In the 1950s, cellular regulatory mechanisms were newly recognized; with Arthur Pardee I investigated the initial enzyme of pyrimidine biosynthesis, which he discovered is controlled by feedback inhibition. The protein proved unusual in having separate but interacting sites for substrates and regulators. Howard Schachman and I dissociated the protein into different subunits, one binding regulators and one substrates. The enzyme became an early prime example of allostery. In developmental biology I studied the egg of the frog, , characterizing early processes of axis formation. My excellent students and I described cortical rotation, a 30° movement of the egg's cortex over tracks of parallel microtubules anchored to the underlying cytoplasmic core, and we perturbed it to alter Spemann's organizer and effect spectacular phenotypes. The entire sequence of events has been elucidated by others at the molecular level, making a prime example of vertebrate axis formation. Marc Kirschner, Christopher Lowe, and I then compared hemichordate (half-chordate) and chordate early development. Despite anatomical-physiological differences, these groups share numerous steps of axis formation, ones that were probably already in use in their pre-Cambrian ancestor. I've thoroughly enjoyed exploring these areas during a 50-year period of great advances in biological sciences by the worldwide research community.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adair GS. 1925. The hemoglobin system. VI. The oxygen dissociation curve of hemoglobin. J. Biol. Chem. 63:529–45 [Google Scholar]
  2. Ancel P, Vintemberger P. 1949. La rotation de la symetrisation, facteur de la polarisation dorso-ventrale des ebauches promordiales, dans l'oeuf des Amphibiens. Arch. Anat. Microsc. Morphol. Exp. 38:167–233 [Google Scholar]
  3. Anderson KV, Nüsslein-Volhard C. 1984. Information for the dorso-ventral pattern of the Drosophila embryo is stored as maternal mRNA. Nature 311:223–27 [Google Scholar]
  4. Arendt D, Nübler-Jung K. 1994. Inversion of dorsoventral axis?. Nature 371:26 [Google Scholar]
  5. Black SD, Gerhart J. 1985. Experimental control of the site of embryonic axis formation in Xenopus laevis eggs centrifuged before first cleavage. Dev. Biol. 108:310–24 [Google Scholar]
  6. Black SD, Gerhart J. 1986. High frequency twinning of Xenopus laevis embryos from eggs centrifuged before first cleavage. Dev. Biol. 116:228–34 [Google Scholar]
  7. Britten R, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science 165:349–57 [Google Scholar]
  8. Brooke MS, Ushiba D, Magasanik B. 1954. Some factors affecting the excretion of orotic acid by mutants of Aerobacter aerogenes. J. Bacteriol. 68:534–40 [Google Scholar]
  9. Changeux JP. 1961. The feedback control mechanism of biosynthetic l-threonine deaminase by l-isoleucine. Cold Spring Harbor Symp. Quant. Biol. 26:313–18 [Google Scholar]
  10. Changeux JP, Gerhart JC, Schachman HK. 1968. Allosteric interactions in aspartate transcarbamylase. I. Binding of specific ligands to the native enzyme and its isolated subunits. Biochemistry 7:531–38 [Google Scholar]
  11. Changeux JP, Rubin MM. 1968. Allosteric interactions in aspartate transcarbamylase. III. Interpretation of experimental data in terms of the model of Monod, Wyman, and Changeux. Biochemistry 7:553–60 [Google Scholar]
  12. Curtis ASG. 1962. Morphogenetic interactions before gastrulation in the amphibian Xenopus laevis—the cortical field. J. Embryol. Exp. Morph. 10:410–22 [Google Scholar]
  13. Dalcq A, Pasteels J. 1937. Une conception nouvelle des bases physiologiques de la morphogénèse. Arch. Biol. 48:669–712 [Google Scholar]
  14. Davis BD. 1950. Studies on nutritionally deficient bacterial mutants isolated by means of penicillin. Experientia 6:41–50 [Google Scholar]
  15. De Robertis EM. 2008. Evo-devo: variations on ancestral themes. Cell 132:185–95 [Google Scholar]
  16. De Robertis EM. 2009. Spemann's organizer and the self-regulation of embryonic fields. Mech. Dev. 126:925–41 [Google Scholar]
  17. De Robertis EM, Sasai Y. 1996. A common plan for dorsoventral patterning in Bilateria. Nature 380:37–40 [Google Scholar]
  18. Duboc V, Röttinger E, Lapraz F, Besnardeau L, Lepage T. 2005. Left-right asymmetry in the sea urchin embryo is regulated by Nodal signaling on the right side. Dev. Cell 9:147–58 [Google Scholar]
  19. Elinson RP, Rowning B. 1988. A transient array of parallel microtubules in frog eggs: potential tracks for a cytoplasmic rotation that specifies the dorso-ventral axis. Dev. Biol. 128:185–97 [Google Scholar]
  20. England P, Hervé G. 1992. Synergistic inhibition of Escherichia coli aspartate transcarbamylase by CTP and UTP: binding studies using continuous-flow dialysis. Biochemistry 31:9725–32 [Google Scholar]
  21. Fagotto F, Guger K, Gumbiner BM. 1997. Induction of the primary dorsalizing center in Xenopus by the Wnt/GSK/β-catenin signaling pathway, but not by Vg1, Activin or Noggin. Development 124:453–60 [Google Scholar]
  22. Gerhart J. 1980. Mechanisms regulating pattern formation in the amphibian egg and early embryo. Biological Regulation and Development RF Goldberger 2133–316 New York: Plenum [Google Scholar]
  23. Gerhart JC. 1970. Regulatory properties of aspartate transcarbamylase from Escherichia coli. Curr. Top. Cell. Regul. 2:275–325 [Google Scholar]
  24. Gerhart JC. 2004. Symmetry breaking in the egg of Xenopus laevis. Gastrulation C Stern 341–52 Cold Spring Harbor, NY: Cold Spring Harbor Lab. Press [Google Scholar]
  25. Gerhart J, Danilchik M, Doniach T, Roberts S, Rowning B, Stewart R. 1989. Cortical rotation of the Xenopus egg: consequences for the anterioposterior pattern of embryonic dorsal development. Development 1989:Suppl.37–51 [Google Scholar]
  26. Gerhart J, Ubbels G, Black S, Hara K, Kirschner M. 1981. A reinvestigation of the role of the gray crescent in axis formation in Xenopus laevis. Nature 292:511–17 [Google Scholar]
  27. Gerhart JC, Kirschner MW. 1997. Cell, Embryos and Evolution Boston: Blackwell Science642
  28. Gerhart JC, Pardee AB. 1961. Separation of feedback inhibition from activity of aspartate transcarbamylase (ATCase). Fed. Proc. 20:224 [Google Scholar]
  29. Gerhart JC, Pardee AB. 1962. The enzymology of control by feedback inhibition. J. Biol. Chem. 237:891–96 [Google Scholar]
  30. Gerhart JC, Pardee AB. 1963. The effect of the feedback inhibitor, CTP, on subunit interactions in aspartate transcarbamylase. Cold Spring Harbor Symp. Quant. Biol. 28:491–96 [Google Scholar]
  31. Gerhart JC, Pardee AB. 1964. Aspartate transcarbamylase, an enzyme designed for feedback inhibition. Fed. Proc. 23:727–35 [Google Scholar]
  32. Gerhart JC, Schachman HK. 1965. Distinct subunits for the regulatory and catalytic activity of aspartate transcarbamylase. Biochemistry 4:1054–62 [Google Scholar]
  33. Gerhart JC, Schachman HK. 1968. Allosteric interactions in aspartate transcarbamylase. II. Evidence for different conformational states of the protein in the presence and absence of specific ligands. Biochemistry 7:538–52 [Google Scholar]
  34. Gimlich RL, Gerhart JC. 1984. Early cellular interactions promote embryonic axis formation in Xenopus laevis. Dev. Biol. 104:117–30 [Google Scholar]
  35. Graham A, Papalopulu N, Krumlauf R. 1989. The murine and Drosophila homeobox gene complexes have common features of organization and expression. Cell 57:367–78 [Google Scholar]
  36. Grant P, Wacaster JF. 1972. The amphibian gray crescent—a site of developmental information?. Dev. Biol. 28:454–71 [Google Scholar]
  37. Gurdon J. 1968. Changes in somatic cell nuclei inserted into growing and maturing amphibian oocytes. J. Embryol. Exp. Morphol. 20:401–14 [Google Scholar]
  38. Gurdon JB. 2006. From nuclear transfer to nuclear reprogramming: the reversal of cell differentiation. Annu. Rev. Cell Dev. Biol. 22:1–22 [Google Scholar]
  39. Haldane JBS. 1912. The dissociation of oxyhaemoglobin in human blood during partial CO poisoning. J. Physiol. 45:XXII [Google Scholar]
  40. Harland R, Gerhart J. 1997. Formation and function of Spemann's organizer. Annu. Rev. Cell Dev. Biol. 13:611–67 [Google Scholar]
  41. Heasman J, Crawford A, Goldstone K, Garner-Hamrick P, Gumbiner B. et al. 1994. Overexpression of cadherins and underexpression of β-catenin inhibit dorsal mesoderm induction in early Xenopus embryos. Cell 79:791–803 [Google Scholar]
  42. Houliston E, Elinson RP. 1991a. Evidence for the involvement of microtubules, endoplasmic reticulum, and kinesin in cortical rotation of fertilized frog eggs. J. Cell Biol. 114:1017–28 [Google Scholar]
  43. Houliston E, Elinson RP. 1991b. Patterns of microtubule polymerization relating to cortical rotation in Xenopus laevis eggs. Development 112:107–117 [Google Scholar]
  44. Kao KR, Masui RP, Elinson R. 1986. Respecification of pattern in Xenopus laevis embryos: a novel effect of lithium. Nature 322:371–73 [Google Scholar]
  45. Kirschner M, Gerhart J, Mitchison T. 2000. Molecular vitalism. Cell 100:79–88 [Google Scholar]
  46. Kirschner MW, Gerhart JC. 2004. The Plausibility of Life New Haven, CT: Yale Univ. Press314
  47. Koshland DE, Hamadani K. 2002. Proteomics and models for enzyme cooperativity. J. Biol. Chem. 277:46841–44 [Google Scholar]
  48. Koshland DE Jr, Némethy G, Filmer D. 1966. Comparison of experimental binding data and theoretical models in proteins containing subunits. Biochemistry 5:365–68 [Google Scholar]
  49. Kosman RP, Gouaux JE, Lipscomb WN. 2004. Crystal structure of CTP-ligated T state aspartate transcarbamoylase at 2.5 Å resolution: implications for ATCase mutants and the mechanism of negative cooperativity. Proteins: Struct. Funct. Bioinform. 15:147–76 [Google Scholar]
  50. Larabell CA, Rowning BA, Wells J, Wu M, Gerhart JC. 1996. Confocal microscopy analysis of living Xenopus eggs and the mechanism of cortical rotation. Development 122:1281–89 [Google Scholar]
  51. Lowe CJ, Terasaki M, Wu M, Freeman RM Jr, Runft L. et al. 2006. Dorsoventral patterning in hemichordates: insights into early chordate evolution. PLoS Biol. 4:93291 [Google Scholar]
  52. Lowe CJ, Wu M, Salic A, Evans L, Lander E. et al. 2003. Anteroposterior patterning in hemichordates and the origins of the chordate nervous system. Cell 113:853–65 [Google Scholar]
  53. Malacinski GM, Brothers AJ, Chung HM. 1977. Destruction of components of the neural induction system of the amphibian egg with UV irradiation. Dev. Biol. 56:24–39 [Google Scholar]
  54. McMahon AP, Moon RT. 1989. Ectopic expression of the proto-oncogene int-1 in Xenopus embryos leads to duplication of the embryonic axis. Cell 22:1075–1084 [Google Scholar]
  55. Monod J, Jacob F. 1961. Teleonomic mechanisms in cellular metabolism, growth, and differentiation. Cold Spring Harbor Symp. Quant. Biol. 26:389–401 [Google Scholar]
  56. Monod J, Wyman J, Changeux JP. 1965. On the nature of allosteric transitions: a plausible model. J. Mol. Biol. 12:88–118 [Google Scholar]
  57. Muirhead H, Perutz MF. 1963. Structure of haemoglobin. A three-dimensional Fourier synthesis of reduced human haemoglobin at 5.5 Å resolution. Nature 199:633–38 [Google Scholar]
  58. Nieuwkoop P. 1969. The formation of mesoderm in urodelean amphibians. II. The origin of the dorsoventral polarity of the mesoderm. Roux Arch. 163:298–315 [Google Scholar]
  59. Nieuwkoop PD. 1952. Activation and organization of the central nervous system in amphibians. III. Synthesis of a new working hypothesis. J. Exp. Zool. 120:83–108 [Google Scholar]
  60. Nieuwkoop P, Faber J. 1975. Normal Table of Xenopus laevis (Daudin) North Holland Amsterdam:, 2nd. [Google Scholar]
  61. Novick A, Szilard L. 1954. Experiments with the chemostat on the rates of amino acid synthesis in bacteria. Dynamics of Growth Processes EJ Boell 21–32 Princeton, NJ: Princeton Univ. Press304 [Google Scholar]
  62. Pardee AB, Jacob F, Monod J. 1959. The genetic control and cytoplasmic expression of “inducibility” in the synthesis of β-galactosidase by E. coli. J. Mol. Biol. 1:165–78 [Google Scholar]
  63. Pardee AB, Reddy GPV. 2003. Beginnings of feedback inhibition, allostery, and multi-protein complexes. Gene 321:17–23 [Google Scholar]
  64. Pauling L. 1935. The oxygen equilibrium of hemoglobin and its structural interpretation.. Proc. Natl. Acad. Sci. USA 21:186–91 [Google Scholar]
  65. Putnam NH, Srivastava M, Hellsten U, Dirks B, Chapman J. et al. 2007. Sea anemone genome reveals ancestral eumetazoan gene repertoire and genomic organization. Science 317:86–94 [Google Scholar]
  66. Roberts RB, Abelson PH, Cowie DB, Bolton ET, Britten RJ. 1955. Studies of biosynthesis in Escherichia coli. Carnegie Institution of Washington Publ. 607 Washington, DC: [Google Scholar]
  67. Rowning BA, Wells J, Wu M, Gerhart JC, Moon R, Larabell CA. 1997. Microtubule-mediated transport of organelles and localization of β-catenin to the future dorsal side of Xenopus eggs. Proc. Natl. Acad. Sci. USA 94:1224–29 [Google Scholar]
  68. Sasai Y, Lu B, Steinbeisser H, Geissert D, Gont LK, De Robertis EM. 1994. Xenopus chordin: a novel dorsalizing factor activated by organizer-specific homeobox genes. Cell 79:779–90 [Google Scholar]
  69. Scharf SR, Gerhart JC. 1980. Determination of the dorsal-ventral axis in eggs of Xenopus laevis: complete rescue of UV-impaired eggs by oblique orientation before first cleavage. Dev. Biol. 79:181–98 [Google Scholar]
  70. Scharf SR, Gerhart JC. 1983. Axis determination in eggs of Xenopus laevis: a critical period before first cleavage, identified by the common effects of cold, pressure, and UV radiation. Dev. Biol. 99:75–87 [Google Scholar]
  71. Scharf SR, Rowning B, Wu M, Gerhart JC. 1989. Hyperdorsoanterior embryos from Xenopus eggs treated with D2O. Dev. Biol 134:175–88 [Google Scholar]
  72. Schneider S, Steinbeisser H, Warga RM, Hausen P. 1996. β-catenin translocation into nuclei demarcates the dorsalizing centers in frog and fish embryos. Mech. Dev. 57:191–98 [Google Scholar]
  73. Shepherdson M, Pardee AB. 1960. Production and crystallization of aspartate transcarbamylase. J. Biol. Chem. 235:3233–37 [Google Scholar]
  74. Smith WC, Harland RM. 1992. Expression cloning of noggin, a new dorsalizing factor localized to the Spemann organizer in Xenopus embryos. Cell 70:829–40 [Google Scholar]
  75. Spemann H, Mangold H. 1924. Über Induction von Embryonalanlagen durch Implantation artfremder Organisatoren. Roux Arch. Entw. Mech. Org. 100:599–638 [Google Scholar]
  76. Stanier RY, Doudoroff M, Adelberg EA. 1957. The Microbial World Englewood Cliffs, NJ: Prentice Hall
  77. Stewart RM, Gerhart JC. 1990. The anterior extent of dorsal development of the Xenopus embryonic axis depends on the quantity of organizer in the late blastula. Development 109:363–72 [Google Scholar]
  78. Tao Q, Yokota C, Puck H, Kofron M, Birsoy B. et al. 2005. Maternal Wnt11 activates the canonical Wnt signaling pathway required for axis formation in Xenopus embryos. Cell 120:857–71 [Google Scholar]
  79. Umbarger HE. 1956. Evidence for a negative-feedback mechanism in the biosynthesis of isoleucine. Science 123:848 [Google Scholar]
  80. Umbarger HE, Brown B. 1958. Isoleucine and valine metabolism in Escherichia coli. VII. A negative feedback mechanism controlling isoleucine biosynthesis. J. Biol. Chem. 238:415–20 [Google Scholar]
  81. Vincent JP, Gerhart JC. 1987. Subcortical rotation in Xenopus eggs: an early step in embryonic axis specification. Dev. Biol. 123:526–39 [Google Scholar]
  82. Vincent JP, Oster GF, Gerhart JC. 1986. Kinematics of gray crescent formation in Xenopus eggs. Displacement of subcortical cytoplasm relative to the egg surface. Dev. Biol. 113:484–500 [Google Scholar]
  83. Weber K. 1968. New structural model of E. coli aspartate transcarbamylase and the amino-acid sequence of the regulatory polypeptide chain. Nature 218:1116–19 [Google Scholar]
  84. Wild JR, Loughrey-Chen SJ, Corder TS. 1989. In the presence of CTP, UTP becomes an allosteric inhibitor of aspartate transcarbamoylase. Proc. Natl. Acad. Sci. USA 86:46–50 [Google Scholar]
  85. Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:1–47 [Google Scholar]
  86. Wyman J. 1948. Heme proteins. Adv. Prot. Chem. 4:407–531 [Google Scholar]
  87. Yates R, Pardee AB. 1956a. Pyrimidine biosynthesis in Escherichia coli. J. Biol. Chem. 221:743–56 [Google Scholar]
  88. Yates RA, Pardee AB. 1956b. Control of pyrimidine biosynthesis in Escherichia coli by a feedback mechanism. J. Biol. Chem. 221:757–70 [Google Scholar]
  89. Zoltewicz JS, Gerhart JC. 1997. The Spemann organizer of Xenopus is patterned along its anteroposterior axis at the earliest gastrula stage. Dev. Biol. 192:482–91 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error