In the 1980s, exosomes were described as vesicles of endosomal origin secreted from reticulocytes. Interest increased around these extracellular vesicles, as they appeared to participate in several cellular processes. Exosomes bear proteins, lipids, and RNAs, mediating intercellular communication between different cell types in the body, and thus affecting normal and pathological conditions. Only recently, scientists acknowledged the difficulty of separating exosomes from other types of extracellular vesicles, which precludes a clear attribution of a particular function to the different types of secreted vesicles. To shed light into this complex but expanding field of science, this review focuses on the definition of exosomes and other secreted extracellular vesicles. Their biogenesis, their secretion, and their subsequent fate are discussed, as their functions rely on these important processes.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Aalberts M, van Dissel-Emiliani FM, van Adrichem NP, van Wijnen M, Wauben MH. et al. 2012. Identification of distinct populations of prostasomes that differentially express prostate stem cell antigen, annexin a1 and GLIPR2 in humans. Biol. Reprod. 86:82 [Google Scholar]
  2. Abrami L, Brandi L, Moayeri M, Brown MJ, Krantz BA. et al. 2013. Hijacking multivesicular bodies enables long-term and exosome-mediated long-distance action of anthrax toxin. Cell Rep. 5:986–96 [Google Scholar]
  3. Al-Nedawi K, Meehan B, Kerbel RS, Allison AC, Rak J. 2009. Endothelial expression of autocrine VEGF upon the uptake of tumor-derived microvesicles containing oncogenic EGFR. Proc. Natl. Acad. Sci. USA 106:3794–99 [Google Scholar]
  4. Al-Nedawi K, Meehan B, Micallef J, Lhotak V, May L. et al. 2008. Intercellular transfer of the oncogenic receptor EGFRvIII by microvesicles derived from tumour cells. Nat. Cell Biol. 10:619–24 [Google Scholar]
  5. Alonso R, Mazzeo C, Mérida I, Izquierdo M. 2007. A new role of diacylglycerol kinase α on the secretion of lethal exosomes bearing Fas ligand during activation-induced cell death of T lymphocytes. Biochimie 89:213–21 [Google Scholar]
  6. Alonso R, Mazzeo C, Rodriguez MC, Marsh M, Fraile-Ramos A. et al. 2011. Diacylglycerol kinase α regulates the formation and polarisation of mature multivesicular bodies involved in the secretion of Fas ligand-containing exosomes in T lymphocytes. Cell Death Differ. 18:1161–73 [Google Scholar]
  7. Alvarez-Erviti L, Seow Y, Yin H, Betts C, Lakhal S, Wood MJ. 2011. Delivery of siRNA to the mouse brain by systemic injection of targeted exosomes. Nat. Biotechnol. 29:341–45 [Google Scholar]
  8. Anderson HC. 1969. Vesicles associated with calcification in the matrix of epiphyseal cartilage. J. Cell Biol. 41:59–72 [Google Scholar]
  9. Arroyo JD, Chevillet JR, Kroh EM, Ruf IK, Pritchard CC. et al. 2011. Argonaute2 complexes carry a population of circulating microRNAs independent of vesicles in human plasma. Proc. Natl. Acad. Sci. USA 108:5003–8 [Google Scholar]
  10. Baietti MF, Zhang Z, Mortier E, Melchior A, Degeest G. et al. 2012. Syndecan-syntenin-ALIX regulates the biogenesis of exosomes. Nat. Cell Biol. 14:677–85 [Google Scholar]
  11. Baj-Krzyworzeka M, Majka M, Pratico D, Ratajczak J, Vilaire G. et al. 2002. Platelet-derived microparticles stimulate proliferation, survival, adhesion, and chemotaxis of hematopoietic cells. Exp. Hematol. 30:450–59 [Google Scholar]
  12. Baj-Krzyworzeka M, Szatanek R, Weglarczyk K, Baran J, Urbanowicz B. et al. 2006. Tumour-derived microvesicles carry several surface determinants and mRNA of tumour cells and transfer some of these determinants to monocytes. Cancer Immunol. Immunother. 55:808–18 [Google Scholar]
  13. Barres C, Blanc L, Bette-Bobillo P, Andre S, Mamoun R. et al. 2010. Galectin-5 is bound onto the surface of rat reticulocyte exosomes and modulates vesicle uptake by macrophages. Blood 115:696–705 [Google Scholar]
  14. Barteneva NS, Maltsev N, Vorobjev IA. 2013. Microvesicles and intercellular communication in the context of parasitism. Front. Cell. Infect. Microbiol. 3:49 [Google Scholar]
  15. Batagov AO, Kuznetsov VA, Kurochkin IV. 2011. Identification of nucleotide patterns enriched in secreted RNAs as putative cis-acting elements targeting them to exosome nano-vesicles. BMC Genomics 12:Suppl. 3S18 [Google Scholar]
  16. Beckett K, Monier S, Palmer L, Alexandre C, Green H. et al. 2013. Drosophila S2 cells secrete wingless on exosome-like vesicles but the wingless gradient forms independently of exosomes. Traffic 14:82–96 [Google Scholar]
  17. Bellingham SA, Coleman BM, Hill AF. 2012. Small RNA deep sequencing reveals a distinct miRNA signature released in exosomes from prion-infected neuronal cells. Nucleic Acids Res. 40:10937–49 [Google Scholar]
  18. Bianco F, Perrotta C, Novellino L, Francolini M, Riganti L. et al. 2009. Acid sphingomyelinase activity triggers microparticle release from glial cells. EMBO J 28:1043–54 [Google Scholar]
  19. Bianco F, Pravettoni E, Colombo A, Schenk U, Möller T. et al. 2005. Astrocyte-derived ATP induces vesicle shedding and IL-1β release from microglia. J. Immunol. 174:7268–77 [Google Scholar]
  20. Blanchard N, Lankar D, Faure F, Regnault A, Dumont C. et al. 2002. TCR activation of human T cells induces the production of exosomes bearing the TCR/CD3/ζ complex. J. Immunol. 168:3235–41 [Google Scholar]
  21. Bobrie A, Colombo M, Krumeich S, Raposo G, Théry C. 2012a. Diverse subpopulations of vesicles secreted by different intracellular mechanisms are present in exosome preparations obtained by differential ultracentrifugation. J. Extracell. Vesicles 1:18397 [Google Scholar]
  22. Bobrie A, Colombo M, Raposo G, Théry C. 2011. Exosome secretion: molecular mechanisms and roles in immune responses. Traffic 12:1659–68 [Google Scholar]
  23. Bobrie A, Krumeich S, Reyal F, Recchi C, Moita LF. et al. 2012b. Rab27a supports exosome-dependent and -independent mechanisms that modify the tumor microenvironment and can promote tumor progression. Cancer Res. 72:4920–30 [Google Scholar]
  24. Booth AM, Fang Y, Fallon JK, Yang JM, Hildreth JE, Gould SJ. 2006. Exosomes and HIV Gag bud from endosome-like domains of the T cell plasma membrane. J. Cell Biol. 172:923–35 [Google Scholar]
  25. Brouwers JF, Aalberts M, Jansen JW, Van Niel G, Wauben MH. et al. 2013. Distinct lipid compositions of two types of human prostasomes. Proteomics 13:1660–66 [Google Scholar]
  26. Buschow SI, Liefhebber JM, Wubbolts R, Stoorvogel W. 2005. Exosomes contain ubiquitinated proteins. Blood Cells Mol. Dis. 35:398–403 [Google Scholar]
  27. Buschow SI, Nolte-'t Hoen EN, Van Niel G, Pols MS, Ten Broeke T. et al. 2009. MHC II in dendritic cells is targeted to lysosomes or T cell-induced exosomes via distinct multivesicular body pathways. Traffic 10:1528–42 [Google Scholar]
  28. Cantin R, Diou J, Belanger D, Tremblay AM, Gilbert C. 2008. Discrimination between exosomes and HIV-1: purification of both vesicles from cell-free supernatants. J. Immunol. Methods 338:21–30 [Google Scholar]
  29. Carayon K, Chaoui K, Ronzier E, Lazar I, Bertrand-Michel J. et al. 2011. The proteo-lipidic composition of exosomes changes during reticulocyte maturation. J. Biol. Chem. 286:34426–39 [Google Scholar]
  30. Chairoungdua A, Smith DL, Pochard P, Hull M, Caplan MJ. 2010. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. J. Cell Biol. 190:1079–91 [Google Scholar]
  31. Chaput N, Théry C. 2011. Exosomes: immune properties and potential clinical implementations. Semin. Immunopathol. 33:419–40 [Google Scholar]
  32. Chen TS, Lai RC, Lee MM, Choo AB, Lee CN, Lim SK. 2010. Mesenchymal stem cell secretes microparticles enriched in pre-microRNAs. Nucleic Acids Res. 38:215–24 [Google Scholar]
  33. Christianson HC, Svensson KJ, van Kuppevelt TH, Li JP, Belting M. 2013. Cancer cell exosomes depend on cell-surface heparan sulfate proteoglycans for their internalization and functional activity. Proc. Natl. Acad. Sci. USA 110:17380–85 [Google Scholar]
  34. Clayton A, Harris CL, Court J, Mason MD, Morgan BP. 2003. Antigen-presenting cell exosomes are protected from complement-mediated lysis by expression of CD55 and CD59. Eur. J. Immunol. 33:522–31 [Google Scholar]
  35. Colombo M, Moita C, van Niel G, Kowal J, Vigneron J. et al. 2013. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J. Cell Sci. 126:5553–65 [Google Scholar]
  36. Conde-Vancells J, Rodriguez-Suarez E, Embade N, Gil D, Matthiesen R. et al. 2008. Characterization and comprehensive proteome profiling of exosomes secreted by hepatocytes. J. Proteome Res. 7:5157–66 [Google Scholar]
  37. Crawford N. 1971. The presence of contractile proteins in platelet microparticles isolated from human and animal platelet-free plasma. Br. J. Haematol. 21:53–69 [Google Scholar]
  38. Crescitelli R, Lässer C, Szabo TG, Kittel A, Eldh M. et al. 2013. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. J. Extracell. Vesicles 2:20677 [Google Scholar]
  39. Dachary-Prigent J, Freyssinet JM, Pasquet JM, Carron JC, Nurden AT. 1993. Annexin V as a probe of aminophospholipid exposure and platelet membrane vesiculation: a flow cytometry study showing a role for free sulfhydryl groups. Blood 81:2554–65 [Google Scholar]
  40. de Jong OG, Verhaar MC, Chen Y, Vader P, Gremmels H. et al. 2012. Cellular stress conditions are reflected in the protein and RNA content of endothelial cell-derived exosomes. J. Extracell. Vesicles 1:18396 [Google Scholar]
  41. Demory Beckler M, Higginbotham JN, Franklin JL, Ham AJ, Halvey PJ. et al. 2013. Proteomic analysis of exosomes from mutant KRAS colon cancer cells identifies intercellular transfer of mutant KRAS. Mol. Cell. Proteomics 12:343–55 [Google Scholar]
  42. Denzer K, van Eijk M, Kleijmeer MJ, Jakobson E, de Groot C, Geuze HJ. 2000. Follicular dendritic cells carry MHC class II-expressing microvesicles at their surface. J. Immunol. 165:1259–65 [Google Scholar]
  43. Deregibus MC, Cantaluppi V, Calogero R, Lo Iacono M, Tetta C. et al. 2007. Endothelial progenitor cell derived microvesicles activate an angiogenic program in endothelial cells by a horizontal transfer of mRNA. Blood 110:2440–48 [Google Scholar]
  44. Di Vizio D, Kim J, Hager MH, Morello M, Yang W. et al. 2009. Oncosome formation in prostate cancer: association with a region of frequent chromosomal deletion in metastatic disease. Cancer Res. 69:5601–9 [Google Scholar]
  45. Di Vizio D, Morello M, Dudley AC, Schow PW, Adam RM. et al. 2012. Large oncosomes in human prostate cancer tissues and in the circulation of mice with metastatic disease. Am. J. Pathol. 181:1573–84 [Google Scholar]
  46. Dragovic RA, Gardiner C, Brooks AS, Tannetta DS, Ferguson DJ. et al. 2011. Sizing and phenotyping of cellular vesicles using nanoparticle tracking analysis. Nanomedicine 7:780–88 [Google Scholar]
  47. Dreux M, Garaigorta U, Boyd B, Décembre E, Chung J. et al. 2012. Short-range exosomal transfer of viral RNA from infected cells to plasmacytoid dendritic cells triggers innate immunity. Cell Host Microbe 12:558–70 [Google Scholar]
  48. Dvorak HF, Quay SC, Orenstein NS, Dvorak AM, Hahn P. et al. 1981. Tumor shedding and coagulation. Science 212:923–24 [Google Scholar]
  49. Edgar JR, Eden ER, Futter CE. 2014. Hrs- and CD63-dependent competing mechanisms make different sized endosomal intraluminal vesicles. Traffic 15:197–211 [Google Scholar]
  50. Escola JM, Kleijmeer MJ, Stoorvogel W, Griffith JM, Yoshie O, Geuze HJ. 1998. Selective enrichment of tetraspan proteins on the internal vesicles of multivesicular endosomes and on exosomes secreted by human B-lymphocytes. J. Biol. Chem. 273:20121–27 [Google Scholar]
  51. Fader CM, Sánchez DG, Mestre MB, Colombo MI. 2009. TI-VAMP/VAMP7 and VAMP3/cellubrevin: two v-SNARE proteins involved in specific steps of the autophagy/multivesicular body pathways. Biochim. Biophys. Acta 1793:1901–16 [Google Scholar]
  52. Fang Y, Wu N, Gan X, Yan W, Morrell JC, Gould SJ. 2007. Higher-order oligomerization targets plasma membrane proteins and HIV Gag to exosomes. PLOS Biol. 5:e158 [Google Scholar]
  53. Fauré J, Lachenal G, Court M, Hirrlinger J, Chatellard-Causse C. et al. 2006. Exosomes are released by cultured cortical neurones. Mol. Cell. Neurosci. 31:642–48 [Google Scholar]
  54. Feng D, Zhao WL, Ye YY, Bai XC, Liu RQ. et al. 2010. Cellular internalization of exosomes occurs through phagocytosis. Traffic 11:675–87 [Google Scholar]
  55. Fevrier B, Vilette D, Archer F, Loew D, Faigle W. et al. 2004. Cells release prions in association with exosomes. Proc. Natl. Acad. Sci. USA 101:9683–88 [Google Scholar]
  56. Filipazzi P, Burdek M, Villa A, Rivoltini L, Huber V. 2012. Recent advances on the role of tumor exosomes in immunosuppression and disease progression. Semin. Cancer Biol. 22:342–49 [Google Scholar]
  57. Fitzner D, Schnaars M, van Rossum D, Krishnamoorthy G, Dibaj P. et al. 2011. Selective transfer of exosomes from oligodendrocytes to microglia by macropinocytosis. J. Cell Sci. 124:447–58 [Google Scholar]
  58. Fruhbeis C, Frohlich D, Kuo WP, Amphornrat J, Thilemann S. et al. 2013. Neurotransmitter-triggered transfer of exosomes mediates oligodendrocyte-neuron communication. PLOS Biol. 11:e1001604 [Google Scholar]
  59. Gardiner C, Ferreira YJ, Dragovic RA, Redman CW, Sargent IL. 2013. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J. Extracell. Vesicles 2:19671 [Google Scholar]
  60. Gasser O, Schifferli JA. 2004. Activated polymorphonuclear neutrophils disseminate anti-inflammatory microparticles by ectocytosis. Blood 104:2543–48 [Google Scholar]
  61. Géminard C, de Gassart A, Blanc L, Vidal M. 2004. Degradation of AP2 during reticulocyte maturation enhances binding of Hsc70 and Alix to a common site on TFR for sorting into exosomes. Traffic 5:181–93 [Google Scholar]
  62. George JN, Thoi LL, McManus LM, Reimann TA. 1982. Isolation of human platelet membrane microparticles from plasma and serum. Blood 60:834–40 [Google Scholar]
  63. Ghossoub R, Lembo F, Rubio A, Gaillard CB, Bouchet J. et al. 2014. Syntenin-ALIX exosome biogenesis and budding into multivesicular bodies are controlled by ARF6 and PLD2. Nat. Commun. 5:3477 [Google Scholar]
  64. Ginestra A, Monea S, Seghezzi G, Dolo V, Nagase H. et al. 1997. Urokinase plasminogen activator and gelatinases are associated with membrane vesicles shed by human HT1080 fibrosarcoma cells. J. Biol. Chem. 272:17216–22 [Google Scholar]
  65. Gould GW, Lippincott-Schwartz J. 2009. New roles for endosomes: from vesicular carriers to multi-purpose platforms. Nat. Rev. Mol. Cell Biol. 10:287–92 [Google Scholar]
  66. Gould SJ, Raposo G. 2013. As we wait: coping with an imperfect nomenclature for extracellular vesicles. J. Extracell. Vesicles 2:20389 [Google Scholar]
  67. Gross JC, Chaudhary V, Bartscherer K, Boutros M. 2012. Active Wnt proteins are secreted on exosomes. Nat. Cell Biol. 14:1036–45 [Google Scholar]
  68. Guescini M, Genedani S, Stocchi V, Agnati LF. 2010. Astrocytes and glioblastoma cells release exosomes carrying mtDNA. J. Neural Transm. 117:1–4 [Google Scholar]
  69. Hanayama R, Tanaka M, Miwa K, Shinohara A, Iwamatsu A, Nagata S. 2002. Identification of a factor that links apoptotic cells to phagocytes. Nature 417:182–87 [Google Scholar]
  70. Hanson PI, Cashikar A. 2012. Multivesicular body morphogenesis. Annu. Rev. Cell Dev. Biol. 28:337–62 [Google Scholar]
  71. Harding C, Heuser J, Stahl P. 1983. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. J. Cell Biol. 97:329–39 [Google Scholar]
  72. Heijnen HF, Schiel AE, Fijnheer R, Geuze HJ, Sixma JJ. 1999. Activated platelets release two types of membrane vesicles: microvesicles by surface shedding and exosomes derived from exocytosis of multivesicular bodies and α-granules. Blood 94:3791–99 [Google Scholar]
  73. Henne WM, Buchkovich NJ, Emr SD. 2011. The ESCRT pathway. Dev. Cell 21:77–91 [Google Scholar]
  74. Hess C, Sadallah S, Hefti A, Landmann R, Schifferli JA. 1999. Ectosomes released by human neutrophils are specialized functional units. J. Immunol. 163:4564–73 [Google Scholar]
  75. Honegger A, Leitz J, Bulkescher J, Hoppe-Seyler K, Hoppe-Seyler F. 2013. Silencing of human papillomavirus (HPV) E6/E7 oncogene expression affects both the contents and the amounts of extracellular microvesicles released from HPV-positive cancer cells. Int. J. Cancer 133:1631–42 [Google Scholar]
  76. Hood JL, San Roman S, Wickline SA. 2011. Exosomes released by melanoma cells prepare sentinel lymph nodes for tumor metastasis. Cancer Res. 71:3792–801 [Google Scholar]
  77. Hoshino D, Kirkbride KC, Costello K, Clark ES, Sinha S. et al. 2013. Exosome secretion is enhanced by invadopodia and drives invasive behavior. Cell Rep. 5:1159–68 [Google Scholar]
  78. Hsu C, Morohashi Y, Yoshimura S, Manrique-Hoyos N, Jung S. et al. 2010. Regulation of exosome secretion by Rab35 and its GTPase-activating proteins TBC1D10A-C. J. Cell Biol. 189:223–32 [Google Scholar]
  79. Hugel B, Martínez MC, Kunzelmann C, Freyssinet JM. 2005. Membrane microparticles: two sides of the coin. Physiology 20:22–27 [Google Scholar]
  80. Hunter MP, Ismail N, Zhang X, Aguda BD, Lee EJ. et al. 2008. Detection of microRNA expression in human peripheral blood microvesicles. PLOS ONE 3:e3694 [Google Scholar]
  81. Ikonen E. 2001. Roles of lipid rafts in membrane transport. Curr. Opin. Cell Biol. 13:470–77 [Google Scholar]
  82. Ismail N, Wang Y, Dakhlallah D, Moldovan L, Agarwal K. et al. 2013. Macrophage microvesicles induce macrophage differentiation and miR-223 transfer. Blood 121:984–95 [Google Scholar]
  83. Jaiswal JK, Andrews NW, Simon SM. 2002. Membrane proximal lysosomes are the major vesicles responsible for calcium-dependent exocytosis in nonsecretory cells. J. Cell Biol. 159:625–35 [Google Scholar]
  84. Jimenez AJ, Maiuri P, Lafaurie-Janvore J, Divoux S, Piel M. et al. 2014. ESCRT machinery is required for plasma membrane repair. Science 343:6174 [Google Scholar]
  85. Johnstone RM, Adam M, Hammond JR, Orr L, Turbide C. 1987. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). J. Biol. Chem. 262:9412–20 [Google Scholar]
  86. Kalra H, Simpson RJ, Ji H, Aikawa E, Altevogt P. et al. 2012. Vesiclepedia: a compendium for extracellular vesicles with continuous community annotation. PLOS Biol. 10:e1001450 [Google Scholar]
  87. Kilpinen L, Impola U, Sankkila L, Ritamo I, Aatonen M. et al. 2013. Extracellular membrane vesicles from umbilical cord blood-derived MSC protect against ischemic acute kidney injury, a feature that is lost after inflammatory conditioning. J. Extracell. Vesicles 2:21927 [Google Scholar]
  88. Kim DK, Kang B, Kim OY, Choi DS, Lee J. et al. 2013. EVpedia: an integrated database of high-throughput data for systemic analyses of extracellular vesicles. J. Extracell. Vesicles 2:20384 [Google Scholar]
  89. Klumperman J, Raposo G. 2014. The complex ultrastructure of the endolysosomal system. Cold Spring Harb. Perspect. Biol. In press. doi: 10.1101/cshperspect.a016857
  90. Koles K, Nunnari J, Korkut C, Barria R, Brewer C. et al. 2012. Mechanism of evenness interrupted (Evi)-exosome release at synaptic boutons. J. Biol. Chem. 287:16820–34 [Google Scholar]
  91. Kosaka N, Iguchi H, Yoshioka Y, Takeshita F, Matsuki Y, Ochiya T. 2010. Secretory mechanisms and intercellular transfer of microRNAs in living cells. J. Biol. Chem. 285:17442–52 [Google Scholar]
  92. Krämer-Albers EM, Bretz N, Tenzer S, Winterstein C, Möbius W. et al. 2007. Oligodendrocytes secrete exosomes containing major myelin and stress-protective proteins: Trophic support for axons?. Proteomics Clin. Appl. 1:1446–61 [Google Scholar]
  93. Kucharzewska P, Belting M. 2013. Emerging roles of extracellular vesicles in the adaptive response of tumour cells to microenvironmental stress. J. Extracell. Vesicles 2:20304 [Google Scholar]
  94. Kucharzewska P, Christianson HC, Welch JE, Svensson KJ, Fredlund E. et al. 2013. Exosomes reflect the hypoxic status of glioma cells and mediate hypoxia-dependent activation of vascular cells during tumor development. Proc. Natl. Acad. Sci. USA 110:7312–17 [Google Scholar]
  95. Lachenal G, Pernet-Gallay K, Chivet M, Hemming FJ, Belly A. et al. 2011. Release of exosomes from differentiated neurons and its regulation by synaptic glutamatergic activity. Mol. Cell. Neurosci. 46:409–18 [Google Scholar]
  96. Lacroix R, Judicone C, Mooberry M, Boucekine M, Key NS, Dignat-George F. 2013. Standardization of pre-analytical variables in plasma microparticle determination: results of the International Society on Thrombosis and Haemostasis SSC Collaborative workshop. J. Thromb. Haemost. 11:1190–93 [Google Scholar]
  97. Lamparski HG, Metha-Damani A, Yao JY, Patel S, Hsu DH. et al. 2002. Production and characterization of clinical grade exosomes derived from dendritic cells. J. Immunol. Methods 270:211–26 [Google Scholar]
  98. Laulagnier K, Grand D, Dujardin A, Hamdi S, Vincent-Schneider H. et al. 2004a. PLD2 is enriched on exosomes and its activity is correlated to the release of exosomes. FEBS Lett. 572:11–14 [Google Scholar]
  99. Laulagnier K, Motta C, Hamdi S, Roy S, Fauvelle F. et al. 2004b. Mast cell- and dendritic cell-derived exosomes display a specific lipid composition and an unusual membrane organization. Biochem. J. 380:161–71 [Google Scholar]
  100. Laulagnier K, Vincent-Schneider H, Hamdi S, Subra C, Lankar D, Record M. 2005. Characterization of exosome subpopulations from RBL-2H3 cells using fluorescent lipids. Blood Cells Mol. Dis. 35:116–21 [Google Scholar]
  101. Lespagnol A, Duflaut D, Beekman C, Blanc L, Fiucci G. et al. 2008. Exosome secretion, including the DNA damage-induced p53-dependent secretory pathway, is severely compromised in TSAP6/Steap3-null mice. Cell Death Differ. 15:1723–33 [Google Scholar]
  102. Liao CF, Lin SH, Chen HC, Tai CJ, Chang CC. et al. 2012. CSE1L, a novel microvesicle membrane protein, mediates Ras-triggered microvesicle generation and metastasis of tumor cells. Mol. Med. 18:1269–80 [Google Scholar]
  103. Liegeois S, Benedetto A, Garnier JM, Schwab Y, Labouesse M. 2006. The V0-ATPase mediates apical secretion of exosomes containing Hedgehog-related proteins in Caenorhabditis elegans. J. Cell Biol. 173:949–61 [Google Scholar]
  104. Llorente A, Skotland T, Sylvänne T, Kauhanen D, Róg T. et al. 2013. Molecular lipidomics of exosomes released by PC-3 prostate cancer cells. Biochim. Biophys. Acta 1831:1302–9 [Google Scholar]
  105. Logan MR, Lacy P, Odemuyiwa SO, Steward M, Davoine F. et al. 2006. A critical role for vesicle-associated membrane protein-7 in exocytosis from human eosinophils and neutrophils. Allergy 61:777–84 [Google Scholar]
  106. Logozzi M, De Milito A, Lugini L, Borghi M, Calabrò L. et al. 2009. High levels of exosomes expressing CD63 and caveolin-1 in plasma of melanoma patients. PLOS ONE 4:e5219 [Google Scholar]
  107. Loomis RJ, Holmes DA, Elms A, Solski PA, Der CJ, Su L. 2006. Citron kinase, a RhoA effector, enhances HIV-1 virion production by modulating exocytosis. Traffic 7:1643–53 [Google Scholar]
  108. Luga V, Zhang L, Viloria-Petit AM, Ogunjimi AA, Inanlou MR. et al. 2012. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling in breast cancer cell migration. Cell 151:1542–56 [Google Scholar]
  109. MacKenzie A, Wilson HL, Kiss-Toth E, Dower SK, North RA, Surprenant A. 2001. Rapid secretion of interleukin-1β by microvesicle shedding. Immunity 15:825–35 [Google Scholar]
  110. Mallegol J, Van Niel G, Lebreton C, Lepelletier Y, Candalh C. et al. 2007. T84-intestinal epithelial exosomes bear MHC class II/peptide complexes potentiating antigen presentation by dendritic cells. Gastroenterology 132:1866–76 [Google Scholar]
  111. Marcilla A, Trelis M, Cortes A, Sotillo J, Cantalapiedra F. et al. 2012. Extracellular vesicles from parasitic helminths contain specific excretory/secretory proteins and are internalized in intestinal host cells. PLOS ONE 7:e45974 [Google Scholar]
  112. Martin-Jaular L, Nakayasu ES, Ferrer M, Almeida IC. Portillo HA. , del 2011. Exosomes from Plasmodium yoelii-infected reticulocytes protect mice from lethal infections. PLOS ONE 6:e26588 [Google Scholar]
  113. Mathivanan S, Fahner CJ, Reid GE, Simpson RJ. 2012. ExoCarta 2012: database of exosomal proteins, RNA and lipids. Nucleic Acids Res. 40:D1241–44 [Google Scholar]
  114. Matsuo H, Chevallier J, Mayran N, Le Blanc I, Ferguson C. et al. 2004. Role of LBPA and Alix in multivesicular liposome formation and endosome organization. Science 303:531–34 [Google Scholar]
  115. Meiringer CT, Auffarth K, Hou H, Ungermann C. 2008. Depalmitoylation of Ykt6 prevents its entry into the multivesicular body pathway. Traffic 9:1510–21 [Google Scholar]
  116. Mesri M, Altieri DC. 1998. Endothelial cell activation by leukocyte microparticles. J. Immunol. 161:4382–87 [Google Scholar]
  117. Miranda KC, Bond DT, McKee M, Skog J, Păunescu TG. et al. 2010. Nucleic acids within urinary exosomes/microvesicles are potential biomarkers for renal disease. Kidney Int. 78:191–99 [Google Scholar]
  118. Mittelbrunn M, Gutiérrez-Vázquez C, Villarroya-Beltri C, González S, Sánchez-Cabo F. et al. 2011. Unidirectional transfer of microRNA-loaded exosomes from T cells to antigen-presenting cells. Nat. Commun. 2:282 [Google Scholar]
  119. Miyanishi M, Tada K, Koike M, Uchiyama Y, Kitamura T, Nagata S. 2007. Identification of Tim4 as a phosphatidylserine receptor. Nature 450:435–39 [Google Scholar]
  120. Mobius W, van Donselaar E, Ohno-Iwashita Y, Shimada Y, Heijnen HF. et al. 2003. Recycling compartments and the internal vesicles of multivesicular bodies harbor most of the cholesterol found in the endocytic pathway. Traffic 4:222–31 [Google Scholar]
  121. Montecalvo A, Larregina AT, Shufesky WJ, Stolz DB, Sullivan ML. et al. 2012. Mechanism of transfer of functional microRNAs between mouse dendritic cells via exosomes. Blood 119:756–66 [Google Scholar]
  122. Morelli AE, Larregina AT, Shufesky WJ, Sullivan ML, Stolz DB. et al. 2004. Endocytosis, intracellular sorting, and processing of exosomes by dendritic cells. Blood 104:3257–66 [Google Scholar]
  123. Muntasell A, Berger AC, Roche PA. 2007. T cell-induced secretion of MHC class II-peptide complexes on B cell exosomes. EMBO J. 26:4263–72 [Google Scholar]
  124. Muralidharan-Chari V, Clancy J, Plou C, Romao M, Chavrier P. et al. 2009. ARF6-regulated shedding of tumor cell-derived plasma membrane microvesicles. Curr. Biol. 19:1875–85 [Google Scholar]
  125. Nabhan JF, Hu R, Oh RS, Cohen SN, Lu Q. 2012. Formation and release of arrestin domain-containing protein 1-mediated microvesicles (ARMMs) at plasma membrane by recruitment of TSG101 protein. Proc. Natl. Acad. Sci. USA 109:4146–61 [Google Scholar]
  126. Nanbo A, Kawanishi E, Yoshida R, Yoshiyama H. 2013. Exosomes derived from Epstein-Barr virus-infected cells are internalized via caveola-dependent endocytosis and promote phenotypic modulation in target cells. J. Virol. 87:10334–47 [Google Scholar]
  127. Nazarenko I, Rana S, Baumann A, McAlear J, Hellwig A. et al. 2010. Cell surface tetraspanin Tspan8 contributes to molecular pathways of exosome-induced endothelial cell activation. Cancer Res. 70:1668–78 [Google Scholar]
  128. Nieuwland R, Berckmans RJ, Rotteveel-Eijkman RC, Maquelin KN, Roozendaal KJ. et al. 1997. Cell-derived microparticles generated in patients during cardiopulmonary bypass are highly procoagulant. Circulation 96:3534–41 [Google Scholar]
  129. Nolte-'t Hoen EN, Buschow SI, Anderton SM, Stoorvogel W, Wauben MH. 2009. Activated T-cells recruit exosomes secreted by dendritic cells via LFA-1. Blood 113:1977–81 [Google Scholar]
  130. Nolte-'t Hoen ENM, Buermans HP, Waasdorp M, Stoorvogel W, Wauben MH, ’t Hoen PAC. 2012. Deep sequencing of RNA from immune cell-derived vesicles uncovers the selective incorporation of small non-coding RNA biotypes with potential regulatory functions. Nucleic Acids Res. 40:9272–85 [Google Scholar]
  131. Ogawa Y, Taketomi Y, Murakami M, Tsujimoto M, Yanoshita R. 2013. Small RNA transcriptomes of two types of exosomes in human whole saliva determined by next generation sequencing. Biol. Pharm. Bull. 36:66–75 [Google Scholar]
  132. Ostrowski M, Carmo NB, Krumeich S, Fanget I, Raposo G. et al. 2010. Rab27a and Rab27b control different steps of the exosome secretion pathway. Nat. Cell Biol. 12:19–30 [Google Scholar]
  133. Palma J, Yaddanapudi SC, Pigati L, Havens MA, Jeong S. et al. 2012. MicroRNAs are exported from malignant cells in customized particles. Nucleic Acids Res. 40:9125–38 [Google Scholar]
  134. Pan BT, Johnstone RM. 1983. Fate of the transferrin receptor during maturation of sheep reticulocytes in vitro: selective externalization of the receptor. Cell 33:967–78 [Google Scholar]
  135. Pan BT, Teng K, Wu C, Adam M, Johnstone RM. 1985. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. J. Cell Biol. 101:942–48 [Google Scholar]
  136. Parolini I, Federici C, Raggi C, Lugini L, Palleschi S. et al. 2009. Microenvironmental pH is a key factor for exosome traffic in tumor cells. J. Biol. Chem. 284:34211–22 [Google Scholar]
  137. Pasquet JM, Dachary-Prigent J, Nurden AT. 1996. Calcium influx is a determining factor of calpain activation and microparticle formation in platelets. Eur. J. Biochem. 239:647–54 [Google Scholar]
  138. Pegtel DM, Cosmopoulos K, Thorley-Lawson DA, van Eijndhoven MA, Hopmans ES. et al. 2010. Functional delivery of viral miRNAs via exosomes. Proc. Natl. Acad. Sci. USA 107:6328–33 [Google Scholar]
  139. Peinado H, Aleckovic M, Lavotshkin S, Matei I, Costa-Silva B. et al. 2012. Melanoma exosomes educate bone marrow progenitor cells toward a pro-metastatic phenotype through MET. Nat. Med. 18:883–91 [Google Scholar]
  140. Perez-Hernandez D, Gutiérrez-Vázquez C, Jorge I, López-Martín S, Ursa A. et al. 2013. The intracellular interactome of tetraspanin-enriched microdomains reveals their function as sorting machineries toward exosomes. J. Biol. Chem. 288:11649–61 [Google Scholar]
  141. Pizzirani C, Ferrari D, Chiozzi P, Adinolfi E, Sandona D. et al. 2007. Stimulation of P2 receptors causes release of IL-1β-loaded microvesicles from human dendritic cells. Blood 109:3856–64 [Google Scholar]
  142. Poutsiaka DD, Schroder EW, Taylor DD, Levy EM, Black PH. 1985. Membrane vesicles shed by murine melanoma cells selectively inhibit the expression of Ia antigen by macrophages. J. Immunol. 134:138–44 [Google Scholar]
  143. Proux-Gillardeaux V, Raposo G, Irinopoulou T, Galli T. 2007. Expression of the Longin domain of TI-VAMP impairs lysosomal secretion and epithelial cell migration. Biol. Cell 99:261–71 [Google Scholar]
  144. Puri N, Roche PA. 2008. Mast cells possess distinct secretory granule subsets whose exocytosis is regulated by different SNARE isoforms. Proc. Natl. Acad. Sci. USA 105:2580–85 [Google Scholar]
  145. Putz U, Howitt J, Doan A, Goh CP, Low LH. et al. 2012. The tumor suppressor PTEN is exported in exosomes and has phosphatase activity in recipient cells. Sci. Signal. 5:ra70 [Google Scholar]
  146. Rana S, Claas C, Kretz CC, Nazarenko I, Zoeller M. 2011. Activation-induced internalization differs for the tetraspanins CD9 and Tspan8: Impact on tumor cell motility. Int. J. Biochem. Cell Biol. 43:106–19 [Google Scholar]
  147. Rana S, Yue S, Stadel D, Zoller M. 2012. Toward tailored exosomes: the exosomal tetraspanin web contributes to target cell selection. Int. J. Biochem. Cell Biol. 44:1574–84 [Google Scholar]
  148. Rao SK, Huynh C, Proux-Gillardeaux V, Galli T, Andrews NW. 2004. Identification of SNAREs involved in synaptotagmin VII-regulated lysosomal exocytosis. J. Biol. Chem. 279:20471–79 [Google Scholar]
  149. Raposo G, Nijman HW, Stoorvogel W, Liejendekker R, Harding CV. et al. 1996. B lymphocytes secrete antigen-presenting vesicles. J. Exp. Med. 183:1161–72 [Google Scholar]
  150. Raposo G, Stoorvogel W. 2013. Extracellular vesicles: exosomes, microvesicles, and friends. J. Cell Biol. 200:373–83 [Google Scholar]
  151. Raposo G, Tenza D, Mecheri S, Peronet R, Bonnerot C, Desaymard C. 1997. Accumulation of major histocompatibility complex class II molecules in mast cell secretory granules and their release upon degranulation. Mol. Biol. Cell 8:2631–45 [Google Scholar]
  152. Ratajczak J, Miekus K, Kucia M, Zhang J, Reca R. et al. 2006. Embryonic stem cell-derived microvesicles reprogram hematopoietic progenitors: evidence for horizontal transfer of mRNA and protein delivery. Leukemia 20:847–56 [Google Scholar]
  153. Regev-Rudzki N, Wilson DW, Carvalho TG, Sisquella X, Coleman BM. et al. 2013. Cell-cell communication between malaria-infected red blood cells via exosome-like vesicles. Cell 153:1120–33 [Google Scholar]
  154. Rilla K, Pasonen-Seppanen S, Deen AJ, Koistinen VV, Wojciechowski S. et al. 2013. Hyaluronan production enhances shedding of plasma membrane-derived microvesicles. Exp. Cell Res. 319:2006–18 [Google Scholar]
  155. Romancino DP, Paterniti G, Campos Y. Luca A. Felice V. , De , Di et al. 2013. Identification and characterization of the nano-sized vesicles released by muscle cells. FEBS Lett. 587:1379–84 [Google Scholar]
  156. Sahu R, Kaushik S, Clement CC, Cannizzo ES, Scharf B. et al. 2011. Microautophagy of cytosolic proteins by late endosomes. Dev. Cell 20:131–39 [Google Scholar]
  157. Satta N, Toti F, Feugeas O, Bohbot A, Dachary-Prigent J. et al. 1994. Monocyte vesiculation is a possible mechanism for dissemination of membrane-associated procoagulant activities and adhesion molecules after stimulation by lipopolysaccharide. J. Immunol. 153:3245–55 [Google Scholar]
  158. Saunderson SC, Dunn AC, Crocker PR, McLellan AD. 2014. CD169 mediates the capture of exosomes in spleen and lymph node. Blood 123:208–16 [Google Scholar]
  159. Savina A, Furlan M, Vidal M, Colombo MI. 2003. Exosome release is regulated by a calcium-dependent mechanism in K562 cells. J. Biol. Chem. 278:20083–90 [Google Scholar]
  160. Savina A, Vidal M, Colombo MI. 2002. The exosome pathway in K562 cells is regulated by Rab11. J. Cell Sci. 115:2505–15 [Google Scholar]
  161. Segura E, Guérin C, Hogg N, Amigorena S, Théry C. 2007. CD8+ dendritic cells use LFA-1 to capture MHC-peptide complexes from exosomes in vivo. J. Immunol. 179:1489–96 [Google Scholar]
  162. Segura E, Nicco C, Lombard B, Veron P, Raposo G. et al. 2005. ICAM-1 on exosomes from mature dendritic cells is critical for efficient naive T-cell priming. Blood 106:216–23 [Google Scholar]
  163. Sharma S, Gillespie B, Palanisamy V, Gimzewski JK. 2011. Quantitative nano-structural and single molecule force spectroscopy biomolecular analysis of human saliva derived exosomes. Langmuir 27:14394–400 [Google Scholar]
  164. Sheldon H, Heikamp E, Turley H, Dragovic R, Thomas P. et al. 2010. New mechanism for Notch signaling to endothelium at a distance by Delta-like 4 incorporation into exosomes. Blood 116:2385–94 [Google Scholar]
  165. Silverman JM, Clos J, Horakova E, Wang AY, Wiesgigl M. et al. 2010. Leishmania exosomes modulate innate and adaptive immune responses through effects on monocytes and dendritic cells. J. Immunol. 185:5011–22 [Google Scholar]
  166. Silverman JM, Reiner NE. 2011. Exosomes and other microvesicles in infection biology: organelles with unanticipated phenotypes. Cell. Microbiol. 13:1–9 [Google Scholar]
  167. Sims PJ, Wiedmer T, Esmon CT, Weiss HJ, Shattil SJ. 1989. Assembly of the platelet prothrombinase complex is linked to vesiculation of the platelet plasma membrane. Studies in Scott syndrome: an isolated defect in platelet procoagulant activity. J. Biol. Chem. 264:17049–57 [Google Scholar]
  168. Skog J, Wurdinger T, van Rijn S, Meijer DH, Gainche L. et al. 2008. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nat. Cell Biol. 10:1470–76 [Google Scholar]
  169. Stegmayr B, Ronquist G. 1982. Promotive effect on human sperm progressive motility by prostasomes. Urol. Res. 10:253–57 [Google Scholar]
  170. Stenmark H. 2009. Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10:513–25 [Google Scholar]
  171. Stoorvogel W, Strous GJ, Geuze HJ, Oorschot V, Schwartz AL. 1991. Late endosomes derive from early endosomes by maturation. Cell 65:417–27 [Google Scholar]
  172. Stuffers S, Sem Wegner C, Stenmark H, Brech A. 2009. Multivesicular endosome biogenesis in the absence of ESCRTs. Traffic 10:925–37 [Google Scholar]
  173. Svensson KJ, Christianson HC, Wittrup A, Bourseau-Guilmain E, Lindqvist E. et al. 2013. Exosome uptake depends on ERK1/2-heat shock protein 27 signaling and lipid Raft-mediated endocytosis negatively regulated by caveolin-1. J. Biol. Chem. 288:17713–24 [Google Scholar]
  174. Takahashi Y, Nishikawa M, Shinotsuka H, Matsui Y, Ohara S. et al. 2013. Visualization and in vivo tracking of the exosomes of murine melanoma B16-BL6 cells in mice after intravenous injection. J. Biotechnol. 165:77–84 [Google Scholar]
  175. Tamai K, Tanaka N, Nakano T, Kakazu E, Kondo Y. et al. 2010. Exosome secretion of dendritic cells is regulated by Hrs, an ESCRT-0 protein. Biochem. Biophys. Res. Commun. 399:384–90 [Google Scholar]
  176. Tan SS, Yin Y, Lee T, Lai RC, Yeo RW. et al. 2013. Therapeutic MSC exosomes are derived from lipid raft microdomains in the plasma membrane. J. Extracell. Vesicles 2:22614 [Google Scholar]
  177. Tauro BJ, Greening DW, Mathias RA, Ji H, Mathivanan S. et al. 2012. Comparison of ultracentrifugation, density gradient separation, and immunoaffinity capture methods for isolating human colon cancer cell line LIM1863-derived exosomes. Methods 56:293–304 [Google Scholar]
  178. Tauro BJ, Greening DW, Mathias RA, Mathivanan S, Ji H, Simpson RJ. 2013a. Two distinct populations of exosomes are released from LIM1863 colon carcinoma cell-derived organoids. Mol. Cell. Proteomics 12:587–98 [Google Scholar]
  179. Tauro BJ, Mathias RA, Greening DW, Gopal SK, Ji H. et al. 2013b. Oncogenic H-Ras reprograms Madin-Darby canine kidney (MDCK) cell-derived exosomal proteins following epithelial-mesenchymal transition. Mol. Cell. Proteomics 12:2148–59 [Google Scholar]
  180. Taylor DD, Chou IN, Black PH. 1983a. Isolation of plasma membrane fragments from cultured murine melanoma cells. Biochem. Biophys. Res. Commun. 113:470–76 [Google Scholar]
  181. Taylor DD, Gercel-Taylor C. 2005. Tumour-derived exosomes and their role in cancer-associated T-cell signalling defects. Br. J. Cancer 92:305–11 [Google Scholar]
  182. Taylor DD, Homesley HD, Doellgast GJ. 1983b. “Membrane-associated” immunoglobulins in cyst and ascites fluids of ovarian cancer patients. Am. J. Reprod. Immunol. 3:7–11 [Google Scholar]
  183. Theos AC, Truschel ST, Tenza D, Hurbain I, Harper DC. et al. 2006. A lumenal domain-dependent pathway for sorting to intralumenal vesicles of multivesicular endosomes involved in organelle morphogenesis. Dev. Cell 10:343–54 [Google Scholar]
  184. Théry C, Amigorena S, Raposo G, Clayton A. 2006. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr. Protoc. Cell Biol. 30:3.22.1–3.22.29 [Google Scholar]
  185. Théry C, Boussac M, Véron P, Ricciardi-Castagnoli P, Raposo G. et al. 2001. Proteomic analysis of dendritic cell-derived exosomes: a secreted subcellular compartment distinct from apoptotic vesicles. J. Immunol. 166:7309–18 [Google Scholar]
  186. Théry C, Ostrowski M, Segura E. 2009. Membrane vesicles as conveyors of immune responses. Nat. Rev. Immunol. 9:581–93 [Google Scholar]
  187. Théry C, Regnault A, Garin J, Wolfers J, Zitvogel L. et al. 1999. Molecular characterization of dendritic cell-derived exosomes. Selective accumulation of the heat shock protein hsc73. J. Cell Biol. 147:599–610 [Google Scholar]
  188. Tiwari N, Wang CC, Brochetta C, Ke G, Vita F. et al. 2008. VAMP-8 segregates mast cell-preformed mediator exocytosis from cytokine trafficking pathways. Blood 111:3665–74 [Google Scholar]
  189. Trajkovic K, Hsu C, Chiantia S, Rajendran L, Wenzel D. et al. 2008. Ceramide triggers budding of exosome vesicles into multivesicular endosomes. Science 319:1244–47 [Google Scholar]
  190. Trams EG, Lauter CJ, Salem N Jr, Heine U. 1981. Exfoliation of membrane ecto-enzymes in the form of micro-vesicles. Biochim. Biophys. Acta 645:63–70 [Google Scholar]
  191. Turiák L, Misják P, Szabó TG, Aradi B, Pálóczi K. et al. 2011. Proteomic characterization of thymocyte-derived microvesicles and apoptotic bodies in BALB/c mice. J. Proteomics 74:2025–33 [Google Scholar]
  192. Twu O, de Miguel N, Lustig G, Stevens GC, Vashisht AA. et al. 2013. Trichomonas vaginalis exosomes deliver cargo to host cells and mediate host:parasite interactions. PLOS Pathog. 9:e1003482 [Google Scholar]
  193. Valadi H, Ekström K, Bossios A, Sjöstrand M, Lee JJ, Lötvall JO. 2007. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat. Cell Biol. 9:654–59 [Google Scholar]
  194. Van Blitterswijk WJ, De Veer G, Krol JH, Emmelot P. 1982. Comparative lipid analysis of purified plasma membranes and shed extracellular membrane vesicles from normal murine thymocytes and leukemic GRSL cells. Biochim. Biophys. Acta 688:495–504 [Google Scholar]
  195. van der Vlist EJ, Arkesteijn GJ, van de Lest CHA, Stoorvogel W, Nolte-'t Hoen EN, Wauben M. 2012a. CD4+ T cell activation promotes the differential release of distinct populations of nanosized vesicles. J. Extracell. Vesicles 1:18364 [Google Scholar]
  196. van der Vlist EJ, Nolte-'t Hoen EN, Stoorvogel W, Arkesteijn GJ, Wauben MH. 2012b. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat. Protoc. 7:1311–26 [Google Scholar]
  197. Van Niel G, Charrin S, Simoes S, Romao M, Rochin L. et al. 2011. The tetraspanin CD63 regulates ESCRT-independent and -dependent endosomal sorting during melanogenesis. Dev. Cell 21:708–21 [Google Scholar]
  198. Van Niel G, Raposo G, Candalh C, Boussac M, Hershberg R. et al. 2001. Intestinal epithelial cells secrete exosome-like vesicles. Gastroenterology 121:337–49 [Google Scholar]
  199. Van Niel G, Wubbolts R, ten Broeke T, Buschow SI, Ossendorp FA. et al. 2006. Dendritic cells regulate exposure of MHC class II at their plasma membrane by oligoubiquitination. Immunity 25:885–94 [Google Scholar]
  200. Veron P, Segura E, Sugano G, Amigorena S, Théry C. 2005. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol. Dis. 35:81–88 [Google Scholar]
  201. Verweij FJ, van Eijndhoven MAJ, Hopmans ES, Vendrig T, Wurdinger T. et al. 2011. LMP1 association with CD63 in endosomes and secretion via exosomes limits constitutive NF-κB activation. EMBO J. 30:2115–29 [Google Scholar]
  202. Viaud S, Ploix S, Lapierre V, Théry C, Commere PH. et al. 2011. Updated technology to produce highly immunogenic dendritic cell-derived exosomes of clinical grade: a critical role of interferon-γ. J. Immunother. 34:65–75 [Google Scholar]
  203. Vickers KC, Palmisano BT, Shoucri BM, Shamburek RD, Remaley AT. 2011. MicroRNAs are transported in plasma and delivered to recipient cells by high-density lipoproteins. Nat. Cell Biol. 13:423–33 [Google Scholar]
  204. Vidal M, Mangeat P, Hoekstra D. 1997. Aggregation reroutes molecules from a recycling to a vesicle-mediated secretion pathway during reticulocyte maturation. J. Cell Sci. 110:Pt. 161867–77 [Google Scholar]
  205. Vidal MJ, Stahl PD. 1993. The small GTP-binding proteins Rab4 and ARF are associated with released exosomes during reticulocyte maturation. Eur. J. Cell Biol. 60:261–67 [Google Scholar]
  206. Villarroya-Beltri C, Gutiérrez-Vázquez C, Sánchez-Cabo F, Pérez-Hernández D, Vázquez J. et al. 2013. Sumoylated hnRNPA2B1 controls the sorting of miRNAs into exosomes through binding to specific motifs. Nat. Commun. 4:2980 [Google Scholar]
  207. Vojtech L, Woo S, Hughes S, Levy C, Ballweber L. et al. 2014. Exosomes in human semen carry a distinctive repertoire of small non-coding RNAs with potential regulatory functions. Nucleic Acids Res. 42:7290–304 [Google Scholar]
  208. Wang K, Zhang S, Weber J, Baxter D, Galas DJ. 2010. Export of microRNAs and microRNA-protective protein by mammalian cells. Nucleic Acids Res. 38:7248–59 [Google Scholar]
  209. Wang T, Gilkes DM, Takano N, Xiang L, Luo W. et al. 2014. Hypoxia-inducible factors and RAB22A mediate formation of microvesicles that stimulate breast cancer invasion and metastasis. Proc. Natl. Acad. Sci. USA 111E3234–42
  210. Webber JP, Spary LK, Sanders AJ, Chowdhury R, Jiang WG. et al. 2014. Differentiation of tumour-promoting stromal myofibroblasts by cancer exosomes. Oncogene In press
  211. White IJ, Bailey LM, Aghakhani MR, Moss SE, Futter CE. 2006. EGF stimulates annexin 1-dependent inward vesiculation in a multivesicular endosome subpopulation. EMBO J. 25:1–12 [Google Scholar]
  212. Witwer KW, Buzás EI, Bemis LT, Bora A, Lässer C. et al. 2013. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J. Extracell. Vesicles 2:20360 [Google Scholar]
  213. Wolfers J, Lozier A, Raposo G, Regnault A, Théry C. et al. 2001. Tumor-derived exosomes are a source of shared tumor rejection antigens for CTL cross-priming. Nat. Med. 7:297–303 [Google Scholar]
  214. Wubbolts R, Leckie RS, Veenhuizen PT, Schwarzmann G, Mobius W. et al. 2003. Proteomic and biochemical analyses of human B cell-derived exosomes. Potential implications for their function and multivesicular body formation. J. Biol. Chem. 278:10963–72 [Google Scholar]
  215. Yu X, Harris SL, Levine AJ. 2006. The regulation of exosome secretion: a novel function of the p53 protein. Cancer Res. 66:4795–801 [Google Scholar]
  216. Zhang HG, Zhuang X, Sun D, Liu Y, Xiang X, Grizzle W. 2012. Exosomes and immune surveillance of neoplastic lesions: a review. Biotech. Histochem. 87:161–68 [Google Scholar]
  217. Zheng Y, Campbell EC, Lucocq J, Riches A, Powis SJ. 2012. Monitoring the Rab27 associated exosome pathway using nanoparticle tracking analysis. Exp. Cell Res. 319:1706–13 [Google Scholar]
  218. Zhu H, Guariglia S, Yu RY, Li W, Brancho D. et al. 2013. Mutation of SIMPLE in Charcot-Marie-Tooth 1C alters production of exosomes. Mol. Biol. Cell 24:1619–37, S1–3 [Google Scholar]
  219. Zitvogel L, Regnault A, Lozier A, Wolfers J, Flament C. et al. 1998. Eradication of established murine tumors using a novel cell-free vaccine: dendritic cell-derived exosomes. Nat. Med. 4:594–600 [Google Scholar]
  220. Zylbersztejn K, Galli T. 2011. Vesicular traffic in cell navigation. FEBS J. 278:4497–505 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error