1932

Abstract

Our understanding of cell and developmental biology has been greatly aided by a focus on a small number of model organisms. However, we are now in an era where techniques to investigate gene function can be applied across phyla, allowing scientists to explore the diversity and flexibility of developmental mechanisms and gain a deeper understanding of life. Researchers comparing the eyeless cave-adapted Mexican tetra, , with its river-dwelling counterpart are revealing how the development of the eyes, pigment, brain, cranium, blood, and digestive system evolves as animals adapt to new environments. Breakthroughs in our understanding of the genetic and developmental basis of regressive and constructive trait evolution have come from research. They include understanding the types of mutations that alter traits, which cellular and developmental processes they affect, and how they lead to pleiotropy. We review recent progress in the field and highlight areas for future investigations that include evolution of sex differentiation, neural crest development, and metabolic regulation of embryogenesis.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-012023-014003
2023-10-16
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-012023-014003.html?itemId=/content/journals/10.1146/annurev-cellbio-012023-014003&mimeType=html&fmt=ahah

Literature Cited

  1. Alié A, Devos L, Torres-Paz J, Prunier L, Boulet F et al. 2018. Developmental evolution of the forebrain in cavefish, from natural variations in neuropeptides to behavior. eLife 7:e32808
    [Google Scholar]
  2. Aspiras AC, Rohner N, Martineau B, Borowsky RL, Tabin CJ. 2015. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. PNAS 112:9668–73
    [Google Scholar]
  3. Atukorala ADS, Bhatia V, Ratnayake R. 2019. Craniofacial skeleton of Mexican tetra (Astyanax mexicanus): as a bone disease model. Dev. Dyn. 248:153–61
    [Google Scholar]
  4. Atukorala ADS, Franz-Odendaal TA. 2014. Spatial and temporal events in tooth development of Astyanax mexicanus. Mech. Dev. 134:42–54
    [Google Scholar]
  5. Atukorala ADS, Franz-Odendaal TA. 2018. Genetic linkage between altered tooth and eye development in lens-ablated Astyanax mexicanus. Dev. Biol. 441:235–41
    [Google Scholar]
  6. Atukorala ADS, Hammer C, Dufton M, Franz-Odendaal TA. 2013. Adaptive evolution of the lower jaw dentition in Mexican tetra (Astyanax mexicanus). EvoDevo 4:28
    [Google Scholar]
  7. Baker CF, Montgomery JC. 1999. The sensory basis of rheotaxis in the blind Mexican cave fish, Astyanax fasciatus. J. Comp. Physiol. A 184:519–27
    [Google Scholar]
  8. Bilandžija H, Abraham L, Ma L, Renner KJ, Jeffery WR. 2018. Behavioural changes controlled by catecholaminergic systems explain recurrent loss of pigmentation in cavefish. Proc. R. Soc. B 285:20180243
    [Google Scholar]
  9. Bilandžija H, Ma L, Parkhurst A, Jeffery WR. 2013. A potential benefit of albinism in Astyanax cavefish: Downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLOS ONE 8:e80823
    [Google Scholar]
  10. Blin M, Tine E, Meister L, Elipot Y, Bibliowicz J et al. 2018. Developmental evolution and developmental plasticity of the olfactory epithelium and olfactory skills in Mexican cavefish. Dev. Biol. 441:242–51
    [Google Scholar]
  11. Boggs TE, Friedman JS, Gross JB. 2022. Alterations to cavefish red blood cells provide evidence of adaptation to reduced subterranean oxygen. Sci. Rep. 12:3735
    [Google Scholar]
  12. Borowsky RL. 2002. Mapping a cave fish genome: polygenic systems and regressive evolution. J. Hered. 93:19–21
    [Google Scholar]
  13. Borowsky RL. 2008. In vitro fertilization of Astyanax mexicanus. Cold Spring Harb. Protoc. 3:5092
    [Google Scholar]
  14. Boudriot F, Reutter K. 2001. Ultrastructure of the taste buds in the blind cave fish Astyanax jordani (“Anoptichthys”) and the sighted river fish Astyanax mexicanus (Teleostei, Characidae). J. Comp. Neurol. 434:428–44
    [Google Scholar]
  15. Braasch I, Schartl M, Volff JN. 2007. Evolution of pigment synthesis pathways by gene and genome duplication in fish. BMC Evol. Biol. 7:74
    [Google Scholar]
  16. Carrera P, Cordera R, Ferrarl M, Cremonesl L, Taramelli R et al. 1993. Substitution of Leu for Pro-193 in the insulin receptor in a patient with a genetic form of severe insulin resistance. Hum. Mol. Genet. 2:1437–41
    [Google Scholar]
  17. Chitramuthu BP, Baranowski DC, Cadieux B, Rousselet E, Seidah NG, Bennett HPJ. 2010. Molecular cloning and embryonic expression of zebrafish PCSK5 co-orthologues: functional assessment during lateral line development. Dev. Dyn. 239:2933–46
    [Google Scholar]
  18. Coombs S, Bleckmann H, Fay RR, Popper AN, eds. 2014. The Lateral Line System New York: Springer
  19. Duboué ER, Keene AC, Borowsky RL. 2011. Evolutionary convergence on sleep loss in cavefish populations. Curr. Biol. 21:671–76
    [Google Scholar]
  20. Ekker SC, Ungar AR, Greenstein P, von Kessler DP, Porter JA et al. 1995. Patterning activities of vertebrate hedgehog proteins in the developing eye and brain. Curr. Biol. 5:944–55
    [Google Scholar]
  21. Elipot Y, Legendre L, Père S, Sohm F, Rétaux S. 2014. Astyanax transgenesis and husbandry: how cavefish enters the laboratory. Zebrafish 11:291–99
    [Google Scholar]
  22. Elliott WR 2016. Cave biodiversity and ecology of the Sierra de El Abra region. Biology and Evolution of the Mexican Cavefish AC Keene, M Yoshizawa, SE McGaugh 59–76. Amsterdam: Elsevier
    [Google Scholar]
  23. Erickson CA. 1993. From the crest to the periphery: control of pigment cell migration and lineage segregation. Pigment Cell Res. 6:336–47
    [Google Scholar]
  24. Espinasa L, Ornelas-García CP, Legendre L, Rétaux S, Best A et al. 2020. Discovery of two new Astyanax cavefish localities leads to further understanding of the species biogeography. Diversity 12:368
    [Google Scholar]
  25. Fernandes VFL, Macaspac C, Lu L, Yoshizawa M. 2018. Evolution of the developmental plasticity and a coupling between left mechanosensory neuromasts and an adaptive foraging behavior. Dev. Biol. 441:262–71
    [Google Scholar]
  26. Franz-Odendaal TA, Hall BK. 2006. Modularity and sense organs in the blind cavefish. Astyanax mexicanus. Evol. Dev. 8:94–100
    [Google Scholar]
  27. Fujii R. 1993. Cytophysiology of fish chromatophores. Int. Rev. Cytol. 143:191–255
    [Google Scholar]
  28. Fujii R. 2000. The regulation of motile activity in fish chromatophores. Pigment Cell Res. 13:300–19
    [Google Scholar]
  29. Gore AV, Tomins KA, Iben J, Ma L, Castranova D et al. 2018. An epigenetic mechanism for cavefish eye degeneration. Nat. Ecol. Evol. 2:1155–60
    [Google Scholar]
  30. Green PD, Hjalt TA, Kirk DE, Sutherland LB, Thomas BL et al. 2001. Antagonistic regulation of Dlx2 expression by Pitx2 and Msx2: implications for tooth development. Gene Expr. 9:265–81
    [Google Scholar]
  31. Gross JB, Berning D, Phelps A, Luc H. 2023. An analysis of lateralized neural crest marker expression across development in the Mexican tetra. Front. Cell Dev. Biol. 11:1074616
    [Google Scholar]
  32. Gross JB, Borowsky R, Tabin CJ. 2009. A novel role for mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLOS Genet. 5:e1000326
    [Google Scholar]
  33. Gross JB, Gangidine A, Powers AK. 2016a. Asymmetric facial bone fragmentation mirrors asymmetric distribution of cranial neuromasts in blind Mexican cavefish. Symmetry 8:118
    [Google Scholar]
  34. Gross JB, Krutzler AJ, Carlson BM. 2014. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. Genetics 196:1303–19
    [Google Scholar]
  35. Gross JB, Powers AK. 2020. A natural animal model system of craniofacial anomalies: the blind Mexican cavefish. Anat. Rec. 303:24–29
    [Google Scholar]
  36. Gross JB, Stahl BA, Powers AK, Carlson BM. 2016b. Natural bone fragmentation in the blind cave-dwelling fish, Astyanax mexicanus: candidate gene identification through integrative comparative genomics. Evol. Dev. 18:7–18
    [Google Scholar]
  37. Gross JB, Wilkens H. 2013. Albinism in phylogenetically and geographically distinct populations of Astyanax cavefish arises through the same loss-of-function oca2 allele. Heredity 111:122–30
    [Google Scholar]
  38. Herman A, Brandvain Y, Weagley J, Jeffery WR, Keene AC et al. 2018. The role of gene flow in rapid and repeated evolution of cave-related traits in Mexican tetra. Astyanax mexicanus. Mol. Ecol. 27:4397–416
    [Google Scholar]
  39. Hinaux H, Blin M, Fumey J, Legendre L, Heuzé A et al. 2015. Lens defects in Astyanax mexicanus cavefish: evolution of crystallins and a role for αA-crystallin. Dev. Neurobiol. 75:505–21
    [Google Scholar]
  40. Hinaux H, Devos L, Blin M, Elipot Y, Bibliowicz J et al. 2016. Sensory evolution in blind cavefish is driven by early embryonic events during gastrulation and neurulation. Development 143:4521–32
    [Google Scholar]
  41. Hinaux H, Pottin K, Chalhoub H, Père S, Elipot Y et al. 2011. A developmental staging table for Astyanax mexicanus surface fish and Pachón cavefish. Zebrafish 8:155–65
    [Google Scholar]
  42. Hooven T, Yamamoto Y, Jeffery W. 2004. Blind cavefish and heat shock protein chaperones: a novel role for hsp90α in lens apoptosis. Int. J. Dev. Biol. 48:731–38
    [Google Scholar]
  43. Hüppop K. 1986. Oxygen consumption of Astyanax fasciatus (Characidae, Pisces): a comparison of epigean and hypogean populations. Environ. Biol. Fishes 17:299–308
    [Google Scholar]
  44. Hüppop K, Wilkens H. 2009. Bigger eggs in subterranean Astyanax fasciatus (Characidae, Pisces). J. Zool. Syst. Evol. Res. 29:280–88
    [Google Scholar]
  45. Imarazene B, Beille S, Jouanno E, Branthonne A, Thermes V et al. 2021a. Primordial germ cell migration and histological and molecular characterization of gonadal differentiation in Pachón cavefish Astyanax mexicanus. Sex. Dev. 14:80–98
    [Google Scholar]
  46. Imarazene B, Du K, Beille S, Jouanno E, Feron R et al. 2021b. A supernumerary “B-sex” chromosome drives male sex determination in the Pachón cavefish, Astyanax mexicanus. Curr. Biol. 31:4800–9.e9
    [Google Scholar]
  47. Jaggard JB, Lloyd E, Yuiska A, Patch A, Fily Y et al. 2020. Cavefish brain atlases reveal functional and anatomical convergence across independently evolved populations. Sci. Adv. 6:eaba3126
    [Google Scholar]
  48. Jaggard JB, Robinson BG, Stahl BA, Oh I, Masek P et al. 2017. The lateral line confers evolutionarily derived sleep loss in the Mexican cavefish. J. Exp. Biol. 220:284–93
    [Google Scholar]
  49. Jaggard JB, Stahl BA, Lloyd E, Prober DA, Duboue ER, Keene AC. 2018. Hypocretin underlies the evolution of sleep loss in the Mexican cavefish. eLife 7:e32637
    [Google Scholar]
  50. Jeffery WR. 2005. Adaptive evolution of eye degeneration in the Mexican blind cavefish. J. Hered. 96:185–96
    [Google Scholar]
  51. Jeffery WR. 2020. Astyanax surface and cave fish morphs. EvoDevo 11:14
    [Google Scholar]
  52. Jeffery WR, Ma L, Parkhurst A, Bilandžija H 2016. Pigment regression and albinism in Astyanax cavefish. Biology and Evolution of the Mexican Cavefish AC Keene, M Yoshizawa, SE McGaugh 155–75. Amsterdam: Elsevier
    [Google Scholar]
  53. Jeffery WR, Strickler AG, Guiney S, Heyser DG, Tomarev SI. 2000. Prox 1 in eye degeneration and sensory organ compensation during development and evolution of the cavefish Astyanax. Dev. Genes Evol. 210:223–30
    [Google Scholar]
  54. Kelsh RN. 2004. Genetics and evolution of pigment patterns in fish. Pigment Cell Res. 17:326–36
    [Google Scholar]
  55. Klaassen H, Wang Y, Adamski K, Rohner N, Kowalko JE. 2018. CRISPR mutagenesis confirms the role of oca2 in melanin pigmentation in Astyanax mexicanus. Dev. Biol. 441:313–18
    [Google Scholar]
  56. Kowalko JE, Ma L, Jeffery WR. 2016. Genome editing in Astyanax mexicanus using transcription activator-like effector nucleases (TALENs). J. Vis. Exp. 112:e54113
    [Google Scholar]
  57. Kowalko JE, Rohner N, Linden TA, Rompani SB, Warren WC et al. 2013a. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. PNAS 110:16933–38
    [Google Scholar]
  58. Kowalko JE, Rohner N, Rompani SB, Peterson BK, Linden TA et al. 2013b. Loss of schooling behavior in cavefish through sight-dependent and sight-independent mechanisms. Curr. Biol. 23:1874–83
    [Google Scholar]
  59. Kozol RA, Yuiska A, Han JH, Tolentino B, Lopatto A et al. 2023. Novel husbandry practices result in rapid rates of growth and sexual maturation without impacting adult behavior in the blind Mexican cavefish. Zebrafish 20:86–94
    [Google Scholar]
  60. Krishnan J, Persons JL, Peuß R, Hassan H, Kenzior A et al. 2020. Comparative transcriptome analysis of wild and lab populations of Astyanax mexicanus uncovers differential effects of environment and morphotype on gene expression. J. Exp. Zool. B 334:530–39
    [Google Scholar]
  61. Krishnan J, Rohner N. 2017. Cavefish and the basis for eye loss. Philos. Trans. R. Soc. B 372:20150487
    [Google Scholar]
  62. Loomis C, Peuß R, Jaggard JB, Wang Y, McKinney SA et al. 2019. An adult brain atlas reveals broad neuroanatomical changes in independently evolved populations of Mexican cavefish. Front. Neuroanat. 13:88
    [Google Scholar]
  63. Luc H, Sears C, Raczka A, Gross JB. 2019. Wholemount in situ hybridization for Astyanax embryos. J. Vis. Exp. 145:e59114
    [Google Scholar]
  64. Ma L, Dessiatoun R, Shi J, Jeffery WR. 2021a. Incremental temperature changes for maximal breeding and spawning in Astyanax mexicanus. J. Vis. Exp. 168:e61708
    [Google Scholar]
  65. Ma L, Gore AV, Castranova D, Shi J, Ng M et al. 2020a. A hypomorphic cystathionine β-synthase gene contributes to cavefish eye loss by disrupting optic vasculature. Nat. Commun. 11:2772
    [Google Scholar]
  66. Ma L, Ng M, Shi J, Gore AV, Castranova D et al. 2021b. Maternal control of visceral asymmetry evolution in Astyanax cavefish. Sci. Rep. 11:10312
    [Google Scholar]
  67. Ma L, Ng M, van der Weele CM, Yoshizawa M, Jeffery WR. 2020b. Dual roles of the retinal pigment epithelium and lens in cavefish eye degeneration. J. Exp. Zool. B 334:438–49
    [Google Scholar]
  68. Ma L, Parkhurst A, Jeffery WR. 2014. The role of a lens survival pathway including sox2 and αA-crystallin in the evolution of cavefish eye degeneration. EvoDevo 5:28
    [Google Scholar]
  69. Macdonald R, Barth KA, Xu Q, Holder N, Mikkola I, Wilson SW. 1995. Midline signalling is required for Pax gene regulation and patterning of the eyes. Development 121:3267–78
    [Google Scholar]
  70. McCauley DW, Hixon E, Jeffery WR. 2004. Evolution of pigment cell regression in the cavefish Astyanax: a late step in melanogenesis. Evol. Dev. 6:209–18
    [Google Scholar]
  71. McGaugh SE, Gross JB, Aken B, Blin M, Borowsky R et al. 2014. The cavefish genome reveals candidate genes for eye loss. Nat. Commun. 5:5307
    [Google Scholar]
  72. McHenry MJ, Strother JA, Van Netten SM. 2008. Mechanical filtering by the boundary layer and fluid-structure interaction in the superficial neuromast of the fish lateral line system. J. Comp. Physiol. A 194:795–810
    [Google Scholar]
  73. Menuet A, Alunni A, Joly JS, Jeffery WR, Rétaux S. 2007. Expanded expression of Sonic Hedgehog in Astyanax cavefish: multiple consequences on forebrain development and evolution. Development 134:845–55
    [Google Scholar]
  74. Moran D, Softley R, Warrant EJ. 2015. The energetic cost of vision and the evolution of eyeless Mexican cavefish. Sci. Adv. 1:e1500363
    [Google Scholar]
  75. Mountjoy KG, Mortrud MT, Low MJ, Simerly RB, Cone RD. 1994. Localization of the melanocortin-4 receptor (MC4-R) in neuroendocrine and autonomic control circuits in the brain. Mol. Endocrinol. 8:1298–308
    [Google Scholar]
  76. Nüsslein-Volhard C, Singh AP. 2017. How fish color their skin: a paradigm for development and evolution of adult patterns. Multipotency, plasticity, and cell competition regulate proliferation and spreading of pigment cells in zebrafish coloration. BioEssays 39:1600231
    [Google Scholar]
  77. O'Gorman M, Thakur S, Imrie G, Moran RL, Choy S et al. 2021. Pleiotropic function of the oca2 gene underlies the evolution of sleep loss and albinism in cavefish. Curr. Biol. 31:3694–701.e4
    [Google Scholar]
  78. Peuß R, Box AC, Chen S, Wang Y, Tsuchiya D et al. 2020. Adaptation to low parasite abundance affects immune investment and immunopathological responses of cavefish. Nat. Ecol. Evol. 4:1416–30
    [Google Scholar]
  79. Peuß R, Zakibe Z, Krishnan J, Merryman MS, Baumann DP, Rohner N. 2019. Gamete collection and in vitro fertilization of Astyanax mexicanus. J. Vis. Exp. 147:e59334
    [Google Scholar]
  80. Pottin K, Hinaux H, Rétaux S. 2011. Restoring eye size in Astyanax mexicanus blind cavefish embryos through modulation of the Shh and Fgf8 forebrain organising centres. Development 138:2467–76
    [Google Scholar]
  81. Powers AK, Berning DJ, Gross JB. 2020. Parallel evolution of regressive and constructive craniofacial traits across distinct populations of Astyanax mexicanus cavefish. J. Exp. Zool. B 334:450–62
    [Google Scholar]
  82. Powers AK, Boggs TE, Gross JB. 2018a. Canal neuromast position prefigures developmental patterning of the suborbital bone series in Astyanax cave- and surface-dwelling fish. Dev. Biol. 441:252–61
    [Google Scholar]
  83. Powers AK, Davis EM, Kaplan SA, Gross JB. 2017. Cranial asymmetry arises later in the life history of the blind Mexican cavefish, Astyanax mexicanus. PLOS ONE 12:e0177419
    [Google Scholar]
  84. Powers AK, Kaplan SA, Boggs TE, Gross JB. 2018b. Facial bone fragmentation in blind cavefish arises through two unusual ossification processes. Sci. Rep. 8:7015
    [Google Scholar]
  85. Protas ME, Conrad M, Gross JB, Tabin C, Borowsky R. 2007. Regressive evolution in the Mexican cave tetra, Astyanax mexicanus. Curr. Biol. 17:452–54
    [Google Scholar]
  86. Protas ME, Hersey C, Kochanek D, Zhou Y, Wilkens H et al. 2006. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat. Genet. 38:107–11
    [Google Scholar]
  87. Ren X, Hamilton N, Müller F, Yamamoto Y. 2018. Cellular rearrangement of the prechordal plate contributes to eye degeneration in the cavefish. Dev. Biol. 441:221–34
    [Google Scholar]
  88. Rétaux S, Pottin K, Alunni A. 2008. Shh and forebrain evolution in the blind cavefish Astyanax mexicanus. Biol. Cell 100:139–47
    [Google Scholar]
  89. Riddle MR, Aspiras AC, Damen F, Hutchinson JN, Chinnapen DJ et al. 2020. Genetic architecture underlying changes in carotenoid accumulation during the evolution of the blind Mexican cavefish, Astyanax mexicanus. J. Exp. Zool. B 334:405–22
    [Google Scholar]
  90. Riddle MR, Aspiras AC, Damen F, McGaugh S, Tabin JA, Tabin CJ. 2021. Genetic mapping of metabolic traits in the blind Mexican cavefish reveals sex-dependent quantitative trait loci associated with cave adaptation. BMC Ecol. Evol. 21:94
    [Google Scholar]
  91. Riddle MR, Aspiras AC, Gaudenz K, Peuß R, Sung JY et al. 2018a. Insulin resistance in cavefish as an adaptation to a nutrient-limited environment. Nature 555:647–51
    [Google Scholar]
  92. Riddle MR, Boesmans W, Caballero O, Kazwiny Y, Tabin CJ. 2018b. Morphogenesis and motility of the Astyanax mexicanus gastrointestinal tract. Dev. Biol. 441:285–96
    [Google Scholar]
  93. Riddle MR, Hu C-K. 2021. Fish models for investigating nutritional regulation of embryonic development. Dev. Biol. 476:101–11
    [Google Scholar]
  94. Riddle MR, Martineau B, Peavey M, Tabin C. 2018c. Raising the Mexican tetra Astyanax mexicanus for analysis of post-larval phenotypes and whole-mount immunohistochemistry. J. Vis. Exp. 142:e58972
    [Google Scholar]
  95. Rocha M, Singh N, Ahsan K, Beiriger A, Prince VE. 2020. Neural crest development: insights from the zebrafish. Dev. Dyn. 249:88–111
    [Google Scholar]
  96. Rodriguez-Morales R, Gonzalez-Lerma P, Yuiska A, Han JH, Guerra Y et al. 2022. Convergence on reduced aggression through shared behavioral traits in multiple populations of Astyanax mexicanus. BMC Ecol. Evol. 22:116
    [Google Scholar]
  97. Rohner N, Jarosz DF, Kowalko JE, Yoshizawa M, Jeffery WR et al. 2013. Cryptic variation in morphological evolution: HSP90 as a capacitor for loss of eyes in cavefish. Science 342:1372–75
    [Google Scholar]
  98. Schemmel C. 1967. Vergleichende Untersuchungen an den Hautsinnesorganen ober- und unterirdisch lebender Astyanax-Formen. Z. Morphol. Tiere 61:255–316
    [Google Scholar]
  99. Schemmel C. 1980. Studies on the genetics of feeding behaviour in the cave fish Astyanax mexicanus f. anoptichthys. An example of apparent monofactorial inheritance by polygenes. Z. Tierpsychol. 53:9–22
    [Google Scholar]
  100. Schwarz M, Cecconi F, Bernier G, Andrejewski N, Kammandel B et al. 2000. Spatial specification of mammalian eye territories by reciprocal transcriptional repression of Pax2 and Pax6. Development 127:4325–34
    [Google Scholar]
  101. Sefc KM, Brown AC, Clotfelter ED. 2014. Carotenoid-based coloration in cichlid fishes. Comp. Biochem. Physiol. A 173:42–51
    [Google Scholar]
  102. Silver DL, Hou L, Pavan WJ. 2006. The genetic regulation of pigment cell development. Adv. Exp. Med. Biol. 589:155–69
    [Google Scholar]
  103. Slominski A, Zmijewski MA, Pawelek J. 2012. l-tyrosine and l-dihydroxyphenylalanine as hormone-like regulators of melanocyte functions. Pigment Cell Melanoma Res. 25:14–27
    [Google Scholar]
  104. Stahl BA, Jaggard JB, Chin JSR, Kowalko JE, Keene AC, Duboué ER. 2019a. Manipulation of gene function in Mexican cavefish. J. Vis. Exp. 146:e59093
    [Google Scholar]
  105. Stahl BA, Peuß R, McDole B, Kenzior A, Jaggard JB et al. 2019b. Stable transgenesis in Astyanax mexicanus using the Tol2 transposase system. Dev. Dyn. 248:679–87
    [Google Scholar]
  106. Stock DW, Jackman WR, Trapani J. 2006. Developmental genetic mechanisms of evolutionary tooth loss in cypriniform fishes. Development 133:3127–37
    [Google Scholar]
  107. Stockdale WT, Lemieux ME, Killen AC, Zhao J, Hu Z et al. 2018. Heart regeneration in the Mexican cavefish. Cell Rep. 25:1997–2007.e7
    [Google Scholar]
  108. Strickler AG, Soares D. 2011. Comparative genetics of the central nervous system in epigean and hypogean Astyanax mexicanus. Genetica 139:383–91
    [Google Scholar]
  109. Strickler AG, Yamamoto Y, Jeffery WR. 2001. Early and late changes in Pax6 expression accompany eye degeneration during cavefish development. Dev. Genes Evol. 211:138–44
    [Google Scholar]
  110. Strickler AG, Yamamoto Y, Jeffery WR. 2007. The lens controls cell survival in the retina: evidence from the blind cavefish Astyanax. Dev. Biol. 311:512–23
    [Google Scholar]
  111. Suzuki J, Osumi N. 2015. Neural crest and placode contributions to olfactory development. Curr. Top. Dev. Biol. 111:351–74
    [Google Scholar]
  112. Tang JLY, Guo Y, Stockdale WT, Rana K, Killen AC et al. 2018. The developmental origin of heart size and shape differences in Astyanax mexicanus populations. Dev. Biol. 441:272–84
    [Google Scholar]
  113. Tanvir Z, Rivera D, Severi KE, Haspel G, Soares D. 2021. Evolutionary and homeostatic changes in morphology of visual dendrites of Mauthner cells in Astyanax blind cavefish. J. Comp. Neurol. 529:1779–86
    [Google Scholar]
  114. Teyke T. 1988. Flow field, swimming velocity and boundary layer: parameters which affect the stimulus for the lateral line organ in blind fish. J. Comp. Physiol. A 163:53–61
    [Google Scholar]
  115. van de Water S, van de Wetering M, Joore J, Esseling J, Bink R et al. 2001. Ectopic Wnt signal determines the eyeless phenotype of zebrafish masterblind mutant. Development 128:3877–88
    [Google Scholar]
  116. van der Weele CM, Jeffery WR. 2022. Cavefish cope with environmental hypoxia by developing more erythrocytes and overexpression of hypoxia-inducible genes. eLife 11:e69109
    [Google Scholar]
  117. Varatharasan N, Croll RP, Franz-Odendaal T. 2009. Taste bud development and patterning in sighted and blind morphs of Astyanax mexicanus. Dev. Dyn. 238:3056–64
    [Google Scholar]
  118. Warren WC, Boggs TE, Borowsky R, Carlson BM, Ferrufino E et al. 2021. A chromosome-level genome of Astyanax mexicanus surface fish for comparing population-specific genetic differences contributing to trait evolution. Nat. Commun. 12:1447
    [Google Scholar]
  119. Wilson EJ, Tobler M, Riesch R, Martínez-García L, García-De León FJ 2021. Natural history and trophic ecology of three populations of the Mexican cavefish. Astyanax mexicanus. Environ Biol. Fishes 104:1461–74
    [Google Scholar]
  120. Xiong S, Krishnan J, Peuß R, Rohner N. 2018. Early adipogenesis contributes to excess fat accumulation in cave populations of Astyanax mexicanus. Dev. Biol. 441:297–304
    [Google Scholar]
  121. Xiong S, Wang W, Kenzior A, Olsen L, Krishnan J et al. 2022. Enhanced lipogenesis through Pparγ helps cavefish adapt to food scarcity. Curr. Biol. 32:2272–80.e6
    [Google Scholar]
  122. Yamamoto Y, Byerly MS, Jackman WR, Jeffery WR. 2009. Pleiotropic functions of embryonic sonic hedgehog expression link jaw and taste bud amplification with eye loss during cavefish evolution. Dev. Biol. 330:200–11
    [Google Scholar]
  123. Yamamoto Y, Espinasa L, Stock DW, Jeffery WR. 2003. Development and evolution of craniofacial patterning is mediated by eye-dependent and -independent processes in the cavefish Astyanax. Evol. Dev. 5:435–46
    [Google Scholar]
  124. Yamamoto Y, Jeffery WR. 2000. Central role for the lens in cave fish eye degeneration. Science 289:631–33
    [Google Scholar]
  125. Yamamoto Y, Stock DW, Jeffery WR. 2004. Hedgehog signalling controls eye degeneration in blind cavefish. Nature 431:844–47
    [Google Scholar]
  126. Yoshizawa M, Gorički Š, Soares D, Jeffery WR. 2010. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr. Biol. 20:1631–36
    [Google Scholar]
  127. Yoshizawa M, Hixon E, Jeffery WR. 2018. Neural crest transplantation reveals key roles in the evolution of cavefish development. Integr. Comp. Biol. 58:411–20
    [Google Scholar]
  128. Yoshizawa M, Jeffery WR, Van Netten SM, McHenry MJ. 2014. The sensitivity of lateral line receptors and their role in the behavior of Mexican blind cavefish (Astyanax mexicanus). J. Exp. Biol. 217:886–95
    [Google Scholar]
  129. Yoshizawa M, Robinson BG, Duboué ER, Masek P, Jaggard JB et al. 2015. Distinct genetic architecture underlies the emergence of sleep loss and prey-seeking behavior in the Mexican cavefish. BMC Biol. 13:15
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-012023-014003
Loading
/content/journals/10.1146/annurev-cellbio-012023-014003
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error