. 97. 
    Petersen OW, Ronnov-Jessen L, Howlett AR, Bissell MJ 1992. Interaction with basement membrane serves to rapidly distinguish growth and differentiation pattern of normal and malignant human breast epithelial cells. PNAS 89:199064–68
    [Google Scholar]
  98. 98. 
    Barcellos-Hoff MH, Aggeler J, Ram TG, Bissell MJ. 1989. Functional differentiation and alveolar morphogenesis of primary mammary cultures on reconstituted basement membrane. Development 105:2223–35
    [Google Scholar]
  99. 99. 
    Badeau BA, Comerford MP, Arakawa CK, Shadish JA, DeForest CA. 2018. Engineered modular biomaterial logic gates for environmentally triggered therapeutic delivery. Nat. Chem. 10:3251–58
    [Google Scholar]
  100. 100. 
    Khetan S, Guvendiren M, Legant WR, Cohen DM, Chen CS, Burdick JA. 2013. Degradation-mediated cellular traction directs stem cell fate in covalently crosslinked three-dimensional hydrogels. Nat. Mater. 12:5458–65
    [Google Scholar]
  101. 101. 
    Baker BM, Trappmann B, Wang WY, Sakar MS, Kim IL et al. 2015. Cell-mediated fibre recruitment drives extracellular matrix mechanosensing in engineered fibrillar microenvironments. Nat. Mater. 14:121262–68
    [Google Scholar]
  102. 102. 
    Madl CM, LeSavage BL, Dewi RE, Dinh CB, Stowers RS et al. 2017. Maintenance of neural progenitor cell stemness in 3D hydrogels requires matrix remodelling. Nat. Mater. 16:121233–42
    [Google Scholar]
  103. 103. 
    Tibbitt MW, Anseth KS. 2009. Hydrogels as extracellular matrix mimics for 3D cell culture. Biotechnol. Bioeng. 103:4655–63
    [Google Scholar]
  104. 104. 
    Simian M, Bissell MJ. 2017. Organoids: a historical perspective of thinking in three dimensions. J. Cell Biol. 216:131–40
    [Google Scholar]
  105. 105. 
    Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:7244262–65
    [Google Scholar]
  106. 106. 
    Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:734151–56
    [Google Scholar]
  107. 107. 
    Eiraku M, Watanabe K, Matsuo-Takasaki M, Kawada M, Yonemura S et al. 2008. Self-organized formation of polarized cortical tissues from ESCs and its active manipulation by extrinsic signals. Cell Stem Cell 3:5519–32
    [Google Scholar]
  108. 108. 
    Muguruma K, Nishiyama A, Kawakami H, Hashimoto K, Sasai Y. 2015. Self-organization of polarized cerebellar tissue in 3D culture of human pluripotent stem cells. Cell Rep 10:4537–50
    [Google Scholar]
  109. 109. 
    Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:7467373–79
    [Google Scholar]
  110. 110. 
    Takebe T, Sekine K, Enomura M, Koike H, Kimura M et al. 2013. Vascularized and functional human liver from an iPSC-derived organ bud transplant. Nature 499:7459481–84
    [Google Scholar]
  111. 111. 
    Matano M, Date S, Shimokawa M, Takano A, Fujii M et al. 2015. Modeling colorectal cancer using CRISPR-Cas9-mediated engineering of human intestinal organoids. Nat. Med. 21:3256–62
    [Google Scholar]
  112. 112. 
    Rossi G, Manfrin A, Lutolf MP. 2018. Progress and potential in organoid research. Nat. Rev. Genet. 19:11671–87
    [Google Scholar]
  113. 113. 
    Caliari SR, Burdick JA. 2016. A practical guide to hydrogels for cell culture. Nat. Methods 13:5405–14
    [Google Scholar]
  114. 114. 
    Hughes CS, Postovit LM, Lajoie GA. 2010. Matrigel: a complex protein mixture required for optimal growth of cell culture. Proteomics 10:91886–90
    [Google Scholar]
  115. 115. 
    Aisenbrey EA, Murphy WL. 2020. Synthetic alternatives to Matrigel. Nat. Rev. Mater. 5:7539–51
    [Google Scholar]
  116. 116. 
    Han WM, Anderson SE, Mohiuddin M, Barros D, Nakhai SA et al. 2018. Synthetic matrix enhances transplanted satellite cell engraftment in dystrophic and aged skeletal muscle with comorbid trauma. Sci. Adv. 4:8eaar4008
    [Google Scholar]
  117. 117. 
    Gjorevski N, Sachs N, Manfrin A, Giger S, Bragina ME et al. 2016. Designer matrices for intestinal stem cell and organoid culture. Nature 539:7630560–64
    [Google Scholar]
  118. 118. 
    Hui E, Gimeno KI, Guan G, Caliari SR. 2019. Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules 20:114126–34
    [Google Scholar]
  119. 119. 
    Nam S, Stowers R, Lou J, Xia Y, Chaudhuri O. 2019. Varying PEG density to control stress relaxation in alginate-PEG hydrogels for 3D cell culture studies. Biomaterials 200:15–24
    [Google Scholar]
  120. 120. 
    Chaudhuri O, Gu L, Klumpers D, Darnell M, Bencherif SA et al. 2016. Hydrogels with tunable stress relaxation regulate stem cell fate and activity. Nat. Mater. 15:3326–34
    [Google Scholar]
  121. 121. 
    Chaudhuri O. 2017. Viscoelastic hydrogels for 3D cell culture. Biomater. Sci. 5:81480–90
    [Google Scholar]
  122. 122. 
    Lee JY, Chang JK, Dominguez AA, Lee H-P, Nam S et al. 2019. YAP-independent mechanotransduction drives breast cancer progression. Nat. Commun. 10:11848
    [Google Scholar]
  123. 123. 
    Lou J, Stowers R, Nam S, Xia Y, Chaudhuri O. 2018. Stress relaxing hyaluronic acid-collagen hydrogels promote cell spreading, fiber remodeling, and focal adhesion formation in 3D cell culture. Biomaterials 154:213–22
    [Google Scholar]
  124. 124. 
    Veltman JA, Brunner HG. 2012. De novo mutations in human genetic disease. Nat. Rev. Genet. 13:8565–75
    [Google Scholar]
  125. 125. 
    Bauer-Mehren A, Rautschka M, Sanz F, Furlong LI. 2010. DisGeNET: a Cytoscape plugin to visualize, integrate, search and analyze gene-disease networks. Bioinformatics 26:222924–26
    [Google Scholar]
  126. 126. 
    Cornish AJ, Filippis I, David A, Sternberg MJE 2015. Exploring the cellular basis of human disease through a large-scale mapping of deleterious genes to cell types. Genome Med 7:95
    [Google Scholar]
  127. 127. 
    Gopal S, Rodrigues AL, Dordick JS. 2020. Exploiting CRISPR Cas9 in three-dimensional stem cell cultures to model disease. Front. Bioeng. Biotechnol. 8:692
    [Google Scholar]
  128. 128. 
    Fusco P, Parisatto B, Rampazzo E, Persano L, Frasson C et al. 2019. Patient-derived organoids (PDOs) as a novel in vitro model for neuroblastoma tumours. BMC Cancer 19:1970
    [Google Scholar]
  129. 129. 
    Nagle PW, Plukker JTM, Muijs CT, van Luijk P, Coppes RP. 2018. Patient-derived tumor organoids for prediction of cancer treatment response. Semin. Cancer Biol. 53:258–64
    [Google Scholar]
  130. 130. 
    Campbell PJ, Getz G, Korbel JO, Stuart JM, Jennings JL et al. ICGC/TCGA Pan-Cancer Anal. Whole Genomes Consort.). 2020. Pan-cancer analysis of whole genomes. Nature 578:82–93
    [Google Scholar]
  131. 131. 
    Greenman C, Stephens P, Smith R, Dalgliesh GL, Hunter C et al. 2007. Patterns of somatic mutation in human cancer genomes. Nature 446:7132153–58
    [Google Scholar]
  132. 132. 
    Bladen CL, Salgado D, Monges S, Foncuberta ME, Kekou K et al. 2015. The TREAT-NMD DMD Global Database: analysis of more than 7,000 Duchenne muscular dystrophy mutations. Hum. Mutat. 36:4395–402
    [Google Scholar]
  133. 133. 
    Nelson CE, Gersbach CA 2019. Genome editing for Duchenne muscular dystrophy. Muscle Gene Therapy D Duan, J Mendell 383–403 Cham, Switz: Springer
    [Google Scholar]
  134. 134. 
    Schwank G, Koo B-K, Sasselli V, Dekkers JF, Heo I et al. 2013. Functional repair of CFTR by CRISPR/Cas9 in intestinal stem cell organoids of cystic fibrosis patients. Cell Stem Cell 13:6653–58
    [Google Scholar]
  135. 135. 
    Drost J, van Boxtel R, Blokzijl F, Mizutani T, Sasaki N et al. 2017. Use of CRISPR-modified human stem cell organoids to study the origin of mutational signatures in cancer. Science 358:6360234–38
    [Google Scholar]
  136. 136. 
    Matano M, Date S, Shimokawa M, Takano A, Fujii M et al. 2015. Modeling colorectal cancer using CRISPR-Cas9–mediated engineering of human intestinal organoids. Nat. Med. 21:256–62
    [Google Scholar]
  137. 137. 
    Mariani J, Coppola G, Zhang P, Abyzov A, Provini L et al. 2015. FOXG1-dependent dysregulation of GABA/glutamate neuron differentiation in autism spectrum disorders. Cell 162:2375–90
    [Google Scholar]
  138. 138. 
    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:4933–45
    [Google Scholar]
  139. 139. 
    Driehuis E, Clevers H. 2017. CRISPR/Cas 9 genome editing and its applications in organoids. Am. J. Physiol. Gastrointest. Liver Physiol. 312:3G257–65
    [Google Scholar]
  140. 140. 
    Fujii M, Clevers H, Sato T. 2019. Modeling human digestive diseases with CRISPR-Cas9-modified organoids. Gastroenterology 156:3562–76
    [Google Scholar]
  141. 141. 
    Wang T, Wei JJ, Sabatini DM, Lander ES. 2014. Genetic screens in human cells using the CRISPR-Cas9 system. Science 343:616680–84
    [Google Scholar]
  142. 142. 
    Shalem O, Sanjana NE, Hartenian E, Shi X, Scott DA et al. 2014. Genome-scale CRISPR-Cas9 knockout screening in human cells. Science 343:616684–87
    [Google Scholar]
  143. 143. 
    Gilbert LA, Horlbeck MA, Adamson B, Villalta JE, Chen Y et al. 2014. Genome-scale CRISPR-mediated control of gene repression and activation. Cell 159:3647–61
    [Google Scholar]
  144. 144. 
    Klann TS, Black JB, Chellappan M, Safi A, Song L et al. 2017. CRISPR-Cas9 epigenome editing enables high-throughput screening for functional regulatory elements in the human genome. Nat. Biotechnol. 35:6561–68
    [Google Scholar]
  145. 145. 
    Klann TS, Black JB, Gersbach CA. 2018. CRISPR-based methods for high-throughput annotation of regulatory DNA. Curr. Opin. Biotechnol. 52:32–41
    [Google Scholar]
  146. 146. 
    Xie S, Duan J, Li B, Zhou P, Hon GC. 2017. Multiplexed engineering and analysis of combinatorial enhancer activity in single cells. Mol. Cell 66:2285–99.e5
    [Google Scholar]
  147. 147. 
    Dixit A, Parnas O, Li B, Chen J, Fulco CP et al. 2016. Perturb-seq: dissecting molecular circuits with scalable single-cell RNA profiling of pooled genetic screens. Cell 167:71853–66.e17
    [Google Scholar]
  148. 148. 
    Parnas O, Jovanovic M, Eisenhaure TM, Herbst RH, Dixit A et al. 2015. A genome-wide CRISPR screen in primary immune cells to dissect regulatory networks. Cell 162:3675–86
    [Google Scholar]
  149. 149. 
    Doench JG. 2018. Am I ready for CRISPR? A user's guide to genetic screens. Nat. Rev. Genet. 19:267–80
    [Google Scholar]
  150. 150. 
    Sanjana NE, Wright J, Zheng K, Shalem O, Fontanillas P et al. 2016. High-resolution interrogation of functional elements in the noncoding genome. Science 353:63071545–49
    [Google Scholar]
  151. 151. 
    Fulco CP, Munschauer M, Anyoha R, Munson G, Grossman SR et al. 2016. Systematic mapping of functional enhancer-promoter connections with CRISPR interference. Science 354:6313769–73
    [Google Scholar]
  152. 152. 
    Chen S, Sanjana NE, Zheng K, Shalem O, Lee K et al. 2015. Genome-wide CRISPR screen in a mouse model of tumor growth and metastasis. Cell 160:61246–60
    [Google Scholar]
  153. 153. 
    Patel SJ, Sanjana NE, Kishton RJ, Eidizadeh A, Vodnala SK et al. 2017. Identification of essential genes for cancer immunotherapy. Nature 548:7669537–42
    [Google Scholar]
  154. 154. 
    Manguso RT, Pope HW, Zimmer MD, Brown FD, Yates KB et al. 2017. In vivo CRISPR screening identifies Ptpn2 as a cancer immunotherapy target. Nature 547:7664413–18
    [Google Scholar]
  155. 155. 
    Braun CJ, Bruno PM, Horlbeck MA, Gilbert LA, Weissman JS, Hemann MT 2016. Versatile in vivo regulation of tumor phenotypes by dCas9-mediated transcriptional perturbation. PNAS 113:27E3892–900
    [Google Scholar]
  156. 156. 
    Katigbak A, Cencic R, Robert F, Sénécha P, Scuoppo C, Pelletier J. 2016. A CRISPR/Cas9 functional screen identifies rare tumor suppressors. Sci. Rep. 6:38968
    [Google Scholar]
  157. 157. 
    Kodama M, Kodama T, Newberg JY, Katayama H, Kobayashi M et al. 2017. In vivo loss-of-function screens identify KPNB1 as a new druggable oncogene in epithelial ovarian cancer. PNAS 114:35E7301–10
    [Google Scholar]
  158. 158. 
    Wang G, Chow RD, Ye L, Guzman CD, Dai X et al. 2018. Mapping a functional cancer genome atlas of tumor suppressors in mouse liver using AAV-CRISPR-mediated direct in vivo screening. Sci. Adv. 4:2eaao5508
    [Google Scholar]
  159. 159. 
    Chow RD, Guzman CD, Wang G, Schmidt F, Youngblood MW et al. 2017. AAV-mediated direct in vivo CRISPR screen identifies functional suppressors in glioblastoma. Nat. Neurosci. 20:101329–41
    [Google Scholar]
  160. 160. 
    Roth TL, Li PJ, Blaeschke F, Nies JF, Apathy R et al. 2020. Pooled knockin targeting for genome engineering of cellular immunotherapies. Cell 181:3728–44.e21
    [Google Scholar]
  161. 161. 
    Chow RD, Chen S 2018. Cancer CRISPR screens in vivo. Trends Cancer 4:5349–58
    [Google Scholar]
  162. 162. 
    Han K, Pierce SE, Li A, Spees K, Anderson GR et al. 2020. CRISPR screens in cancer spheroids identify 3D growth-specific vulnerabilities. Nature 580:7801136–41
    [Google Scholar]
  163. 163. 
    Michels BE, Mosa MH, Streibl BI, Zhan T, Menche C et al. 2020. Pooled in vitro and in vivo CRISPR-Cas9 screening identifies tumor suppressors in human colon organoids. Cell Stem Cell 26:5782–92.e7
    [Google Scholar]
  164. 164. 
    Czerniecki SM, Cruz NM, Harder JL, Menon R, Annis J et al. 2018. High-throughput screening enhances kidney organoid differentiation from human pluripotent stem cells and enables automated multidimensional phenotyping. Cell Stem Cell 22:6929–40.e4
    [Google Scholar]
  165. 165. 
    Brandenberg N, Hoehnel S, Kuttler F, Homicsko K, Ceroni C et al. 2020. High-throughput automated organoid culture via stem-cell aggregation in microcavity arrays. Nat. Biomed. Eng. 4:863–74
    [Google Scholar]
  166. 166. 
    van de Wetering M, Francies HE, Francis JM, Bounova G, Iorio F et al. 2015. Prospective derivation of a living organoid biobank of colorectal cancer patients. Cell 161:4933–45
    [Google Scholar]
  167. 167. 
    Gunasekara DB, DiSalvo M, Wang Y, Nguyen DL, Reed MI et al. 2018. Development of arrayed colonic organoids for screening of secretagogues associated with enterotoxins. Anal. Chem. 90:31941–50
    [Google Scholar]
  168. 168. 
    Gracz AD, Williamson IA, Roche KC, Johnston MJ, Wang F et al. 2015. A high-throughput platform for stem cell niche co-cultures and downstream gene expression analysis. Nat. Cell Biol. 17:3340–49
    [Google Scholar]
  169. 169. 
    Verissimo CS, Overmeer RM, Ponsioen B, Drost J, Mertens S et al. 2016. Targeting mutant RAS in patient-derived colorectal cancer organoids by combinatorial drug screening. eLife 5:e18489
    [Google Scholar]
  170. 170. 
    Finn JD, Smith AR, Patel MC, Shaw L, Youniss MR et al. 2018. A single administration of CRISPR/Cas9 lipid nanoparticles achieves robust and persistent in vivo genome editing. Cell Rep 22:92227–35
    [Google Scholar]
  171. 171. 
    Mangeot PE, Risson V, Fusil F, Marnef A, Laurent E et al. 2019. Genome editing in primary cells and in vivo using viral-derived Nanoblades loaded with Cas9-sgRNA ribonucleoproteins. Nat. Commun. 10:145
    [Google Scholar]
  172. 172. 
    Montagna C, Petris G, Casini A, Maule G, Franceschini GM et al. 2018. VSV-G-enveloped vesicles for traceless delivery of CRISPR-Cas9. Mol. Ther. Nucleic Acids 12:453–62
    [Google Scholar]
  173. 173. 
    Wu J, Wu H, Nakagawa S, Gao J. 2020. Virus-derived materials: bury the hatchet with old foes. Biomater. Sci. 8:41058–72
    [Google Scholar]
  174. 174. 
    Rees HA, Liu DR. 2018. Base editing: precision chemistry on the genome and transcriptome of living cells. Nat. Rev. Genet. 19:12770–88
    [Google Scholar]
  175. 175. 
    Komor AC, Kim YB, Packer MS, Zuris JA, Liu DR. 2016. Programmable editing of a target base in genomic DNA without double-stranded DNA cleavage. Nature 533:7603420–24
    [Google Scholar]
  176. 176. 
    Horlbeck MA, Gilbert LA, Villalta JE, Adamson B, Pak RA et al. 2016. Compact and highly active next-generation libraries for CRISPR-mediated gene repression and activation. eLife 5:e19760
    [Google Scholar]
  177. 177. 
    Wilson LOW, O'Brien AR, Bauer DC 2018. The current state and future of CRISPR-Cas9 gRNA design tools. Front. Pharmacol. 9:749
    [Google Scholar]
  178. 178. 
    Tycko J, Wainberg M, Marinov GK, Ursu O, Hess GT et al. 2019. Mitigation of off-target toxicity in CRISPR-Cas9 screens for essential non-coding elements. Nat. Commun. 10:14063
    [Google Scholar]
  179. 179. 
    Doench JG, Hartenian E, Graham DB, Tothova Z, Hegde M et al. 2014. Rational design of highly active sgRNAs for CRISPR-Cas9-mediated gene inactivation. Nat. Biotechnol. 32:121262–67
    [Google Scholar]
  180. 180. 
    Moreno-Mateos MA, Vejnar CE, Beaudoin J-D, Fernandez JP, Mis EK et al. 2015. CRISPRscan: designing highly efficient sgRNAs for CRISPR-Cas9 targeting in vivo. Nat. Methods 12:10982–88
    [Google Scholar]
  181. 181. 
    Doench JG, Fusi N, Sullender M, Hegde M, Vaimberg EW et al. 2016. Optimized sgRNA design to maximize activity and minimize off-target effects of CRISPR-Cas9. Nat. Biotechnol. 34:2184–91
    [Google Scholar]
  182. 182. 
    Chari R, Mali P, Moosburner M, Church GM. 2015. Unraveling CRISPR-Cas9 genome engineering parameters via a library-on-library approach. Nat. Methods 12:9823–26
    [Google Scholar]
  183. 183. 
    Tsai SQ, Zheng Z, Nguyen NT, Liebers M, Topkar VV et al. 2015. GUIDE-seq enables genome-wide profiling of off-target cleavage by CRISPR-Cas nucleases. Nat. Biotechnol. 33:2187–97
    [Google Scholar]
  184. 184. 
    Isaac RS, Jiang F, Doudna JA, Lim WA, Narlikar GJ, Almeida R. 2016. Nucleosome breathing and remodeling constrain CRISPR-Cas9 function. eLife 5:313450
    [Google Scholar]
  185. 185. 
    Horlbeck MA, Witkowsky LB, Guglielmi B, Replogle JM, Gilbert LA et al. 2016. Nucleosomes impede Cas9 access to DNA in vivo and in vitro. eLife 5:e12677
    [Google Scholar]
  186. 186. 
    Yarrington RM, Verma S, Schwartz S, Trautman JK, Carroll D 2018. Nucleosomes inhibit target cleavage by CRISPR-Cas9 in vivo. PNAS 115:9351–58
    [Google Scholar]
  187. 187. 
    Zhang X-H, Tee LY, Wang X-G, Huang Q-S, Yang S-H. 2015. Off-target effects in CRISPR/Cas9-mediated genome engineering. Mol. Ther. Nucleic Acids 4:e264
    [Google Scholar]
  188. 188. 
    Stowers RS, Shcherbina A, Israeli J, Gruber JJ, Chang J et al. 2019. Matrix stiffness induces a tumorigenic phenotype in mammary epithelium through changes in chromatin accessibility. Nat. Biomed. Eng. 3:121009–19
    [Google Scholar]
  189. 189. 
    Rabineau M, Flick F, Ehlinger C, Mathieu E, Duluc I et al. 2018. Chromatin de-condensation by switching substrate elasticity. Sci. Rep. 8:112655
    [Google Scholar]
  190. 190. 
    Makhija E, Jokhun DS, Shivashankar GV 2016. Nuclear deformability and telomere dynamics are regulated by cell geometric constraints. PNAS 113:32–40
    [Google Scholar]
  191. 191. 
    Toh KC, Ramdas NM, Shivashankar GV. 2015. Actin cytoskeleton differentially alters the dynamics of lamin A, HP1α and H2B core histone proteins to remodel chromatin condensation state in living cells. Integr. Biol. 7:101309–17
    [Google Scholar]
  192. 192. 
    Spagnol ST, Dahl KN. 2014. Active cytoskeletal force and chromatin condensation independently modulate intranuclear network fluctuations. Integr. Biol. 6:5523–31
    [Google Scholar]
  193. 193. 
    Jokhun DS, Shang Y, Shivashankar GV. 2018. Actin dynamics couples extracellular signals to the mobility and molecular stability of telomeres. Biophys. J. 115:71166–79
    [Google Scholar]
  194. 194. 
    Damodaran K, Venkatachalapathy S, Alisafaei F, Radhakrishnan AV, Sharma Jokhun D et al. 2018. Compressive force induces reversible chromatin condensation and cell geometry-dependent transcriptional response. Mol. Biol. Cell 29:253039–51
    [Google Scholar]
  195. 195. 
    Chang HHY, Pannunzio NR, Adachi N, Lieber MR. 2017. Non-homologous DNA end joining and alternative pathways to double-strand break repair. Nat. Rev. Mol. Cell Biol. 18:8495–506
    [Google Scholar]
  196. 196. 
    Chen CS, Mrksich M, Huang S, Whitesides GM, Ingber DE. 1997. Geometric control of cell life and death. Science 276:53171425–28
    [Google Scholar]
  197. 197. 
    Irianto J, Xia Y, Pfeifer CR, Athirasala A, Ji J et al. 2017. DNA damage follows repair factor depletion and portends genome variation in cancer cells after pore migration. Curr. Biol. 27:2210–23
    [Google Scholar]
  198. 198. 
    Klein TJ, Glazer PM. 2010. The tumor microenvironment and DNA repair. Semin. Radiat. Oncol. 20:4282–87
    [Google Scholar]
  199. 199. 
    Caridi CP, D'Agostino C, Ryu T, Zapotoczny G, Delabaere L et al. 2018. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559:771254–60
    [Google Scholar]
  200. 200. 
    Le HQ, Ghatak S, Yeung C-YC, Tellkamp F, Günschmann C et al. 2016. Mechanical regulation of transcription controls Polycomb-mediated gene silencing during lineage commitment. Nat. Cell Biol. 18:8864–75
    [Google Scholar]
  201. 201. 
    Caiazzo M, Okawa Y, Ranga A, Piersigilli A, Tabata Y, Lutolf MP. 2016. Defined three-dimensional microenvironments boost induction of pluripotency. Nat. Mater. 15:3344–52
    [Google Scholar]
  202. 202. 
    Kim E, Tae G. 2016. Direct reprogramming and biomaterials for controlling cell fate. Biomater. Res. 20:39
    [Google Scholar]
  203. 203. 
    Kulangara K, Adler AF, Wang H, Chellappan M, Hammett E et al. 2014. The effect of substrate topography on direct reprogramming of fibroblasts to induced neurons. Biomaterials 35:205327–36
    [Google Scholar]
  204. 204. 
    Smith DK, Yang J, Liu M-L, Zhang C-L. 2016. Small molecules modulate chromatin accessibility to promote NEUROG2-mediated fibroblast-to-neuron reprogramming. Stem Cell Rep 7:5955–69
    [Google Scholar]
  205. 205. 
    Crowder SW, Leonardo V, Whittaker T, Papathanasiou P, Stevens MM. 2016. Material cues as potent regulators of epigenetics and stem cell function. Cell Stem Cell 18:139–52
    [Google Scholar]
  206. 206. 
    Li Y, Chu JS, Kurpinski K, Li X, Bautista DM et al. 2011. Biophysical regulation of histone acetylation in mesenchymal stem cells. Biophys. J. 100:81902–9
    [Google Scholar]
  207. 207. 
    Downing TL, Soto J, Morez C, Houssin T, Fritz A et al. 2013. Biophysical regulation of epigenetic state and cell reprogramming. Nat. Mater. 12:121154–62
    [Google Scholar]
  208. 208. 
    Vining KH, Mooney DJ. 2017. Mechanical forces direct stem cell behaviour in development and regeneration. Nat. Rev. Mol. Cell Biol. 18:12728–42
    [Google Scholar]
  209. 209. 
    Miroshnikova YA, Nava MM, Wickström SA. 2017. Emerging roles of mechanical forces in chromatin regulation. J. Cell. Sci. 130:142243–50
    [Google Scholar]
  210. 210. 
    Uhler C, Shivashankar GV. 2017. Regulation of genome organization and gene expression by nuclear mechanotransduction. Nat. Rev. Mol. Cell Biol. 18:12717–27
    [Google Scholar]
  211. 211. 
    Chang L, Azzolin L, Di Biagio D, Zanconato F, Battilana G et al. 2018. The SWI/SNF complex is a mechanoregulated inhibitor of YAP and TAZ. Nature 563:7730265–69
    [Google Scholar]
  212. 212. 
    Jain N, Iyer KV, Kumar A, Shivashankar GV 2013. Cell geometric constraints induce modular gene-expression patterns via redistribution of HDAC3 regulated by actomyosin contractility. PNAS 110:2811349–54
    [Google Scholar]
  213. 213. 
    Tajik A, Zhang Y, Wei F, Sun J, Jia Q et al. 2016. Transcription upregulation via force-induced direct stretching of chromatin. Nat. Mater. 15:121287–96
    [Google Scholar]
/content/journals/10.1146/annurev-bioeng-122019-121602
Loading
/content/journals/10.1146/annurev-bioeng-122019-121602
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error