1932

Abstract

Microtubules are essential dynamic polymers composed of α/β-tubulin heterodimers. They support intracellular trafficking, cell division, cellular motility, and other essential cellular processes. In many species, both α-tubulin and β-tubulin are encoded by multiple genes with distinct expression profiles and functionality. Microtubules are further diversified through abundant posttranslational modifications, which are added and removed by a suite of enzymes to form complex, stereotyped cellular arrays. The genetic and chemical diversity of tubulin constitute a tubulin code that regulates intrinsic microtubule properties and is read by cellular effectors, such as molecular motors and microtubule-associated proteins, to provide spatial and temporal specificity to microtubules in cells. In this review, we synthesize the rapidly expanding tubulin code literature and highlight limitations and opportunities for the field. As complex microtubule arrays underlie essential physiological processes, a better understanding of how cells employ the tubulin code has important implications for human disease ranging from cancer to neurological disorders.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-030123-032748
2023-10-16
2024-06-24
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-030123-032748.html?itemId=/content/journals/10.1146/annurev-cellbio-030123-032748&mimeType=html&fmt=ahah

Literature Cited

  1. Adamopoulos A, Landskron L, Heidebrecht T, Tsakou F, Bleijerveld OB et al. 2019. Crystal structure of the tubulin tyrosine carboxypeptidase complex VASH1-SVBP. Nat. Struct. Mol. Biol. 26:567–70
    [Google Scholar]
  2. Aillaud C, Bosc C, Peris L, Bosson A, Heemeryck P et al. 2017. Vasohibins/SVBP are tubulin carboxypeptidases (TCPs) that regulate neuron differentiation. Science 358:1448–53
    [Google Scholar]
  3. Aillaud C, Bosc C, Saoudi Y, Denarier E, Peris L et al. 2016. Evidence for new C-terminally truncated variants of α- and β-tubulins. Mol. Biol. Cell 27:640–53
    [Google Scholar]
  4. Akella JS, Wloga D, Kim J, Starostina NG, Lyons-Abbott S et al. 2010. MEC-17 is an α-tubulin acetyltransferase. Nature 467:218–22
    [Google Scholar]
  5. Akera T, Chmatal L, Trimm E, Yang K, Aonbangkhen C et al. 2017. Spindle asymmetry drives non-Mendelian chromosome segregation. Science 358:668–72
    [Google Scholar]
  6. Arranz J, Balducci E, Arato K, Sánchez-Elexpuru G, Najas S et al. 2019. Impaired development of neocortical circuits contributes to the neurological alterations in DYRK1A haploinsufficiency syndrome. Neurobiol. Dis. 127:210–22
    [Google Scholar]
  7. Audebert S, Desbruyeres E, Gruszczynski C, Koulakoff A, Gros F et al. 1993. Reversible polyglutamylation of α- and β-tubulin and microtubule dynamics in mouse brain neurons. Mol. Biol. Cell 4:615–26
    [Google Scholar]
  8. Audebert S, Koulakoff A, Berwald-Netter Y, Gros F, Denoulet P, Edde B. 1994. Developmental regulation of polyglutamylated α- and β-tubulin in mouse brain neurons. J. Cell Sci. 107:Part 82313–22
    [Google Scholar]
  9. Bachanova V, Frankel AE, Cao Q, Lewis D, Grzywacz B et al. 2015. Phase I study of a bispecific ligand-directed toxin targeting CD22 and CD19 (DT2219) for refractory B-cell malignancies. Clin. Cancer Res. 21:1267–72
    [Google Scholar]
  10. Balabanian L, Berger CL, Hendricks AG. 2017. Acetylated microtubules are preferentially bundled leading to enhanced kinesin-1 motility. Biophys. J. 113:1551–60
    [Google Scholar]
  11. Bance B, Seetharaman S, Leduc C, Boeda B, Etienne-Manneville S. 2019. Microtubule acetylation but not detyrosination promotes focal adhesion dynamics and astrocyte migration. J. Cell Sci. 132:jcs225805
    [Google Scholar]
  12. Banerjee A, Roach MC, Trcka P, Ludueña RF. 1990. Increased microtubule assembly in bovine brain tubulin lacking the type III isotype of β-tubulin. J. Biol. Chem. 265:1794–99
    [Google Scholar]
  13. Barbosa DJ, Duro J, Prevo B, Cheerambathur DK, Carvalho AX, Gassmann R. 2017. Dynactin binding to tyrosinated microtubules promotes centrosome centration in C. elegans by enhancing dynein-mediated organelle transport. PLOS Genet. 13:e1006941
    [Google Scholar]
  14. Barisic M, Silva E, Sousa R, Tripathy SK, Magiera MM et al. 2015. Mitosis: Microtubule detyrosination guides chromosomes during mitosis. Science 348:799–803
    [Google Scholar]
  15. Bartolomeo MD, Raimondi A, Cecchi F, Catenacci DVT, Schwartz S et al. 2020. Association of high TUBB3 with resistance to adjuvant docetaxel-based chemotherapy in gastric cancer: translational study of ITACA-S. Tumori J. 107:150–59
    [Google Scholar]
  16. Bhattacharya R, Cabral F. 2004. A ubiquitous β-tubulin disrupts microtubule assembly and inhibits cell proliferation. Mol. Biol. Cell 15:3123–31
    [Google Scholar]
  17. Bieling P, Kandels-Lewis S, Telley IA, Van Dijk J, Janke C, Surrey T. 2008. CLIP-170 tracks growing microtubule ends by dynamically recognizing composite EB1/tubulin-binding sites. J. Cell Biol. 183:1223–33
    [Google Scholar]
  18. Blair JD, Hockemeyer D, Doudna JA, Bateup HS, Floor SN. 2017. Widespread translational remodeling during human neuronal differentiation. Cell Rep. 21:2005–16
    [Google Scholar]
  19. Bobinnec Y, Moudjou M, Fouquet JP, Desbruyeres E, Edde B, Bornens M. 1998. Glutamylation of centriole and cytoplasmic tubulin in proliferating non-neuronal cells. Cell Motil. Cytoskelet. 39:223–32
    [Google Scholar]
  20. Bodakuntla S, Schnitzler A, Villablanca C, González-Billault C, Bieche I et al. 2020. Tubulin polyglutamylation is a general traffic-control mechanism in hippocampal neurons. J. Cell Sci. 133:jcs241802
    [Google Scholar]
  21. Bodakuntla S, Yuan X, Genova M, Gadadhar S, Leboucher S et al. 2021. Distinct roles of α- and β-tubulin polyglutamylation in controlling axonal transport and in neurodegeneration. EMBO J. 40:e108498
    [Google Scholar]
  22. Bompard G, Van Dijk J, Cau J, Lannay Y, Marcellin G et al. 2018. CSAP acts as a regulator of TTLL-mediated microtubule glutamylation. Cell Rep. 25:2866–77.e5
    [Google Scholar]
  23. Bonnet C, Boucher D, Lazereg S, Pedrotti B, Islam K et al. 2001. Differential binding regulation of microtubule-associated proteins MAP1A, MAP1B, and MAP2 by tubulin polyglutamylation. J. Biol. Chem. 276:12839–48
    [Google Scholar]
  24. Bosch Grau M, Gonzalez Curto G, Rocha C, Magiera MM, Marques Sousa P et al. 2013. Tubulin glycylases and glutamylases have distinct functions in stabilization and motility of ependymal cilia. J. Cell Biol. 202:441–51
    [Google Scholar]
  25. Boucher D, Larcher JC, Gros F, Denoulet P. 1994. Polyglutamylation of tubulin as a progressive regulator of in vitro interactions between the microtubule-associated protein Tau and tubulin. Biochemistry 33:12471–77
    [Google Scholar]
  26. Bre MH, Redeker V, Quibell M, Darmanaden-Delorme J, Bressac C et al. 1996. Axonemal tubulin polyglycylation probed with two monoclonal antibodies: widespread evolutionary distribution, appearance during spermatozoan maturation and possible function in motility. J. Cell Sci. 109:727–38
    [Google Scholar]
  27. Bre MH, Redeker V, Vinh J, Rossier J, Levilliers N. 1998. Tubulin polyglycylation: differential posttranslational modification of dynamic cytoplasmic and stable axonemal microtubules in Paramecium. Mol. Biol. Cell 9:2655–65
    [Google Scholar]
  28. Breuss M, Heng JI-T, Poirier K, Tian G, Jaglin XH et al. 2012. Mutations in the β-tubulin gene TUBB5 cause microcephaly with structural brain abnormalities. Cell Rep. 2:1554–62
    [Google Scholar]
  29. Cai D, McEwen DP, Martens JR, Meyhofer E, Verhey KJ. 2009. Single molecule imaging reveals differences in microtubule track selection between kinesin motors. PLOS Biol. 7:e1000216
    [Google Scholar]
  30. Cambray-Deakin MA, Burgoyne RD. 1990. The non-tyrosinated Mα4 α-tubulin gene product is post-translationally tyrosinated in adult rat cerebellum. Mol. Brain Res. 8:77–81
    [Google Scholar]
  31. Carvalho S, Vitor AC, Sridhara SC, Martins FB, Raposo AC et al. 2014. SETD2 is required for DNA double-strand break repair and activation of the p53-mediated checkpoint. eLife 3:e02482
    [Google Scholar]
  32. Caudron F, Denarier E, Thibout-Quintana JC, Brocard J, Andrieux A, Fourest-Lieuvin A. 2010. Mutation of Ser172 in yeast β tubulin induces defects in microtubule dynamics and cell division. PLOS ONE 5:e13553
    [Google Scholar]
  33. Chang W, Webster DR, Salam AA, Gruber D, Prasad A et al. 2002. Alteration of the C-terminal amino acid of tubulin specifically inhibits myogenic differentiation. J. Biol. Chem. 277:30690–98
    [Google Scholar]
  34. Chen CY, Caporizzo MA, Bedi K, Vite A, Bogush AI et al. 2018. Suppression of detyrosinated microtubules improves cardiomyocyte function in human heart failure. Nat. Med. 24:1225–33
    [Google Scholar]
  35. Chen J, Kholina E, Szyk A, Fedorov VA, Kovalenko I et al. 2021. α-tubulin tail modifications regulate microtubule stability through selective effector recruitment, not changes in intrinsic polymer dynamics. Dev. Cell 56:2016–2028.e4
    [Google Scholar]
  36. Chen J, Roll-Mecak A. 2023. Glutamylation is a negative regulator of microtubule growth. Mol. Biol. Cell 34:ar70
    [Google Scholar]
  37. Cho Y, Cavalli V. 2012. HDAC5 is a novel injury-regulated tubulin deacetylase controlling axon regeneration. EMBO J. 31:3063–78
    [Google Scholar]
  38. Choudhary C, Kumar C, Gnad F, Nielsen ML, Rehman M et al. 2009. Lysine acetylation targets protein complexes and co-regulates major cellular functions. Science 325:834–40
    [Google Scholar]
  39. Christoph DC, Kasper S, Gauler TC, Loesch C, Engelhard M et al. 2012. βV-tubulin expression is associated with outcome following taxane-based chemotherapy in non–small cell lung cancer. Br. J. Cancer 107:823–30
    [Google Scholar]
  40. Cleveland DW, Lopata MA, MacDonald RJ, Cowan NJ, Rutter WJ, Kirschner MW. 1980. Number and evolutionary conservation of α- and β-tubulin and cytoplasmic β- and γ-actin genes using specific cloned cDNA probes. Cell 20:95–105
    [Google Scholar]
  41. Cleveland DW, Lopata MA, Sherline P, Kirschner MW. 1981. Unpolymerized tubulin modulates the level of tubulin mRNAs. Cell 25:537–46
    [Google Scholar]
  42. Cushion TD, Paciorkowski AR, Pilz DT, Mullins JGL, Seltzer LE et al. 2014. De novo mutations in the β-tubulin gene TUBB2A cause simplified gyral patterning and infantile-onset epilepsy. Am. J. Hum. Genet. 94:634–41
    [Google Scholar]
  43. Damstra HGJ, Mohar B, Eddison M, Akhmanova A, Kapitein LC, Tillberg PW. 2022. Visualizing cellular and tissue ultrastructure using Ten-fold Robust Expansion Microscopy (TREx). eLife 11:e73775
    [Google Scholar]
  44. Das S, Vera M, Gandin V, Singer RH, Tutucci E. 2021. Intracellular mRNA transport and localized translation. Nat. Rev. Mol. Cell Biol. 22:483–504
    [Google Scholar]
  45. De S, Tsimounis A, Chen X, Rotenberg SA. 2014. Phosphorylation of α-tubulin by protein kinase C stimulates microtubule dynamics in human breast cells. Cytoskeleton 71:257–72
    [Google Scholar]
  46. Diao L, Liu M-Y, Song Y-L, Zhang X, Liang X, Bao L. 2021. α1A and α1C form microtubules to display distinct properties mainly mediated by their C-terminal tails. J. Mol. Cell Biol. 13:mjab062
    [Google Scholar]
  47. Dunn S, Morrison EE, Liverpool TB, Molina-Paris C, Cross RA et al. 2008. Differential trafficking of Kif5c on tyrosinated and detyrosinated microtubules in live cells. J. Cell Sci. 121:1085–95
    [Google Scholar]
  48. Ebberink E, Fernandes S, Hatzopoulos G, Agashe N, Guidotti N et al. 2022. Tubulin engineering by semisynthesis reveals that polyglutamylation directs detyrosination. bioRxiv 2022.09.20.508649. https://doi.org/10.1101/2022.09.20.508649
    [Crossref]
  49. Eipper BA. 1972. Rat brain microtubule protein: purification and determination of covalently bound phosphate and carbohydrate. PNAS 69:2283–87
    [Google Scholar]
  50. Erck C, Peris L, Andrieux A, Meissirel C, Gruber AD et al. 2005. A vital role of tubulin-tyrosine-ligase for neuronal organization. PNAS 102:7853–58
    [Google Scholar]
  51. Eshun-Wilson L, Zhang R, Portran D, Nachury MV, Toso DB et al. 2019. Effects of α-tubulin acetylation on microtubule structure and stability. PNAS 116:10366–71
    [Google Scholar]
  52. Feng R, Yan Z, Li B, Yu M, Sang Q et al. 2016. Mutations in TUBB8 cause a multiplicity of phenotypes in human oocytes and early embryos. J. Med. Genet. 53:662–71
    [Google Scholar]
  53. Fernandez Bessone I, Navarro J, Martinez E, Karmirian K, Holubiec M et al. 2022. DYRK1A regulates the bidirectional axonal transport of APP in human-derived neurons. J. Neurosci. 42:6344–58
    [Google Scholar]
  54. Fourest-Lieuvin A, Peris L, Gache V, Garcia-Saez I, Juillan-Binard C et al. 2006. Microtubule regulation in mitosis: tubulin phosphorylation by the cyclin-dependent kinase Cdk1. Mol. Biol. Cell 17:1041–50
    [Google Scholar]
  55. Fukushige T, Siddiqui ZK, Chou M, Culotti JG, Gogonea CB et al. 1999. MEC-12, an α-tubulin required for touch sensitivity in C. elegans. J. Cell Sci. 112:395–403
    [Google Scholar]
  56. Fulton C. 2022. The amazing evolutionary complexity of eukaryotic tubulins: lessons from naegleria and the multi-tubulin hypothesis. Front. Cell Dev. Biol. 10:867374
    [Google Scholar]
  57. Fulton C, Simpson PA 1976. Selective synthesis and utilization of flagellar tubulin: the multi-tubulin hypothesis. Cell Motility R Goldman, T Pollard, J Rosenbaum 987–1005. Cold Spring Harbor, NY: Cold Spring Harbor Lab Press
    [Google Scholar]
  58. Gaertig J, Cruz MA, Bowen J, Gu L, Pennock DG, Gorovsky MA. 1995. Acetylation of lysine 40 in α-tubulin is not essential in Tetrahymena thermophila. J. Cell Biol. 129:1301–10
    [Google Scholar]
  59. Gao S, Wang S, Zhao Z, Zhang C, Liu Z et al. 2022. TUBB4A interacts with MYH9 to protect the nucleus during cell migration and promotes prostate cancer via GSK3β/β-catenin signalling. Nat. Commun. 13:2792
    [Google Scholar]
  60. Garnham CP, Vemu A, Wilson-Kubalek EM, Yu I, Szyk A et al. 2015. Multivalent microtubule recognition by tubulin tyrosine ligase–like family glutamylases. Cell 161:1112–23
    [Google Scholar]
  61. Garnham CP, Yu I, Li Y, Roll-Mecak A. 2017. Crystal structure of tubulin tyrosine ligase–like 3 reveals essential architectural elements unique to tubulin monoglycylases. PNAS 114:6545–50
    [Google Scholar]
  62. Genova M, Grycova L, Puttrich V, Magiera MM, Lansky Z et al. 2023. Tubulin polyglutamylation differentially regulates microtubule-interacting proteins. EMBO J. 42:e112101
    [Google Scholar]
  63. Gerlinger M, Rowan AJ, Horswell S, Math M, Larkin J et al. 2012. Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. N. Engl. J. Med. 366:883–92
    [Google Scholar]
  64. Guichard P, Laporte MH, Hamel V. 2023. The centriolar tubulin code. Semin. Cell Dev. Biol. 137:16–25
    [Google Scholar]
  65. Gumy LF, Yeo GSH, Tung Y-CL, Zivraj KH, Willis D et al. 2011. Transcriptome analysis of embryonic and adult sensory axons reveals changes in mRNA repertoire localization. RNA 17:85–98
    [Google Scholar]
  66. Gundersen GG, Bulinski JC. 1986. Distribution of tyrosinated and nontyrosinated α-tubulin during mitosis. J. Cell Biol. 102:1118–26
    [Google Scholar]
  67. Hausrat TJ, Janiesch PC, Breiden P, Lutz D, Hoffmeister-Ullerich S et al. 2022. Disruption of tubulin-α4a polyglutamylation prevents aggregation of hyper-phosphorylated tau and microglia activation in mice. Nat. Commun. 13:4192
    [Google Scholar]
  68. Hebebrand M, Hüffmeier U, Trollmann R, Hehr U, Uebe S et al. 2019. The mutational and phenotypic spectrum of TUBA1A-associated tubulinopathy. Orphanet J. Rare Dis. 14:38
    [Google Scholar]
  69. Hirst WG, Biswas A, Mahalingan KK, Reber S. 2020. Differences in intrinsic tubulin dynamic properties contribute to spindle length control in Xenopus species. Curr. Biol. 30:2184–90.e5
    [Google Scholar]
  70. Hoff KJ, Neumann AJ, Moore JK. 2022. The molecular biology of tubulinopathies: understanding the impact of variants on tubulin structure and microtubule regulation. Front. Cell. Neurosci. 16:1023267
    [Google Scholar]
  71. Horio T, Hotani H. 1986. Visualization of the dynamic instability of individual microtubules by dark-field microscopy. Nature 321:605–7
    [Google Scholar]
  72. Hotta T, McAlear TS, Yue Y, Higaki T, Haynes SE et al. 2022. EML2-S constitutes a new class of proteins that recognizes and regulates the dynamics of tyrosinated microtubules. Curr. Biol. 32:3898–910.e14
    [Google Scholar]
  73. Hoyle HD, Hutchens JA, Turner FR, Raff EC. 1995. Regulation of β-tubulin function and expression in Drosophila spermatogenesis. Dev. Genet. 16:148–70
    [Google Scholar]
  74. Hoyle HD, Raff EC. 1990. Two Drosophila β tubulin isoforms are not functionally equivalent. J. Cell Biol. 111:1009–26
    [Google Scholar]
  75. Hubbert C, Guardiola A, Shao R, Kawaguchi Y, Ito A et al. 2002. HDAC6 is a microtubule-associated deacetylase. Nature 417:455–58
    [Google Scholar]
  76. Ikegami K, Mukai M, Tsuchida J, Heier RL, Macgregor GR, Setou M. 2006. TTLL7 is a mammalian β-tubulin polyglutamylase required for growth of MAP2-positive neurites. J. Biol. Chem. 281:30707–16
    [Google Scholar]
  77. Ikegami K, Sato S, Nakamura K, Ostrowski LE, Setou M. 2010. Tubulin polyglutamylation is essential for airway ciliary function through the regulation of beating asymmetry. PNAS 107:10490–95
    [Google Scholar]
  78. Ikegami K, Setou M. 2009. TTLL10 can perform tubulin glycylation when co-expressed with TTLL8. FEBS Lett. 583:1957–63
    [Google Scholar]
  79. Iqbal Z, Tawamie H, Ba W, Reis A, Al Halak B et al. 2019. Loss of function of SVBP leads to autosomal recessive intellectual disability, microcephaly, ataxia, and hypotonia. Genet. Med. 21:1790–96
    [Google Scholar]
  80. Jaglin XH, Poirier K, Saillour Y, Buhler E, Tian G et al. 2009. Mutations in the β-tubulin gene TUBB2B result in asymmetrical polymicrogyria. Nat. Genet. 41:746–52
    [Google Scholar]
  81. Janke C, Rogowski K, Wloga D, Regnard C, Kajava AV et al. 2005. Tubulin polyglutamylase enzymes are members of the TTL domain protein family. Science 308:1758–62
    [Google Scholar]
  82. Jensen-Smith HC, Ludueña RF, Hallworth R. 2003. Requirement for the βI and βIV tubulin isotypes in mammalian cilia. Cell Motil. Cytoskelet. 55:213–20
    [Google Scholar]
  83. Jiang L, Zhu X, Yang H, Chen T, Lv K. 2020. Bioinformatics analysis discovers microtubular tubulin beta 6 class V (TUBB6) as a potential therapeutic target in glioblastoma. Front. Genet. 11:566579
    [Google Scholar]
  84. Karakaya M, Paketci C, Altmueller J, Thiele H, Hoelker I et al. 2019. Biallelic variant in AGTPBP1 causes infantile lower motor neuron degeneration and cerebellar atrophy. Am. J. Med. Genet. A 179:1580–84
    [Google Scholar]
  85. Karki M, Jangid RK, Anish R, Seervai RNH, Bertocchio JP et al. 2021. A cytoskeletal function for PBRM1 reading methylated microtubules. Sci. Adv. 7:eabf2866
    [Google Scholar]
  86. Katrukha EA, Jurriens D, Salas Pastene DM, Kapitein LC. 2021. Quantitative mapping of dense microtubule arrays in mammalian neurons. eLife 10:e67925
    [Google Scholar]
  87. Kearns S, Mason FM, Rathmell WK, Park IY, Walker C et al. 2021. Molecular determinants for α-tubulin methylation by SETD2. J. Biol. Chem. 297:100898
    [Google Scholar]
  88. Kemphues KJ, Kaufman TC, Raff RA, Raff EC. 1982. The testis-specific β-tubulin subunit in Drosophila melanogaster has multiple functions in spermatogenesis. Cell 31:655–70
    [Google Scholar]
  89. Kesarwani S, Lama P, Chandra A, Reddy PP, Jijumon AS et al. 2020. Genetically encoded live-cell sensor for tyrosinated microtubules. J. Cell Biol. 219:e201912107
    [Google Scholar]
  90. Khan AO, Slater A, Maclachlan A, Nicolson PLR, Pike JA et al. 2022. Post-translational polymodification of β1-tubulin regulates motor protein localisation in platelet production and function. Haematologica 107:243–59
    [Google Scholar]
  91. Kim GW, Li L, Ghorbani M, You L, Yang XJ. 2013. Mice lacking α-tubulin acetyltransferase 1 are viable but display α-tubulin acetylation deficiency and dentate gyrus distortion. J. Biol. Chem. 288:20334–50
    [Google Scholar]
  92. Kimura Y, Tsutsumi K, Konno A, Ikegami K, Hameed S et al. 2018. Environmental responsiveness of tubulin glutamylation in sensory cilia is regulated by the p38 MAPK pathway. Sci. Rep. 8:8392
    [Google Scholar]
  93. Koenning M, Wang X, Karki M, Jangid RK, Kearns S et al. 2021. Neuronal SETD2 activity links microtubule methylation to an anxiety-like phenotype in mice. Brain 144:2527–40
    [Google Scholar]
  94. Kormendi V, Szyk A, Piszczek G, Roll-Mecak A. 2012. Crystal structures of tubulin acetyltransferase reveal a conserved catalytic core and the plasticity of the essential N terminus. J. Biol. Chem. 287:41569–75
    [Google Scholar]
  95. Kovacs JJ, Murphy PJ, Gaillard S, Zhao X, Wu JT et al. 2005. HDAC6 regulates Hsp90 acetylation and chaperone-dependent activation of glucocorticoid receptor. Mol. Cell 18:601–7
    [Google Scholar]
  96. Kozminski KG, Diener DR, Rosenbaum JL. 1993. High level expression of nonacetylatable α-tubulin in Chlamydomonas reinhardtii. Cell Motil. Cytoskelet. 25:158–70
    [Google Scholar]
  97. Kreis TE. 1987. Microtubules containing detyrosinated tubulin are less dynamic. EMBO J. 6:2597–606
    [Google Scholar]
  98. Kreitzer G, Liao G, Gundersen GG. 1999. Detyrosination of tubulin regulates the interaction of intermediate filaments with microtubules in vivo via a kinesin-dependent mechanism. Mol. Biol. Cell 10:1105–18
    [Google Scholar]
  99. Kubo T, Yanagisawa HA, Yagi T, Hirono M, Kamiya R. 2010. Tubulin polyglutamylation regulates axonemal motility by modulating activities of inner-arm dyneins. Curr. Biol. 20:441–45
    [Google Scholar]
  100. Kunishima S, Kobayashi R, Itoh TJ, Hamaguchi M, Saito H. 2009. Mutation of the β1-tubulin gene associated with congenital macrothrombocytopenia affecting microtubule assembly. Blood 113:458–61
    [Google Scholar]
  101. L'Hernault SW, Rosenbaum JL 1985. Chlamydomonas α-tubulin is posttranslationally modified by acetylation on the ε-amino group of a lysine. Biochemistry 24:473–78
    [Google Scholar]
  102. Lacroix B, Van Dijk J, Gold ND, Guizetti J, Aldrian-Herrada G et al. 2010. Tubulin polyglutamylation stimulates spastin-mediated microtubule severing. J. Cell Biol. 189:945–54
    [Google Scholar]
  103. Lalle M, Camerini S, Cecchetti S, Blasetti Fantauzzi C, Crescenzi M, Pozio E 2011. Giardia duodenalis 14-3-3 protein is polyglycylated by a tubulin tyrosine ligase–like member and deglycylated by two metallocarboxypeptidases. J. Biol. Chem. 286:4471–84
    [Google Scholar]
  104. Landskron L, Bak J, Adamopoulos A, Kaplani K, Moraiti M et al. 2022. Posttranslational modification of microtubules by the MATCAP detyrosinase. Science 376:eabn6020
    [Google Scholar]
  105. Larcher JC, Boucher D, Lazereg S, Gros F, Denoulet P. 1996. Interaction of kinesin motor domains with α- and β-tubulin subunits at a tau-independent binding site. Regulation by polyglutamylation. J. Biol. Chem. 271:22117–24
    [Google Scholar]
  106. Latham JA, Dent SY. 2007. Cross-regulation of histone modifications. Nat. Struct. Mol. Biol. 14:1017–24
    [Google Scholar]
  107. Latremoliere A, Cheng L, DeLisle M, Wu C, Chew S et al. 2018. Neuronal-specific TUBB3 is not required for normal neuronal function but is essential for timely axon regeneration. Cell Rep. 24:1865–79.e9
    [Google Scholar]
  108. Leandro-García LJ, Leskelä S, Landa I, Montero-Conde C, López-Jiménez E et al. 2010. Tumoral and tissue-specific expression of the major human β-tubulin isotypes. Cytoskeleton 67:214–23
    [Google Scholar]
  109. LeDizet M, Piperno G. 1987. Identification of an acetylation site of Chlamydomonas α-tubulin. PNAS 84:5720–24
    [Google Scholar]
  110. LeDizet M, Piperno G. 1991. Detection of acetylated α-tubulin by specific antibodies. Methods Enzymol. 196:264–74
    [Google Scholar]
  111. Lee JE, Silhavy JL, Zaki MS, Schroth J, Bielas SL et al. 2012. CEP41 is mutated in Joubert syndrome and is required for tubulin glutamylation at the cilium. Nat. Genet. 44:193–99
    [Google Scholar]
  112. Li F, Hu Y, Qi S, Luo X, Yu H. 2019. Structural basis of tubulin detyrosination by vasohibins. Nat. Struct. Mol. Biol. 26:583–591
    [Google Scholar]
  113. Li F, Li Y, Ye X, Gao H, Shi Z et al. 2020. Cryo-EM structure of VASH1-SVBP bound to microtubules. eLife 9:e58157
    [Google Scholar]
  114. Lin Z, Gasic I, Chandrasekaran V, Peters N, Shao S et al. 2020. TTC5 mediates autoregulation of tubulin via mRNA degradation. Science 367:100–4
    [Google Scholar]
  115. Lopes D, Maiato H. 2020. The tubulin code in mitosis and cancer. Cells 9:2356
    [Google Scholar]
  116. Louvel V, Haase R, Mercey O, Laporte MH, Soldati-Favre D et al. 2022. Nanoscopy of organelles and tissues with iterative ultrastructure expansion microscopy (iU-ExM). bioRxiv 2022.11.14.516383. https://doi.org/10.1101/2022.11.14.516383
    [Crossref]
  117. Lu Q, Luduena RF. 1994. In vitro analysis of microtubule assembly of isotypically pure tubulin dimers. Intrinsic differences in the assembly properties of alpha beta II, alpha beta III, and alpha beta IV tubulin dimers in the absence of microtubule-associated proteins. J. Biol. Chem. 269:2041–47
    [Google Scholar]
  118. Ma M, Stoyanova M, Rademacher G, Dutcher SK, Brown A, Zhang R. 2019. Structure of the decorated ciliary doublet microtubule. Cell 179:909–22.e12
    [Google Scholar]
  119. Maas C, Belgardt D, Lee HK, Heisler FF, Lappe-Siefke C et al. 2009. Synaptic activation modifies microtubules underlying transport of postsynaptic cargo. PNAS 106:8731–36
    [Google Scholar]
  120. Mahalingan KK, Keenan EK, Strickland M, Li Y, Liu Y et al. 2020. Structural basis for polyglutamate chain initiation and elongation by TTLL family enzymes. Nat. Struct. Mol. Biol. 27:802–13
    [Google Scholar]
  121. Mahecic D, Gambarotto D, Douglass KM, Fortun D, Banterle N et al. 2020. Homogeneous multifocal excitation for high-throughput super-resolution imaging. Nat. Methods 17:726–33
    [Google Scholar]
  122. Maillard C, Roux CJ, Charbit-Henrion F, Steffann J, Laquerriere A et al. 2023. Tubulin mutations in human neurodevelopmental disorders. Semin. Cell Dev. Biol. 137:87–95
    [Google Scholar]
  123. Maruta H, Greer K, Rosenbaum JL. 1986. The acetylation of alpha-tubulin and its relationship to the assembly and disassembly of microtubules. J. Cell Biol. 103:571–79
    [Google Scholar]
  124. Matten WT, Aubry M, West J, Maness PF 1990. Tubulin is phosphorylated at tyrosine by pp60c-src in nerve growth cone membranes. J. Cell Biol. 111:1959–70
    [Google Scholar]
  125. Maurin J, Morel A, Guérit D, Cau J, Urbach S et al. 2021. The β-tubulin isotype TUBB6 controls microtubule and actin dynamics in osteoclasts. Front. Cell Dev. Biol. 9:778887
    [Google Scholar]
  126. McKenney RJ, Huynh W, Vale RD, Sirajuddin M. 2016. Tyrosination of α-tubulin controls the initiation of processive dynein-dynactin motility. EMBO J. 35:1175–85
    [Google Scholar]
  127. Mechaussier S, Dodd DO, Yeyati PL, McPhie F, Attard T et al. 2022. TUBB4B variants specifically impact ciliary function, causing a ciliopathic spectrum. medRxiv 2022.10.19.22280748. https://doi.org/10.1101/2022.10.19.22280748
    [Crossref]
  128. Minoura I, Hachikubo Y, Yamakita Y, Takazaki H, Ayukawa R et al. 2013. Overexpression, purification, and functional analysis of recombinant human tubulin dimer. FEBS Lett. 587:3450–55
    [Google Scholar]
  129. Mitchison T, Kirschner M. 1984. Dynamic instability of microtubule growth. Nature 312:237–42
    [Google Scholar]
  130. Miyake Y, Keusch JJ, Wang L, Saito M, Hess D et al. 2016. Structural insights into HDAC6 tubulin deacetylation and its selective inhibition. Nat. Chem. Biol. 12:748–54
    [Google Scholar]
  131. Mohan N, Sorokina EM, Verdeny IV, Alvarez AS, Lakadamyali M. 2019. Detyrosinated microtubules spatially constrain lysosomes facilitating lysosome–autophagosome fusion. J. Cell Biol. 218:632–43
    [Google Scholar]
  132. Morley SJ, Qi Y, Iovino L, Andolfi L, Guo D et al. 2016. Acetylated tubulin is essential for touch sensation in mice. eLife 5:e20813
    [Google Scholar]
  133. Mukai M, Ikegami K, Sugiura Y, Takeshita K, Nakagawa A, Setou M. 2009. Recombinant mammalian tubulin polyglutamylase TTLL7 performs both initiation and elongation of polyglutamylation on β-tubulin through a random sequential pathway. Biochemistry 48:1084–93
    [Google Scholar]
  134. Neumann B, Hilliard MA. 2014. Loss of MEC-17 leads to microtubule instability and axonal degeneration. Cell Rep. 6:93–103
    [Google Scholar]
  135. Nieuwenhuis J, Adamopoulos A, Bleijerveld OB, Mazouzi A, Stickel E et al. 2017. Vasohibins encode tubulin detyrosinating activity. Science 358:1453–56
    [Google Scholar]
  136. Nirschl JJ, Magiera MM, Lazarus JE, Janke C, Holzbaur EL. 2016. α-tubulin tyrosination and CLIP-170 phosphorylation regulate the initiation of dynein-driven transport in neurons. Cell Rep. 14:2637–52
    [Google Scholar]
  137. Nogales E, Whittaker M, Milligan RA, Downing KH. 1999. High-resolution model of the microtubule. Cell 96:79–88
    [Google Scholar]
  138. North BJ, Marshall BL, Borra MT, Denu JM, Verdin E. 2003. The human Sir2 ortholog, SIRT2, is an NAD+-dependent tubulin deacetylase. Mol. Cell 11:437–44
    [Google Scholar]
  139. Nsamba ET, Bera A, Costanzo M, Boone C, Gupta ML. 2021. Tubulin isotypes optimize distinct spindle positioning mechanisms during yeast mitosis. J. Cell Biol. 220:e202010155
    [Google Scholar]
  140. O'Hagan R, Piasecki BP, Silva M, Phirke P, Nguyen KC et al. 2011. The tubulin deglutamylase CCPP-1 regulates the function and stability of sensory cilia in C. elegans. Curr. Biol. 21:1685–94
    [Google Scholar]
  141. O'Hagan R, Silva M, Nguyen KCQ, Zhang W, Bellotti S et al. 2017. Glutamylation regulates transport, specializes function, and sculpts the structure of cilia. Curr. Biol. 27:3430–41.e6
    [Google Scholar]
  142. Ori-McKenney KM, McKenney RJ, Huang HH, Li T, Meltzer S et al. 2016. Phosphorylation of β-tubulin by the Down syndrome kinase, minibrain/DYRK1A, regulates microtubule dynamics and dendrite morphogenesis. Neuron 90:551–63
    [Google Scholar]
  143. Pagnamenta AT, Heemeryck P, Martin HC, Bosc C, Peris L et al. 2019. Defective tubulin detyrosination causes structural brain abnormalities with cognitive deficiency in humans and mice. Hum. Mol. Genet. 28:3391–405
    [Google Scholar]
  144. Pamula MC, Ti S-C, Kapoor TM. 2016. The structured core of human β tubulin confers isotype-specific polymerization properties. J. Cell Biol. 213:425–33
    [Google Scholar]
  145. Panda D, Miller HP, Banerjee A, Ludueña RF, Wilson L. 1994. Microtubule dynamics in vitro are regulated by the tubulin isotype composition. PNAS 91:11358–62
    [Google Scholar]
  146. Park IY, Powell RT, Tripathi DN, Dere R, Ho TH et al. 2016. Dual chromatin and cytoskeletal remodeling by SETD2. Cell 166:950–62
    [Google Scholar]
  147. Parker AL, Teo WS, Brayford S, Moorthi UK, Arumugam S et al. 2022. βIII-tubulin structural domains regulate mitochondrial network architecture in an isotype-specific manner. Cells 11:776
    [Google Scholar]
  148. Pathak N, Austin CA, Drummond IA. 2011. Tubulin tyrosine ligase–like genes ttll3 and ttll6 maintain zebrafish cilia structure and motility. J. Biol. Chem. 286:11685–95
    [Google Scholar]
  149. Pathak N, Austin-Tse CA, Liu Y, Vasilyev A, Drummond IA. 2014. Cytoplasmic carboxypeptidase 5 regulates tubulin glutamylation and zebrafish cilia formation and function. Mol. Biol. Cell 25:1836–44
    [Google Scholar]
  150. Paturle-Lafanechère L, Eddé B, Denoulet P, Van Dorsselaer A, Mazarguil H et al. 1991. Characterization of a major brain tubulin variant which cannot be tyrosinated. Biochemistry 30:10523–28
    [Google Scholar]
  151. Paturle-Lafanechère L, Manier M, Trigault N, Pirollet F, Mazarguil H, Job D. 1994. Accumulation of delta 2-tubulin, a major tubulin variant that cannot be tyrosinated, in neuronal tissues and in stable microtubule assemblies. J. Cell Sci. 107:1529–43
    [Google Scholar]
  152. Peris L, Parato J, Qu X, Soleilhac JM, Lante F et al. 2022. Tubulin tyrosination regulates synaptic function and is disrupted in Alzheimer's disease. Brain 145:2486–506
    [Google Scholar]
  153. Peris L, Thery M, Fauré J, Saoudi Y, Lafanechère L et al. 2006. Tubulin tyrosination is a major factor affecting the recruitment of CAP-Gly proteins at microtubule plus ends. J. Cell Biol. 174:839–49
    [Google Scholar]
  154. Peris L, Wagenbach M, Lafanechère L, Brocard J, Moore AT et al. 2009. Motor-dependent microtubule disassembly driven by tubulin tyrosination. J. Cell Biol. 185:1159–66
    [Google Scholar]
  155. Poirier K, Saillour Y, Bahi-Buisson N, Jaglin XH, Fallet-Bianco C et al. 2010. Mutations in the neuronal β-tubulin subunit TUBB3 result in malformation of cortical development and neuronal migration defects. Hum. Mol. Genet. 19:4462–73
    [Google Scholar]
  156. Portran D, Schaedel L, Xu Z, Thery M, Nachury MV. 2017. Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat. Cell Biol. 19:391–98
    [Google Scholar]
  157. Prassanawar SS, Panda D. 2019. Tubulin heterogeneity regulates functions and dynamics of microtubules and plays a role in the development of drug resistance in cancer. Biochem. J. 476:1359–76
    [Google Scholar]
  158. Preitner N, Quan J, Nowakowski DW, Hancock ML, Shi J et al. 2014. APC is an RNA-binding protein, and its interactome provides a link to neural development and microtubule assembly. Cell 158:368–82
    [Google Scholar]
  159. Prota AE, Magiera MM, Kuijpers M, Bargsten K, Frey D et al. 2013. Structural basis of tubulin tyrosination by tubulin tyrosine ligase. J. Cell Biol. 200:259–70
    [Google Scholar]
  160. Ramirez-Rios S, Choi SR, Sanyal C, Blum TB, Bosc C et al. 2023. VASH1-SVBP and VASH2-SVBP generate different detyrosination profiles on microtubules. J. Cell Biol. 222:e202205096
    [Google Scholar]
  161. Ramos SI, Makeyev EV, Salierno M, Kodama T, Kawakami Y, Sahara S. 2020. Tuba8 drives differentiation of cortical radial glia into apical intermediate progenitors by tuning modifications of tubulin C termini. Dev. Cell 52:477–91.e8
    [Google Scholar]
  162. Randazzo D, Khalique U, Belanto JJ, Kenea A, Talsness DM et al. 2019. Persistent upregulation of the β-tubulin tubb6, linked to muscle regeneration, is a source of microtubule disorganization in dystrophic muscle. Hum. Mol. Genet. 28:1117–35
    [Google Scholar]
  163. Raybin D, Flavin M. 1975. An enzyme tyrosylating α-tubulin and its role in microtubule assembly. Biochem. Biophys. Res. Commun. 65:1088–95
    [Google Scholar]
  164. Redeker V. 2010. Mass spectrometry analysis of C-terminal posttranslational modifications of tubulins. Methods Cell Biol. 95:77–103
    [Google Scholar]
  165. Redeker V, Levilliers N, Schmitter J, Le Caer J, Rossier J et al. 1994. Polyglycylation of tubulin: a posttranslational modification in axonemal microtubules. Science 266:1688–91
    [Google Scholar]
  166. Redeker V, Levilliers N, Vinolo E, Rossier J, Jaillard D et al. 2005. Mutations of tubulin glycylation sites reveal cross-talk between the C termini of α- and β-tubulin and affect the ciliary matrix in Tetrahymena. J. Biol. Chem. 280:596–606
    [Google Scholar]
  167. Regnard C, Desbruyeres E, Huet JC, Beauvallet C, Pernollet JC, Edde B. 2000. Polyglutamylation of nucleosome assembly proteins. J. Biol. Chem. 275:15969–76
    [Google Scholar]
  168. Robison P, Caporizzo MA, Ahmadzadeh H, Bogush AI, Chen CY et al. 2016. Detyrosinated microtubules buckle and bear load in contracting cardiomyocytes. Science 352:aaf0659
    [Google Scholar]
  169. Rocha C, Papon L, Cacheux W, Marques Sousa P, Lascano V et al. 2014. Tubulin glycylases are required for primary cilia, control of cell proliferation and tumor development in colon. EMBO J. 33:2247–60
    [Google Scholar]
  170. Rogowski K, Juge F, Van Dijk J, Wloga D, Strub JM et al. 2009. Evolutionary divergence of enzymatic mechanisms for posttranslational polyglycylation. Cell 137:1076–87
    [Google Scholar]
  171. Rogowski K, Van Dijk J, Magiera MM, Bosc C, Deloulme JC et al. 2010. A family of protein-deglutamylating enzymes associated with neurodegeneration. Cell 143:564–78
    [Google Scholar]
  172. Roll-Mecak A. 2019. How cells exploit tubulin diversity to build functional cellular microtubule mosaics. Curr. Opin. Cell Biol. 56:102–8
    [Google Scholar]
  173. Roll-Mecak A. 2020. The tubulin code in microtubule dynamics and information encoding. Dev. Cell 54:7–20
    [Google Scholar]
  174. Romaniello R, Arrigoni F, Fry AE, Bassi MT, Rees MI et al. 2018. Tubulin genes and malformations of cortical development. Eur. J. Med. Genet. 61:744–54
    [Google Scholar]
  175. Saillour Y, Broix L, Bruel-Jungerman E, Lebrun N, Muraca G et al. 2014. β tubulin isoforms are not interchangeable for rescuing impaired radial migration due to Tubb3 knockdown. Hum. Mol. Genet. 23:1516–26
    [Google Scholar]
  176. Sase S, Almad AA, Boecker CA, Guedes-Dias P, Li JJ et al. 2020. TUBB4A mutations result in both glial and neuronal degeneration in an H-ABC leukodystrophy mouse model. eLife 9:e52986
    [Google Scholar]
  177. Savage C, Hamelin M, Culotti JG, Coulson A, Albertson DG, Chalfie M. 1989. mec-7 is a β-tubulin gene required for the production of 15-protofilament microtubules in Caenorhabditis elegans. Genes Dev. 3:870–81
    [Google Scholar]
  178. Schatz PJ, Solomon F, Botstein D. 1986. Genetically essential and nonessential α-tubulin genes specify functionally interchangeable proteins. Mol. Cell. Biol. 6:3722–33
    [Google Scholar]
  179. Schneider A, Plessmann U, Felleisen R, Weber K. 1998. Posttranslational modifications of trichomonad tubulins; identification of multiple glutamylation sites. FEBS Lett. 429:399–402
    [Google Scholar]
  180. Schulze E, Kirschner M. 1987. Dynamic and stable populations of microtubules in cells. J. Cell Biol. 104:277–88
    [Google Scholar]
  181. Schwer HD, Lecine P, Tiwari S, Italiano JE, Hartwig JH, Shivdasani RA. 2001. A lineage-restricted and divergent β-tubulin isoform is essential for the biogenesis, structure and function of blood platelets. Curr. Biol. 11:579–86
    [Google Scholar]
  182. Sferra A, Fattori F, Rizza T, Flex E, Bellacchio E et al. 2018. Defective kinesin binding of TUBB2A causes progressive spastic ataxia syndrome resembling sacsinopathy. Hum. Mol. Genet. 27:1892–904
    [Google Scholar]
  183. Shashi V, Magiera MM, Klein D, Zaki M, Schoch K et al. 2018. Loss of tubulin deglutamylase CCP1 causes infantile-onset neurodegeneration. EMBO J. 37:e100540
    [Google Scholar]
  184. Sheffer R, Gur M, Brooks R, Salah S, Daana M et al. 2019. Biallelic variants in AGTPBP1, involved in tubulin deglutamylation, are associated with cerebellar degeneration and motor neuropathy. Eur. J. Hum. Genet. 27:1419–26
    [Google Scholar]
  185. Shida T, Cueva JG, Xu Z, Goodman MB, Nachury MV. 2010. The major α-tubulin K40 acetyltransferase αTAT1 promotes rapid ciliogenesis and efficient mechanosensation. PNAS 107:21517–22
    [Google Scholar]
  186. Simons C, Wolf NI, McNeil N, Caldovic L, Devaney JM et al. 2013. A de novo mutation in the β-tubulin gene TUBB4A results in the leukoencephalopathy hypomyelination with atrophy of the basal ganglia and cerebellum. Am. J. Hum. Genet. 92:767–73
    [Google Scholar]
  187. Sirajuddin M, Rice LM, Vale RD. 2014. Regulation of microtubule motors by tubulin isotypes and post-translational modifications. Nat. Cell Biol. 16:335–44
    [Google Scholar]
  188. Skultetyova L, Ustinova K, Kutil Z, Novakova Z, Pavlicek J et al. 2017. Human histone deacetylase 6 shows strong preference for tubulin dimers over assembled microtubules. Sci. Rep. 7:11547
    [Google Scholar]
  189. Smirnov V, Grunewald O, Muller J, Zeitz C, Obermaier CD et al. 2021. Novel TTLL5 variants associated with cone-rod dystrophy and early-onset severe retinal dystrophy. Int. J. Mol. Sci. 22:6410
    [Google Scholar]
  190. Smith BN, Ticozzi N, Fallini C, Gkazi AS, Topp S et al. 2014. Exome-wide rare variant analysis identifies TUBA4A mutations associated with familial ALS. Neuron 84:324–31
    [Google Scholar]
  191. Sobierajska K, Ciszewski WM, Wawro ME, Wieczorek-Szukała K, Boncela J et al. 2019. TUBB4B downregulation is critical for increasing migration of metastatic colon cancer cells. Cells 8:810
    [Google Scholar]
  192. Soppina V, Herbstman JF, Skiniotis G, Verhey KJ. 2012. Luminal localization of α-tubulin K40 acetylation by cryo-EM analysis of Fab-labeled microtubules. PLOS ONE 7:e48204
    [Google Scholar]
  193. Strassel C, Magiera MM, Dupuis A, Batzenschlager M, Hovasse A et al. 2019. An essential role for α4A-tubulin in platelet biogenesis. Life Sci. Alliance 2:e201900309
    [Google Scholar]
  194. Sun X, Park JH, Gumerson J, Wu Z, Swaroop A et al. 2016. Loss of RPGR glutamylation underlies the pathogenic mechanism of retinal dystrophy caused by TTLL5 mutations. PNAS 113:E2925–34
    [Google Scholar]
  195. Suryavanshi S, Edde B, Fox LA, Guerrero S, Hard R et al. 2010. Tubulin glutamylation regulates ciliary motility by altering inner dynein arm activity. Curr. Biol. 20:435–40
    [Google Scholar]
  196. Szczesna E, Zehr EA, Cummings SW, Szyk A, Mahalingan KK et al. 2022. Combinatorial and antagonistic effects of tubulin glutamylation and glycylation on katanin microtubule severing. Dev. Cell 57:2497–13.e6
    [Google Scholar]
  197. Szyk A, Deaconescu AM, Piszczek G, Roll-Mecak A. 2011. Tubulin tyrosine ligase structure reveals adaptation of an ancient fold to bind and modify tubulin. Nat. Struct. Mol. Biol. 18:1250–58
    [Google Scholar]
  198. Szyk A, Deaconescu AM, Spector J, Goodman B, Valenstein ML et al. 2014. Molecular basis for age-dependent microtubule acetylation by tubulin acetyltransferase. Cell 157:1405–15
    [Google Scholar]
  199. Tang Q, Liu M, Liu Y, Hwang RD, Zhang T, Wang J. 2021. NDST3 deacetylates α-tubulin and suppresses V-ATPase assembly and lysosomal acidification. EMBO J. 40:e107204
    [Google Scholar]
  200. Tas RP, Chazeau A, Cloin BMC, Lambers MLA, Hoogenraad CC, Kapitein LC. 2017. Differentiation between oppositely oriented microtubules controls polarized neuronal transport. Neuron 96:1264–71.e5
    [Google Scholar]
  201. Ten Martin D, Jardin N, Giudicelli F, Gasmi L, Vougny J et al. 2022. A key role for p60-Katanin in axon navigation is conditioned by the tubulin polyglutamylase TTLL6. bioRxiv 2022.01.20.477127. https://doi.org/10.1101/2022.01.20.477127
    [Crossref]
  202. Thazhath R, Liu C, Gaertig J. 2002. Polyglycylation domain of β-tubulin maintains axonemal architecture and affects cytokinesis in Tetrahymena. Nat. Cell Biol. 4:256–59
    [Google Scholar]
  203. Ti SC, Alushin GM, Kapoor TM. 2018. Human β-tubulin isotypes can regulate microtubule protofilament number and stability. Dev. Cell 47:175–90.e5
    [Google Scholar]
  204. Tian G, Cowan NJ. 2013. Tubulin-specific chaperones components of a molecular machine that assembles the α/β heterodimer. Methods Cell Biol. 115:155–71
    [Google Scholar]
  205. Tischfield MA, Baris HN, Wu C, Rudolph G, Maldergem LV et al. 2010. Human TUBB3 mutations perturb microtubule dynamics, kinesin interactions, and axon guidance. Cell 140:74–87
    [Google Scholar]
  206. Torrino S, Grasset EM, Audebert S, Belhadj I, Lacoux C et al. 2021. Mechano-induced cell metabolism promotes microtubule glutamylation to force metastasis. Cell Metab. 33:1342–57.e10
    [Google Scholar]
  207. Tran AD, Marmo TP, Salam AA, Che S, Finkelstein E et al. 2007. HDAC6 deacetylation of tubulin modulates dynamics of cellular adhesions. J. Cell Sci. 120:1469–79
    [Google Scholar]
  208. Valenstein ML, Roll-Mecak A. 2016. Graded control of microtubule severing by tubulin glutamylation. Cell 164:911–21
    [Google Scholar]
  209. Van Dijk J, Rogowski K, Miro J, Lacroix B, Edde B, Janke C. 2007. A targeted multienzyme mechanism for selective microtubule polyglutamylation. Mol. Cell 26:437–48
    [Google Scholar]
  210. Velle KB, Kennard AS, Trupinic M, Ivec A, Swafford AJM et al. 2022. Naegleria’s mitotic spindles are built from unique tubulins and highlight core spindle features. Curr. Biol. 32:1247–61.e6
    [Google Scholar]
  211. Vemu A, Atherton J, Spector JO, Moores CA, Roll-Mecak A 2017. Tubulin isoform composition tunes microtubule dynamics. Mol. Biol. Cell 28:3564–72
    [Google Scholar]
  212. Vemu A, Atherton J, Spector JO, Szyk A, Moores CA, Roll-Mecak A. 2016. Structure and dynamics of single-isoform recombinant neuronal human tubulin. J. Biol. Chem. 291:12907–15
    [Google Scholar]
  213. Vemu A, Garnham CP, Lee D-Y, Roll-Mecak A. 2014. Generation of differentially modified microtubules using in vitro enzymatic approaches. Methods Enzymol. 540:149–66
    [Google Scholar]
  214. Vent J, Wyatt TA, Smith DD, Banerjee A, Ludueña RF et al. 2005. Direct involvement of the isotype-specific C-terminus of β tubulin in ciliary beating. J. Cell Sci. 118:4333–41
    [Google Scholar]
  215. Verdier-Pinard P, Wang F, Burd B, Angeletti RH, Horwitz SB, Orr GA. 2003. Direct analysis of tubulin expression in cancer cell lines by electrospray ionization mass spectrometry. Biochemistry 42:12019–27
    [Google Scholar]
  216. Wall KP, Hart H, Lee T, Page C, Hawkins TL, Hough LE. 2020. C-terminal tail polyglycylation and polyglutamylation alter microtubule mechanical properties. Biophys. J. 119:2219–30
    [Google Scholar]
  217. Wall KP, Pagratis M, Armstrong G, Balsbaugh JL, Verbeke E et al. 2016. Molecular determinants of tubulin's C-terminal tail conformational ensemble. ACS Chem. Biol. 11:2981–90
    [Google Scholar]
  218. Wang D, Villasante A, Lewis SA, Cowan NJ. 1986. The mammalian β-tubulin repertoire: hematopoietic expression of a novel, heterologous β-tubulin isotype. J. Cell Biol. 103:1903–10
    [Google Scholar]
  219. Wang N, Bosc C, Ryul Choi S, Boulan B, Peris L et al. 2019. Structural basis of tubulin detyrosination by the vasohibin-SVBP enzyme complex. Nat. Struct. Mol. Biol. 26:571–82
    [Google Scholar]
  220. Wang X, Fu Y, Beatty WL, Ma M, Brown A et al. 2021. Cryo-EM structure of cortical microtubules from human parasite Toxoplasma gondii identifies their microtubule inner proteins. Nat. Commun. 12:3065
    [Google Scholar]
  221. Webster DR, Gundersen GG, Bulinski JC, Borisy GG. 1987. Differential turnover of tyrosinated and detyrosinated microtubules. PNAS 84:9040–44
    [Google Scholar]
  222. Weisbrich A, Honnappa S, Jaussi R, Okhrimenko O, Frey D et al. 2007. Structure-function relationship of CAP-Gly domains. Nat. Struct. Mol. Biol. 14:959–67
    [Google Scholar]
  223. Widlund PO, Podolski M, Reber S, Alper J, Storch M et al. 2012. One-step purification of assembly-competent tubulin from diverse eukaryotic sources. Mol. Biol. Cell 23:4393–401
    [Google Scholar]
  224. Wloga D, Rogowski K, Sharma N, Van Dijk J, Janke C et al. 2008. Glutamylation on α-tubulin is not essential but affects the assembly and functions of a subset of microtubules in Tetrahymena thermophila. Eukaryot. Cell 7:1362–72
    [Google Scholar]
  225. Xia L, Hai B, Gao Y, Burnette D, Thazhath R et al. 2000. Polyglycylation of tubulin is essential and affects cell motility and division in Tetrahymena thermophila. J. Cell Biol. 149:1097–106
    [Google Scholar]
  226. Yadav A, Matson KJE, Li L, Hua I, Petrescu J et al. 2023. A cellular taxonomy of the adult human spinal cord. Neuron 111:328–44.e7
    [Google Scholar]
  227. Yen TJ, Machlin PS, Cleveland DW. 1988. Autoregulated instability of β-tubulin mRNAs by recognition of the nascent amino terminus of β-tubulin. Nature 334:580–85
    [Google Scholar]
  228. Zadra I, Jimenez-Delgado S, Anglada-Girotto M, Segura-Morales C, Compton ZJ et al. 2022. Chromosome segregation fidelity requires microtubule polyglutamylation by the cancer downregulated enzyme TTLL11. Nat. Commun. 13:7147
    [Google Scholar]
  229. Zhang X, Yuan Z, Zhang Y, Yong S, Salas-Burgos A et al. 2007. HDAC6 modulates cell motility by altering the acetylation level of cortactin. Mol. Cell 27:197–213
    [Google Scholar]
  230. Zheng P, Obara CJ, Szczesna E, Nixon-Abell J, Mahalingan KK et al. 2022. ER proteins decipher the tubulin code to regulate organelle distribution. Nature 601:132–38
    [Google Scholar]
  231. Zivraj KH, Tung YCL, Piper M, Gumy L, Fawcett JW et al. 2010. Subcellular profiling reveals distinct and developmentally regulated repertoire of growth cone mRNAs. J. Neurosci. 30:15464–78
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-030123-032748
Loading
/content/journals/10.1146/annurev-cellbio-030123-032748
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error