1932

Abstract

Cell size varies widely among different organisms as well as within the same organism in different tissue types and during development, which places variable metabolic and functional demands on organelles and internal structures. A fundamental question is how essential subcellular components scale to accommodate cell size differences. Nuclear transport has emerged as a conserved means of scaling nuclear size. A meiotic spindle scaling factor has been identified as the microtubule-severing protein katanin, which is differentially regulated by phosphorylation in two different-sized frog species. Anaphase mechanisms and levels of chromatin compaction both act to coordinate cell size with spindle and chromosome dimensions to ensure accurate genome distribution during cell division. Scaling relationships and mechanisms for many membrane-bound compartments remain largely unknown and are complicated by their heterogeneity and dynamic nature. This review summarizes cell and organelle size relationships and the experimental approaches that have elucidated mechanisms of intracellular scaling.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-092910-154158
2012-11-10
2024-06-14
Loading full text...

Full text loading...

/content/journals/10.1146/annurev-cellbio-092910-154158
Loading
/content/journals/10.1146/annurev-cellbio-092910-154158
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error