1932

Abstract

Cells must tightly regulate their gene expression programs and yet rapidly respond to acute biochemical and biophysical cues within their environment. This information is transmitted to the nucleus through various signaling cascades, culminating in the activation or repression of target genes. Transcription factors (TFs) are key mediators of these signals, binding to specific regulatory elements within chromatin. While live-cell imaging has conclusively proven that TF–chromatin interactions are highly dynamic, how such transient interactions can have long-term impacts on developmental trajectories and disease progression is still largely unclear. In this review, we summarize our current understanding of the dynamic nature of TF functions, starting with a historical overview of early live-cell experiments. We highlight key factors that govern TF dynamics and how TF dynamics, in turn, affect downstream transcriptional bursting. Finally, we conclude with open challenges and emerging technologies that will further our understanding of transcriptional regulation.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-022823-013847
2023-10-16
2024-04-21
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-022823-013847.html?itemId=/content/journals/10.1146/annurev-cellbio-022823-013847&mimeType=html&fmt=ahah

Literature Cited

  1. Agresti A, Scaffidi P, Riva A, Caiolfa VR, Bianchi ME. 2005. GR and HMGB1 interact only within chromatin and influence each other's residence time. Mol. Cell 18:109–21
    [Google Scholar]
  2. Ashwin SS, Nozaki T, Maeshima K, Sasai M. 2019. Organization of fast and slow chromatin revealed by single-nucleosome dynamics. PNAS 116:19939–44
    [Google Scholar]
  3. Auble DT, Wang D, Post KW, Hahn S. 1997. Molecular analysis of the SNF2/SWI2 protein family member MOT1, an ATP-driven enzyme that dissociates TATA-binding protein from DNA. Mol. Cell. Biol. 17:4842–51
    [Google Scholar]
  4. Axelrod D, Koppel DE, Schlessinger J, Elson E, Webb WW. 1976. Mobility measurement by analysis of fluorescence photobleaching recovery kinetics. Biophys. J. 16:1055–69
    [Google Scholar]
  5. Balzarotti F, Eilers Y, Gwosch KC, Gynna AH, Westphal V et al. 2017. Nanometer resolution imaging and tracking of fluorescent molecules with minimal photon fluxes. Science 355:606–12
    [Google Scholar]
  6. Bannister AJ, Kouzarides T. 2011. Regulation of chromatin by histone modifications. Cell Res. 21:381–95
    [Google Scholar]
  7. Bard JAM, Goodall EA, Greene ER, Jonsson E, Dong KC, Martin A. 2018. Structure and function of the 26S proteasome. Annu. Rev. Biochem. 87:697–724
    [Google Scholar]
  8. Becker M, Baumann C, John S, Walker DA, Vigneron M et al. 2002. Dynamic behavior of transcription factors on a natural promoter in living cells. EMBO Rep. 3:1188–94
    [Google Scholar]
  9. Biddie SC, John S, Sabo PJ, Thurman RE, Johnson TA et al. 2011. Transcription factor AP1 potentiates chromatin accessibility and glucocorticoid receptor binding. Mol. Cell 43:145–55
    [Google Scholar]
  10. Blossey R, Schiessel H. 2008. Kinetic proofreading of gene activation by chromatin remodeling. HFSP J. 2:167–70
    [Google Scholar]
  11. Boeger H. 2022. Kinetic proofreading. Annu. Rev. Biochem. 91:423–47
    [Google Scholar]
  12. Bohrer CH, Larson DR. 2023. Synthetic analysis of chromatin tracing and live-cell imaging indicates pervasive spatial coupling between genes. eLife 12:e81861
    [Google Scholar]
  13. Bosisio D, Marazzi I, Agresti A, Shimizu N, Bianchi ME, Natoli G. 2006. A hyper-dynamic equilibrium between promoter-bound and nucleoplasmic dimers controls NF-κB-dependent gene activity. EMBO J. 25:798–810
    [Google Scholar]
  14. Brodsky S, Jana T, Barkai N. 2021. Order through disorder: the role of intrinsically disordered regions in transcription factor binding specificity. Curr. Opin. Struct. Biol. 71:110–15
    [Google Scholar]
  15. Brodsky S, Jana T, Mittelman K, Chapal M, Kumar DK et al. 2020. Intrinsically disordered regions direct transcription factor in vivo binding specificity. Mol. Cell 79:459–71.e4
    [Google Scholar]
  16. Bronstein I, Israel Y, Kepten E, Mai S, Shav-Tal Y et al. 2009. Transient anomalous diffusion of telomeres in the nucleus of mammalian cells. Phys. Rev. Lett. 103:018102
    [Google Scholar]
  17. Caccianini L, Normanno D, Izeddin I, Dahan M. 2015. Single molecule study of non-specific binding kinetics of LacI in mammalian cells. Faraday Discuss. 184:393–400
    [Google Scholar]
  18. Callegari A, Sieben C, Benke A, Suter DM, Fierz B et al. 2019. Single-molecule dynamics and genome-wide transcriptomics reveal that NF-κB (p65)-DNA binding times can be decoupled from transcriptional activation. PLOS Genet. 15:e1007891
    [Google Scholar]
  19. Cardoso-Moreira M, Halbert J, Valloton D, Velten B, Chen C et al. 2019. Gene expression across mammalian organ development. Nature 571:505–9
    [Google Scholar]
  20. Chalfie M, Tu Y, Euskirchen G, Ward WW, Prasher DC. 1994. Green fluorescent protein as a marker for gene expression. Science 263:802–5
    [Google Scholar]
  21. Chen BC, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:1257998
    [Google Scholar]
  22. Chen H, Pugh BF. 2021. What do transcription factors interact with?. J. Mol. Biol. 433:166883
    [Google Scholar]
  23. Chen J, Zhang Z, Li L, Chen BC, Revyakin A et al. 2014. Single-molecule dynamics of enhanceosome assembly in embryonic stem cells. Cell 156:1274–85
    [Google Scholar]
  24. Chen Y, Cattoglio C, Dailey GM, Zhu Q, Tjian R, Darzacq X. 2022. Mechanisms governing target search and binding dynamics of hypoxia-inducible factors. eLife 11:e75064
    [Google Scholar]
  25. Cho WK, Spille JH, Hecht M, Lee C, Li C et al. 2018. Mediator and RNA polymerase II clusters associate in transcription-dependent condensates. Science 361:412–15
    [Google Scholar]
  26. Chong S, Graham TGW, Dugast-Darzacq C, Dailey GM, Darzacq X, Tjian R. 2022. Tuning levels of low-complexity domain interactions to modulate endogenous oncogenic transcription. Mol. Cell 82:2084–97.e5
    [Google Scholar]
  27. Chubb JR, Trcek T, Shenoy SM, Singer RH. 2006. Transcriptional pulsing of a developmental gene. Curr. Biol. 16:1018–25
    [Google Scholar]
  28. Cisse II, Izeddin I, Causse SZ, Boudarene L, Senecal A et al. 2013. Real-time dynamics of RNA polymerase II clustering in live human cells. Science 341:664–67
    [Google Scholar]
  29. Clauss K, Popp AP, Schulze L, Hettich J, Reisser M et al. 2017. DNA residence time is a regulatory factor of transcription repression. Nucleic Acids Res. 45:11121–30
    [Google Scholar]
  30. Core L, Adelman K. 2019. Promoter-proximal pausing of RNA polymerase II: a nexus of gene regulation. Genes Dev. 33:960–82
    [Google Scholar]
  31. Cortini R, Filion GJ. 2018. Theoretical principles of transcription factor traffic on folded chromatin. Nat. Commun. 9:1740
    [Google Scholar]
  32. Dahan M, Levi S, Luccardini C, Rostaing P, Riveau B, Triller A. 2003. Diffusion dynamics of glycine receptors revealed by single-quantum dot tracking. Science 302:442–45
    [Google Scholar]
  33. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:796–806
    [Google Scholar]
  34. Davidson IF, Peters JM. 2021. Genome folding through loop extrusion by SMC complexes. Nat. Rev. Mol. Cell Biol. 22:445–64
    [Google Scholar]
  35. de Jonge WJ, Patel HP, Meeussen JVW, Lenstra TL. 2022. Following the tracks: how transcription factor binding dynamics control transcription. Biophys. J. 121:1583–92
    [Google Scholar]
  36. Deguchi T, Iwanski MK, Schentarra E-M, Heidebrecht C, Schmidt L et al. 2023. Direct observation of motor protein stepping in living cells using MINFLUX. Science 379:1010–15
    [Google Scholar]
  37. Deroo BJ, Rentsch C, Sampath S, Young J, DeFranco DB, Archer TK. 2002. Proteasomal inhibition enhances glucocorticoid receptor transactivation and alters its subnuclear trafficking. Mol. Cell. Biol. 22:4113–23
    [Google Scholar]
  38. Di Pierro M, Potoyan DA, Wolynes PG, Onuchic JN. 2018. Anomalous diffusion, spatial coherence, and viscoelasticity from the energy landscape of human chromosomes. PNAS 115:7753–58
    [Google Scholar]
  39. Digman MA, Gratton E. 2011. Lessons in fluctuation correlation spectroscopy. Annu. Rev. Phys. Chem. 62:645–68
    [Google Scholar]
  40. Donovan BT, Huynh A, Ball DA, Patel HP, Poirier MG et al. 2019. Live-cell imaging reveals the interplay between transcription factors, nucleosomes, and bursting. EMBO J. 38:e100809
    [Google Scholar]
  41. Dror I, Rohs R, Mandel-Gutfreund Y. 2016. How motif environment influences transcription factor search dynamics: finding a needle in a haystack. BioEssays 38:605–12
    [Google Scholar]
  42. Dundr M, Hoffmann-Rohrer U, Hu Q, Grummt I, Rothblum LI et al. 2002. A kinetic framework for a mammalian RNA polymerase in vivo. Science 298:1623–26
    [Google Scholar]
  43. Eilers Y, Ta H, Gwosch KC, Balzarotti F, Hell SW. 2018. MINFLUX monitors rapid molecular jumps with superior spatiotemporal resolution. PNAS 115:6117–22
    [Google Scholar]
  44. Elf J, Li GW, Xie XS. 2007. Probing transcription factor dynamics at the single-molecule level in a living cell. Science 316:1191–94
    [Google Scholar]
  45. Farla P, Hersmus R, Geverts B, Mari PO, Nigg AL et al. 2004. The androgen receptor ligand-binding domain stabilizes DNA binding in living cells. J. Struct. Biol. 147:50–61
    [Google Scholar]
  46. Farla P, Hersmus R, Trapman J, Houtsmuller AB. 2005. Antiandrogens prevent stable DNA-binding of the androgen receptor. J. Cell Sci. 118:4187–98
    [Google Scholar]
  47. Fletcher TM, Xiao N, Mautino G, Baumann CT, Wolford R et al. 2002. ATP-dependent mobilization of the glucocorticoid receptor during chromatin remodeling. Mol. Cell. Biol. 22:3255–63
    [Google Scholar]
  48. Gabriele M, Brandao HB, Grosse-Holz S, Jha A, Dailey GM et al. 2022. Dynamics of CTCF and cohesin-mediated chromatin looping revealed by live-cell imaging. Science 376:496–501
    [Google Scholar]
  49. Garcia DA, Fettweis G, Presman DM, Paakinaho V, Jarzynski C et al. 2021a. Power law behavior of transcription factor dynamics at the single-molecule level implies a continuum affinity model. Nucleic Acids Res. 49:6605–20
    [Google Scholar]
  50. Garcia DA, Johnson TA, Presman DM, Fettweis G, Wagh K et al. 2021b. An intrinsically disordered region-mediated confinement state contributes to the dynamics and function of transcription factors. Mol. Cell 81:1484–98.e6
    [Google Scholar]
  51. Gebhardt JC, Suter DM, Roy R, Zhao ZW, Chapman AR et al. 2013. Single-molecule imaging of transcription factor binding to DNA in live mammalian cells. Nat. Methods 10:421–26
    [Google Scholar]
  52. Genest O, Wickner S, Doyle SM. 2019. Hsp90 and Hsp70 chaperones: collaborators in protein remodeling. J. Biol. Chem. 294:2109–20
    [Google Scholar]
  53. Gera T, Jonas F, More R, Barkai N. 2022. Evolution of binding preferences among whole-genome duplicated transcription factors. eLife 11:e73225
    [Google Scholar]
  54. Gilmour DS, Lis JT. 1984. Detecting protein-DNA interactions in vivo: distribution of RNA polymerase on specific bacterial genes. PNAS 81:4275–79
    [Google Scholar]
  55. Goldstein I, Baek S, Presman DM, Paakinaho V, Swinstead EE, Hager GL. 2017. Transcription factor assisted loading and enhancer dynamics dictate the hepatic fasting response. Genome Res. 27:427–39
    [Google Scholar]
  56. Grimm JB, English BP, Chen J, Slaughter JP, Zhang Z et al. 2015. A general method to improve fluorophores for live-cell and single-molecule microscopy. Nat. Methods 12:244–50
    [Google Scholar]
  57. Grimm JB, Lavis LD. 2022. Caveat fluorophore: an insiders’ guide to small-molecule fluorescent labels. Nat. Methods 19:149–58
    [Google Scholar]
  58. Grontved L, John S, Baek S, Liu Y, Buckley JR et al. 2013. C/EBP maintains chromatin accessibility in liver and facilitates glucocorticoid receptor recruitment to steroid response elements. EMBO J. 32:1568–83
    [Google Scholar]
  59. Gurskaya NG, Verkhusha VV, Shcheglov AS, Staroverov DB, Chepurnykh TV et al. 2006. Engineering of a monomeric green-to-red photoactivatable fluorescent protein induced by blue light. Nat. Biotechnol. 24:461–55
    [Google Scholar]
  60. Gwosch KC, Pape JK, Balzarotti F, Hoess P, Ellenberg J et al. 2020. MINFLUX nanoscopy delivers 3D multicolor nanometer resolution in cells. Nat. Methods 17:217–24
    [Google Scholar]
  61. Hager GL, McNally JG, Misteli T. 2009. Transcription dynamics. Mol. Cell 35:741–53
    [Google Scholar]
  62. Hammar P, Leroy P, Mahmutovic A, Marklund EG, Berg OG, Elf J. 2012. The lac repressor displays facilitated diffusion in living cells. Science 336:1595–98
    [Google Scholar]
  63. Hansen AS, Amitai A, Cattoglio C, Tjian R, Darzacq X. 2020. Guided nuclear exploration increases CTCF target search efficiency. Nat. Chem. Biol. 16:257–66
    [Google Scholar]
  64. Hansen AS, Pustova I, Cattoglio C, Tjian R, Darzacq X. 2017. CTCF and cohesin regulate chromatin loop stability with distinct dynamics. eLife 6:e25776
    [Google Scholar]
  65. Hansen AS, Woringer M, Grimm JB, Lavis LD, Tjian R, Darzacq X. 2018. Robust model-based analysis of single-particle tracking experiments with Spot-On. eLife 7:e33125
    [Google Scholar]
  66. Hinow P, Rogers CE, Barbieri CE, Pietenpol JA, Kenworthy AK, DiBenedetto E. 2006. The DNA binding activity of p53 displays reaction-diffusion kinetics. Biophys. J. 91:330–42
    [Google Scholar]
  67. Hipp L, Beer J, Kuchler O, Reisser M, Sinske D et al. 2019. Single-molecule imaging of the transcription factor SRF reveals prolonged chromatin-binding kinetics upon cell stimulation. PNAS 116:880–89
    [Google Scholar]
  68. Hopfield JJ. 1974. Kinetic proofreading: a new mechanism for reducing errors in biosynthetic processes requiring high specificity. PNAS 71:4135–39
    [Google Scholar]
  69. Htun H, Barsony J, Renyi I, Gould DL, Hager GL. 1996. Visualization of glucocorticoid receptor translocation and intranuclear organization in living cells with a green fluorescent protein chimera. PNAS 93:4845–50
    [Google Scholar]
  70. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EH. 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:1007–9
    [Google Scholar]
  71. Izeddin I, Récamier V, Bosanac L, Cissé II, Boudarene L et al. 2014. Single-molecule tracking in live cells reveals distinct target-search strategies of transcription factors in the nucleus. eLife 3:e02230
    [Google Scholar]
  72. Jana T, Brodsky S, Barkai N. 2021. Speed-specificity trade-offs in the transcription factors search for their genomic binding sites. Trends Genet. 37:421–32
    [Google Scholar]
  73. Jaqaman K, Loerke D, Mettlen M, Kuwata H, Grinstein S et al. 2008. Robust single-particle tracking in live-cell time-lapse sequences. Nat. Methods 5:695–702
    [Google Scholar]
  74. Johnson TA, Fettweis G, Wagh K, Almeida-Prieto B, Hager GL, de la Rosa DA. 2023. The glucocorticoid receptor is required for efficient aldosterone-induced transcription by the mineralocorticoid receptor. bioRxiv 2023.01.26.525745. https://doi.org/10.1101/2023.01.26.525745
    [Crossref]
  75. Jonkers I, Lis JT. 2015. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell Biol. 16:167–77
    [Google Scholar]
  76. Karpova TS, Chen TY, Sprague BL, McNally JG. 2004. Dynamic interactions of a transcription factor with DNA are accelerated by a chromatin remodeller. EMBO Rep. 5:1064–70
    [Google Scholar]
  77. Karpova TS, Kim MJ, Spriet C, Nalley K, Stasevich TJ et al. 2008. Concurrent fast and slow cycling of a transcriptional activator at an endogenous promoter. Science 319:466–69
    [Google Scholar]
  78. Kent S, Brown K, Yang CH, Alsaihati N, Tian C et al. 2020. Phase-separated transcriptional condensates accelerate target-search process revealed by live-cell single-molecule imaging. Cell Rep. 33:108248
    [Google Scholar]
  79. Kim JM, Visanpattanasin P, Jou V, Liu S, Tang X et al. 2021. Single-molecule imaging of chromatin remodelers reveals role of ATPase in promoting fast kinetics of target search and dissociation from chromatin. eLife 10:e69387
    [Google Scholar]
  80. Kim S, Shendure J. 2019. Mechanisms of interplay between transcription factors and the 3D genome. Mol. Cell 76:306–19
    [Google Scholar]
  81. Kimura H, Cook PR. 2001. Kinetics of core histones in living human cells: little exchange of H3 and H4 and some rapid exchange of H2B. J. Cell Biol. 153:1341–53
    [Google Scholar]
  82. Kimura H, Sugaya K, Cook PR. 2002. The transcription cycle of RNA polymerase II in living cells. J. Cell Biol. 159:777–82
    [Google Scholar]
  83. Kis-Petikova K, Gratton E. 2004. Distance measurement by circular scanning of the excitation beam in the two-photon microscope. Microsc. Res. Tech. 63:34–49
    [Google Scholar]
  84. Klemm SL, Shipony Z, Greenleaf WJ. 2019. Chromatin accessibility and the regulatory epigenome. Nat. Rev. Genet. 20:207–20
    [Google Scholar]
  85. Kribelbauer JF, Rastogi C, Bussemaker HJ, Mann RS. 2019. Low-affinity binding sites and the transcription factor specificity paradox in eukaryotes. Annu. Rev. Cell Dev. Biol. 35:357–79
    [Google Scholar]
  86. Kuhn T, Hettich J, Davtyan R, Gebhardt JCM. 2021. Single molecule tracking and analysis framework including theory-predicted parameter settings. Sci. Rep. 11:9465
    [Google Scholar]
  87. Kuhn T, Landge AN, Mörsdorf D, Coßmann J, Gerstenecker J et al. 2022. Single-molecule tracking of Nodal and Lefty in live zebrafish embryos supports hindered diffusion model. Nat. Commun. 13:6101
    [Google Scholar]
  88. Kusumi A, Sako Y, Yamamoto M. 1993. Confined lateral diffusion of membrane receptors as studied by single particle tracking (nanovid microscopy). Effects of calcium-induced differentiation in cultured epithelial cells. Biophys. J. 65:2021–40
    [Google Scholar]
  89. Lambert SA, Jolma A, Campitelli LF, Das PK, Yin Y et al. 2018. The human transcription factors. Cell 172:650–65
    [Google Scholar]
  90. Lammers NC, Kim YJ, Zhao J, Garcia HG. 2020. A matter of time: using dynamics and theory to uncover mechanisms of transcriptional bursting. Curr. Opin. Cell Biol. 67:147–57
    [Google Scholar]
  91. Larson DR, Zenklusen D, Wu B, Chao JA, Singer RH. 2011. Real-time observation of transcription initiation and elongation on an endogenous yeast gene. Science 332:475–78
    [Google Scholar]
  92. Lee C, Shin H, Kimble J. 2019. Dynamics of Notch-dependent transcriptional bursting in its native context. Dev. Cell 50:426–35.e4
    [Google Scholar]
  93. Lelek M, Gyparaki MT, Beliu G, Schueder F, Griffie J et al. 2021. Single-molecule localization microscopy. Nat. Rev. Methods Primers 1:39
    [Google Scholar]
  94. Lerner J, Gómez-García PA, McCarthy RL, Liu Z, Lakadamyali M, Zaret KS. 2020. Two-parameter single-molecule analysis for measurement of chromatin mobility. STAR Protoc 1:100223
    [Google Scholar]
  95. Levi V, Ruan Q, Gratton E. 2005. 3-D particle tracking in a two-photon microscope: application to the study of molecular dynamics in cells. Biophys. J. 88:2919–28
    [Google Scholar]
  96. Li M, Hada A, Sen P, Olufemi L, Hall MA et al. 2015. Dynamic regulation of transcription factors by nucleosome remodeling. eLife 4:e06249
    [Google Scholar]
  97. Liu Z, Legant WR, Chen BC, Li L, Grimm JB et al. 2014. 3D imaging of Sox2 enhancer clusters in embryonic stem cells. eLife 3:e04236
    [Google Scholar]
  98. Loffreda A, Jacchetti E, Antunes S, Rainone P, Daniele T et al. 2017. Live-cell p53 single-molecule binding is modulated by C-terminal acetylation and correlates with transcriptional activity. Nat. Commun. 8:313
    [Google Scholar]
  99. Lonard DM, Nawaz Z, Smith CL, O'Malley BW. 2000. The 26S proteasome is required for estrogen receptor-α and coactivator turnover and for efficient estrogen receptor-α transactivation. Mol. Cell 5:939–48
    [Google Scholar]
  100. Los GV, Encell LP, McDougall MG, Hartzell DD, Karassina N et al. 2008. HaloTag: a novel protein labeling technology for cell imaging and protein analysis. ACS Chem. Biol. 3:373–82
    [Google Scholar]
  101. Magde D, Elson E, Webb WW. 1972. Thermodynamic fluctuations in a reacting system—measurement by fluorescence correlation spectroscopy. Phys. Rev. Lett. 29:705–8
    [Google Scholar]
  102. Manley S, Gillette JM, Patterson GH, Shroff H, Hess HF et al. 2008. High-density mapping of single-molecule trajectories with photoactivated localization microscopy. Nat. Methods 5:155–57
    [Google Scholar]
  103. Manzo C, Garcia-Parajo MF. 2015. A review of progress in single particle tracking: from methods to biophysical insights. Rep. Prog. Phys. 78:124601
    [Google Scholar]
  104. Marshall WF, Straight A, Marko JF, Swedlow J, Dernburg A et al. 1997. Interphase chromosomes undergo constrained diffusional motion in living cells. Curr. Biol. 7:930–39
    [Google Scholar]
  105. Mazza D, Abernathy A, Golob N, Morisaki T, McNally JG. 2012. A benchmark for chromatin binding measurements in live cells. Nucleic Acids Res. 40:e119
    [Google Scholar]
  106. Mazza D, Ganguly S, McNally JG. 2013. Monitoring dynamic binding of chromatin proteins in vivo by single-molecule tracking. Methods Mol. Biol. 1042:117–37
    [Google Scholar]
  107. Mazzocca M, Fillot T, Loffreda A, Gnani D, Mazza D. 2021. The needle and the haystack: single molecule tracking to probe the transcription factor search in eukaryotes. Biochem. Soc. Trans. 49:1121–32
    [Google Scholar]
  108. McNally JG, Müller WG, Walker D, Wolford R, Hager GL. 2000. The glucocorticoid receptor: rapid exchange with regulatory sites in living cells. Science 287:1262–65
    [Google Scholar]
  109. Mehta GD, Ball DA, Eriksson PR, Chereji RV, Clark DJ et al. 2018. Single-molecule analysis reveals linked cycles of RSC chromatin remodeling and Ace1p transcription factor binding in yeast. Mol. Cell 72:875–87
    [Google Scholar]
  110. Mir M, Reimer A, Haines JE, Li X-Y, Stadler M et al. 2017. Dense Bicoid hubs accentuate binding along the morphogen gradient. Genes Dev. 31:1784–94
    [Google Scholar]
  111. Mir M, Stadler MR, Ortiz SA, Hannon CE, Harrison MM et al. 2018. Dynamic multifactor hubs interact transiently with sites of active transcription in Drosophila embryos. eLife 7:e40497
    [Google Scholar]
  112. Miranda TB, Voss TC, Sung M-H, Baek S, John S et al. 2013. Reprogramming the chromatin landscape: interplay of the estrogen and glucocorticoid receptors at the genomic level. Cancer Res. 73:5130–39
    [Google Scholar]
  113. Misteli T, Gunjan A, Hock R, Bustin M, Brown DT. 2000. Dynamic binding of histone H1 to chromatin in living cells. Nature 408:877–81
    [Google Scholar]
  114. Morisaki T, Müller WG, Golob N, Mazza D, McNally JG. 2014. Single-molecule analysis of transcription factor binding at transcription sites in live cells. Nat. Commun. 5:4456
    [Google Scholar]
  115. Mortensen KI, Churchman LS, Spudich JA, Flyvbjerg H. 2010. Optimized localization analysis for single-molecule tracking and super-resolution microscopy. Nat. Methods 7:377–81
    [Google Scholar]
  116. Mueller F, Mazza D, Stasevich TJ, McNally JG. 2010. FRAP and kinetic modeling in the analysis of nuclear protein dynamics: What do we really know?. Curr. Opin. Cell Biol. 22:403–11
    [Google Scholar]
  117. Nagaich AK, Walker DA, Wolford R, Hager GL. 2004. Rapid periodic binding and displacement of the glucocorticoid receptor during chromatin remodeling. Mol. Cell 14:163–74
    [Google Scholar]
  118. Nagashima R, Hibino K, Ashwin SS, Babokhov M, Fujishiro S et al. 2019. Single nucleosome imaging reveals loose genome chromatin networks via active RNA polymerase II. J. Cell Biol. 218:1511–30
    [Google Scholar]
  119. Nguyen VQ, Ranjan A, Liu S, Tang X, Ling YH et al. 2021. Spatiotemporal coordination of transcription preinitiation complex assembly in live cells. Mol. Cell 81:3560–75.e6
    [Google Scholar]
  120. Normanno D, Boudarene L, Dugast-Darzacq C, Chen J, Richter C et al. 2015. Probing the target search of DNA-binding proteins in mammalian cells using TetR as model searcher. Nat. Commun. 6:7357
    [Google Scholar]
  121. Nozaki T, Imai R, Tanbo M, Nagashima R, Tamura S et al. 2017. Dynamic organization of chromatin domains revealed by super-resolution live-cell imaging. Mol. Cell 67:282–93.e7
    [Google Scholar]
  122. Paakinaho V, Presman DM, Ball DA, Johnson TA, Schiltz RL et al. 2017. Single-molecule analysis of steroid receptor and cofactor action in living cells. Nat. Commun. 8:15896
    [Google Scholar]
  123. Patange S, Ball DA, Wan Y, Karpova TS, Girvan M et al. 2022. MYC amplifies gene expression through global changes in transcription factor dynamics. Cell Rep. 38:110292
    [Google Scholar]
  124. Patterson GH, Lippincott-Schwartz J. 2002. A photoactivatable GFP for selective photolabeling of proteins and cells. Science 297:1873–77
    [Google Scholar]
  125. Perlmann T, Eriksson P, Wrange O. 1990. Quantitative analysis of the glucocorticoid receptor-DNA interaction at the mouse mammary tumor virus glucocorticoid response element. J. Biol. Chem. 265:17222–29
    [Google Scholar]
  126. Phair RD, Misteli T. 2000. High mobility of proteins in the mammalian cell nucleus. Nature 404:604–9
    [Google Scholar]
  127. Popp AP, Hettich J, Gebhardt JCM. 2021. Altering transcription factor binding reveals comprehensive transcriptional kinetics of a basic gene. Nucleic Acids Res. 49:6249–66
    [Google Scholar]
  128. Presman DM, Ball DA, Paakinaho V, Grimm JB, Lavis LD et al. 2017. Quantifying transcription factor binding dynamics at the single-molecule level in live cells. Methods 123:76–88
    [Google Scholar]
  129. Price RM, Budzynski MA, Kundra S, Teves SS. 2021. Advances in visualizing transcription factor–DNA interactions. Genome 64:449–66
    [Google Scholar]
  130. Rastogi C, Rube HT, Kribelbauer JF, Crocker J, Loker RE et al. 2018. Accurate and sensitive quantification of protein-DNA binding affinity. PNAS 115:E3692–701
    [Google Scholar]
  131. Rayasam GV, Elbi C, Walker DA, Wolford R, Fletcher TM et al. 2005. Ligand-specific dynamics of the progesterone receptor in living cells and during chromatin remodeling in vitro. Mol. Cell. Biol. 25:2406–18
    [Google Scholar]
  132. Reid G, Hübner MR, Métivier R, Brand H, Denger S et al. 2003. Cyclic, proteasome-mediated turnover of unliganded and liganded ERα on responsive promoters is an integral feature of estrogen signaling. Mol. Cell 11:695–707
    [Google Scholar]
  133. Rinaldi L, Fettweis G, Kim S, Garcia DA, Fujiwara S et al. 2022. The glucocorticoid receptor associates with the cohesin loader NIPBL to promote long-range gene regulation. Sci. Adv. 8:eabj8360
    [Google Scholar]
  134. Rodriguez J, Larson DR. 2020. Transcription in living cells: molecular mechanisms of bursting. Annu. Rev. Biochem. 89:189–212
    [Google Scholar]
  135. Rodriguez J, Ren G, Day CR, Zhao K, Chow CC, Larson DR. 2019. Intrinsic dynamics of a human gene reveal the basis of expression heterogeneity. Cell 176:213–26.e18
    [Google Scholar]
  136. Rowley MJ, Corces VG. 2018. Organizational principles of 3D genome architecture. Nat. Rev. Genet. 19:789–800
    [Google Scholar]
  137. Schaaf MJ, Cidlowski JA. 2003. Molecular determinants of glucocorticoid receptor mobility in living cells: the importance of ligand affinity. Mol. Cell. Biol. 23:1922–34
    [Google Scholar]
  138. Schaaf MJ, Lewis-Tuffin LJ, Cidlowski JA. 2005. Ligand-selective targeting of the glucocorticoid receptor to nuclear subdomains is associated with decreased receptor mobility. Mol. Endocrinol. 19:1501–15
    [Google Scholar]
  139. Schiessel H, Blossey R. 2020. Pioneer transcription factors in chromatin remodeling: the kinetic proofreading view. Phys. Rev. E 101:040401
    [Google Scholar]
  140. Schmidt R, Weihs T, Wurm CA, Jansen I, Rehman J et al. 2021. MINFLUX nanometer-scale 3D imaging and microsecond-range tracking on a common fluorescence microscope. Nat. Commun. 12:1478
    [Google Scholar]
  141. Schütz GJ, Kada G, Pastushenko VP, Schindler H. 2000. Properties of lipid microdomains in a muscle cell membrane visualized by single molecule microscopy. EMBO J. 19:892–901
    [Google Scholar]
  142. Senecal A, Munsky B, Proux F, Ly N, Braye FE et al. 2014. Transcription factors modulate c-Fos transcriptional bursts. Cell Rep. 8:75–83
    [Google Scholar]
  143. Serge A, Bertaux N, Rigneault H, Marguet D. 2008. Dynamic multiple-target tracing to probe spatiotemporal cartography of cell membranes. Nat. Methods 5:687–94
    [Google Scholar]
  144. Sharp ZD, Mancini MG, Hinojos CA, Dai F, Berno V et al. 2006. Estrogen-receptor-α exchange and chromatin dynamics are ligand- and domain-dependent. J. Cell Sci. 119:4101–16
    [Google Scholar]
  145. Shelansky R, Abrahamsson S, Doody M, Brown CR, Patel HP et al. 2022. A telltale sign of irreversibility in transcriptional regulation. bioRxiv 2022.06.27.497819. https://doi.org/10.1101/2022.06.27.497819
  146. Shelansky R, Boeger H. 2020. Nucleosomal proofreading of activator-promoter interactions. PNAS 117:2456–61
    [Google Scholar]
  147. Shi G, Liu L, Hyeon C, Thirumalai D. 2018. Interphase human chromosome exhibits out of equilibrium glassy dynamics. Nat. Commun. 9:3161
    [Google Scholar]
  148. Shin S, Cho HW, Shi G, Thirumalai D. 2022. Transcription-induced active forces suppress chromatin motion by inducing a transient disorder-to-order transition. bioRxiv 2022.04.30.490180. https://doi.org/10.1101/2022.04.30.490180
    [Crossref]
  149. Spitz F, Furlong EE. 2012. Transcription factors: from enhancer binding to developmental control. Nat. Rev. Genet. 13:613–26
    [Google Scholar]
  150. Sprague BL, McNally JG. 2005. FRAP analysis of binding: proper and fitting. Trends Cell Biol. 15:84–91
    [Google Scholar]
  151. Sprouse RO, Karpova TS, Mueller F, Dasgupta A, McNally JG, Auble DT. 2008. Regulation of TATA-binding protein dynamics in living yeast cells. PNAS 105:13304–8
    [Google Scholar]
  152. Stavreva DA, Garcia DA, Fettweis G, Gudla PR, Zaki GF et al. 2019. Transcriptional bursting and co-bursting regulation by steroid hormone release pattern and transcription factor mobility. Mol. Cell 75:1161–77.e11
    [Google Scholar]
  153. Stavreva DA, Müller WG, Hager GL, Smith CL, McNally JG. 2004. Rapid glucocorticoid receptor exchange at a promoter is coupled to transcription and regulated by chaperones and proteasomes. Mol. Cell. Biol. 24:2682–97
    [Google Scholar]
  154. Stenoien DL, Patel K, Mancini MG, Dutertre M, Smith CL et al. 2001. FRAP reveals that mobility of oestrogen receptor-α is ligand- and proteasome-dependent. Nat. Cell Biol. 3:15–23
    [Google Scholar]
  155. Steurer B, Janssens RC, Geverts B, Geijer ME, Wienholz F et al. 2018. Live-cell analysis of endogenous GFP-RPB1 uncovers rapid turnover of initiating and promoter-paused RNA polymerase II. PNAS 115:E4368–76
    [Google Scholar]
  156. Stortz M, Presman DM, Bruno L, Annibale P, Dansey MV et al. 2017. Mapping the dynamics of the glucocorticoid receptor within the nuclear landscape. Sci. Rep. 7:6219
    [Google Scholar]
  157. Suter DM. 2020. Transcription factors and DNA play hide and seek. Trends Cell Biol. 30:491–500
    [Google Scholar]
  158. Suter DM, Molina N, Gatfield D, Schneider K, Schibler U, Naef F. 2011. Mammalian genes are transcribed with widely different bursting kinetics. Science 332:472–74
    [Google Scholar]
  159. Swinstead EE, Miranda TB, Paakinaho V, Baek S, Goldstein I et al. 2016. Steroid receptors reprogram FoxA1 occupancy through dynamic chromatin transitions. Cell 165:593–605
    [Google Scholar]
  160. Tang X, Li T, Liu S, Wisniewski J, Zheng Q et al. 2022. Kinetic principles underlying pioneer function of GAGA transcription factor in live cells. Nat. Struct. Mol. Biol. 29:665–76
    [Google Scholar]
  161. Tokunaga M, Imamoto N, Sakata-Sogawa K. 2008. Highly inclined thin illumination enables clear single-molecule imaging in cells. Nat. Methods 5:159–61
    [Google Scholar]
  162. Trojanowski J, Frank L, Rademacher A, Mucke N, Grigaitis P, Rippe K. 2022. Transcription activation is enhanced by multivalent interactions independent of phase separation. Mol. Cell 82:1878–93.e10
    [Google Scholar]
  163. Trojanowski J, Rippe K. 2022. Transcription factor binding and activity on chromatin. Curr. Opin. Syst. Biol. 31:100438
    [Google Scholar]
  164. Van Tricht C, Voet T, Lammertyn J, Spasic D. 2023. Imaging the unimaginable: leveraging signal generation of CRISPR-Cas for sensitive genome imaging. Trends Biotechnol 41:769–84
    [Google Scholar]
  165. Voss TC, Hager GL. 2014. Dynamic regulation of transcriptional states by chromatin and transcription factors. Nat. Rev. Genet. 15:69–81
    [Google Scholar]
  166. Voss TC, Schiltz RL, Sung M-H, Yen PM, Stamatoyannopoulos JA et al. 2011. Dynamic exchange at regulatory elements during chromatin remodeling underlies assisted loading mechanism. Cell 146:544–54
    [Google Scholar]
  167. Wagh K, Garcia DA, Upadhyaya A. 2021a. Phase separation in transcription factor dynamics and chromatin organization. Curr. Opin. Struct. Biol. 71:148–55
    [Google Scholar]
  168. Wagh K, Ishikawa M, Garcia DA, Stavreva DA, Upadhyaya A, Hager GL. 2021b. Mechanical regulation of transcription: recent advances. Trends Cell Biol. 31:457–72
    [Google Scholar]
  169. Wagh K, Stavreva DA, Jensen RAM, Paakinaho V, Fettweis G et al. 2023. Dynamic switching of transcriptional regulators between two distinct low-mobility chromatin states. Sci. Adv. 9:eade1122
    [Google Scholar]
  170. Wan Y, Anastasakis DG, Rodriguez J, Palangat M, Gudla P et al. 2021. Dynamic imaging of nascent RNA reveals general principles of transcription dynamics and stochastic splice site selection. Cell 184:2878–95.e20
    [Google Scholar]
  171. Wei MT, Chang YC, Shimobayashi SF, Shin Y, Strom AR, Brangwynne CP. 2020. Nucleated transcriptional condensates amplify gene expression. Nat. Cell Biol. 22:1187–96
    [Google Scholar]
  172. White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW et al. 2016. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165:75–87
    [Google Scholar]
  173. Wiedenmann J, Ivanchenko S, Oswald F, Schmitt F, Rocker C et al. 2004. EosFP, a fluorescent marker protein with UV-inducible green-to-red fluorescence conversion. PNAS 101:15905–10
    [Google Scholar]
  174. Wilson KM, Morrison IE, Smith PR, Fernandez N, Cherry RJ. 1996. Single particle tracking of cell-surface HLA-DR molecules using R-phycoerythrin labeled monoclonal antibodies and fluorescence digital imaging. J. Cell Sci. 109:Part 82101–9
    [Google Scholar]
  175. Wolff JO, Scheiderer L, Engelhardt T, Engelhardt J, Matthias J, Hell SW. 2023. MINFLUX dissects the unimpeded walking of kinesin-1. Science 379:1004–10
    [Google Scholar]
  176. Wong F, Gunawardena J. 2020. Gene regulation in and out of equilibrium. Annu. Rev. Biophys. 49:199–226
    [Google Scholar]
  177. Wu C, Wong YC, Elgin SC. 1979. The chromatin structure of specific genes: II. Disruption of chromatin structure during gene activity. Cell 16:807–14
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-022823-013847
Loading
/content/journals/10.1146/annurev-cellbio-022823-013847
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error