1932

Abstract

Intermediate filaments (IFs) are one of the three major elements of the cytoskeleton. Their stability, intrinsic mechanical properties, and cell type–specific expression patterns distinguish them from actin and microtubules. By providing mechanical support, IFs protect cells from external forces and participate in cell adhesion and tissue integrity. IFs form an extensive and elaborate network that connects the cell cortex to intracellular organelles. They act as a molecular scaffold that controls intracellular organization. However, IFs have been revealed as much more than just rigid structures. Their dynamics is regulated by multiple signaling cascades and appears to contribute to signaling events in response to cell stress and to dynamic cellular functions such as mitosis, apoptosis, and migration.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062534
2018-10-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062534.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062534&mimeType=html&fmt=ahah

Literature Cited

  1. Akiyama M, Matsuda Y, Ishiwata T, Naito Z, Kawana S 2013. Inhibition of the stem cell marker nestin reduces tumor growth and invasion of malignant melanoma. J. Investig. Dermatol. 133:1384–87
    [Google Scholar]
  2. Alam H, Kundu ST, Dalal SN, Vaidya MM 2011. Loss of keratins 8 and 18 leads to alterations in α6β4-integrin-mediated signalling and decreased neoplastic progression in an oral-tumour-derived cell line. J. Cell Sci. 124:2096–106
    [Google Scholar]
  3. Bachir AI, Horwitz AR, Nelson WJ, Bianchini JM 2017. Actin-based adhesion modules mediate cell interactions with the extracellular matrix and neighboring cells. Cold Spring Harb. Perspect. Biol. 9:a023234
    [Google Scholar]
  4. Barberis L, Pasquali C, Bertschy-Meier D, Cuccurullo A, Costa C et al. 2009. Leukocyte transmigration is modulated by chemokine-mediated PI3Kγ-dependent phosphorylation of vimentin. Eur. J. Immunol. 39:1136–46
    [Google Scholar]
  5. Beil M, Micoulet A, von Wichert G, Paschke S, Walther P et al. 2003. Sphingosylphosphorylcholine regulates keratin network architecture and visco-elastic properties of human cancer cells. Nat. Cell Biol. 5:803–11
    [Google Scholar]
  6. Betz RC, Planko L, Eigelshoven S, Hanneken S, Pasternack SM et al. 2006. Loss-of-function mutations in the keratin 5 gene lead to Dowling-Degos disease. Am. J. Hum. Genet. 78:510–19
    [Google Scholar]
  7. Bhattacharya R, Gonzalez AM, Debiase PJ, Trejo HE, Goldman RD et al. 2009. Recruitment of vimentin to the cell surface by β3 integrin and plectin mediates adhesion strength. J. Cell Sci. 122:1390–400
    [Google Scholar]
  8. Bhosle RC, Michele DE, Campbell KP, Li Z, Robson RM 2006. Interactions of intermediate filament protein synemin with dystrophin and utrophin. Biochem. Biophys. Res. Commun. 346:768–77
    [Google Scholar]
  9. Block J, Schroeder V, Pawelzyk P, Willenbacher N, Koster S 2015. Physical properties of cytoplasmic intermediate filaments. Biochim. Biophys. Acta 1853:3053–64
    [Google Scholar]
  10. Bonakdar N, Luczak J, Lautscham L, Czonstke M, Koch TM et al. 2012. Biomechanical characterization of a desminopathy in primary human myoblasts. Biochem. Biophys. Res. Commun. 419:703–7
    [Google Scholar]
  11. Bordeleau F, Galarneau L, Gilbert S, Loranger A, Marceau N 2010. Keratin 8/18 modulation of protein kinase C–mediated integrin-dependent adhesion and migration of liver epithelial cells. Mol. Biol. Cell 21:1698–713
    [Google Scholar]
  12. Bouameur JE, Favre B, Fontao L, Lingasamy P, Begre N, Borradori L 2014. Interaction of plectin with keratins 5 and 14: dependence on several plectin domains and keratin quaternary structure. J. Investig. Dermatol. 134:2776–83
    [Google Scholar]
  13. Bouameur JE, Schneider Y, Begre N, Hobbs RP, Lingasamy P et al. 2013. Phosphorylation of serine 4,642 in the C-terminus of plectin by MNK2 and PKA modulates its interaction with intermediate filaments. J. Cell Sci. 126:4195–207
    [Google Scholar]
  14. Broussard JA, Yang R, Huang C, Nathamgari SSP, Beese AM et al. 2017. The desmoplakin-intermediate filament linkage regulates cell mechanics. Mol. Biol. Cell 28:3156–64
    [Google Scholar]
  15. Burgstaller G, Gregor M, Winter L, Wiche G 2010. Keeping the vimentin network under control: Cell-matrix adhesion–associated plectin 1f affects cell shape and polarity of fibroblasts. Mol. Biol. Cell 21:3362–75
    [Google Scholar]
  16. Busch T, Armacki M, Eiseler T, Joodi G, Temme C et al. 2012. Keratin 8 phosphorylation regulates keratin reorganization and migration of epithelial tumor cells. J. Cell Sci. 125:2148–59
    [Google Scholar]
  17. Byers HR, Maheshwary S, Amodeo DM, Dykstra SG 2003. Role of cytoplasmic dynein in perinuclear aggregation of phagocytosed melanosomes and supranuclear melanin cap formation in human keratinocytes. J. Investig. Dermatol. 121:813–20
    [Google Scholar]
  18. Capetanaki Y, Bloch RJ, Kouloumenta A, Mavroidis M, Psarras S 2007. Muscle intermediate filaments and their links to membranes and membranous organelles. Exp. Cell Res. 313:2063–76
    [Google Scholar]
  19. Capetanaki Y, Papathanasiou S, Diokmetzidou A, Vatsellas G, Tsikitis M 2015. Desmin related disease: a matter of cell survival failure. Curr. Opin. Cell Biol. 32:113–20
    [Google Scholar]
  20. Caulin C, Ware CF, Magin TM, Oshima RG 2000. Keratin-dependent, epithelial resistance to tumor necrosis factor–induced apoptosis. J. Cell Biol. 149:17–22
    [Google Scholar]
  21. Charrier EE, Janmey PA 2016. Mechanical properties of intermediate filament proteins. Methods Enzymol 568:35–57
    [Google Scholar]
  22. Cheng F, Eriksson JE 2017. Intermediate filaments and the regulation of cell motility during regeneration and wound healing. Cold Spring Harb. Perspect. Biol. 9:a022046
    [Google Scholar]
  23. Chernyatina AA, Guzenko D, Strelkov SV 2015. Intermediate filament structure: the bottom-up approach. Curr. Opin. Cell Biol. 32:65–72
    [Google Scholar]
  24. Cheung KJ, Gabrielson E, Werb Z, Ewald AJ 2013. Collective invasion in breast cancer requires a conserved basal epithelial program. Cell 155:1639–51
    [Google Scholar]
  25. Chi A, Valencia JC, Hu ZZ, Watabe H, Yamaguchi H et al. 2006. Proteomic and bioinformatic characterization of the biogenesis and function of melanosomes. J. Proteome Res. 5:3135–44
    [Google Scholar]
  26. Cho A, Kato M, Whitwam T, Kim JH, Montell DJ 2016. An atypical tropomyosin in Drosophila with intermediate filament–like properties. Cell Rep 16:928–38
    [Google Scholar]
  27. Chung BM, Rotty JD, Coulombe PA 2013. Networking galore: intermediate filaments and cell migration. Curr. Opin. Cell Biol. 25:600–12
    [Google Scholar]
  28. Clemen CS, Stockigt F, Strucksberg KH, Chevessier F, Winter L et al. 2015. The toxic effect of R350P mutant desmin in striated muscle of man and mouse. Acta Neuropathol 129:297–315
    [Google Scholar]
  29. Cogli L, Progida C, Bramato R, Bucci C 2013.a Vimentin phosphorylation and assembly are regulated by the small GTPase Rab7a. Biochim. Biophys. Acta 1833:1283–93
    [Google Scholar]
  30. Cogli L, Progida C, Thomas CL, Spencer-Dene B, Donno C et al. 2013.b Charcot-Marie-Tooth type 2B disease–causing RAB7A mutant proteins show altered interaction with the neuronal intermediate filament peripherin. Acta Neuropathol 125:257–72
    [Google Scholar]
  31. Colakoglu G, Brown A 2009. Intermediate filaments exchange subunits along their length and elongate by end-to-end annealing. J. Cell Biol. 185:769–77
    [Google Scholar]
  32. Costigliola N, Ding L, Burckhardt CJ, Han SJ, Gutierrez E et al. 2017. Vimentin fibers orient traction stress. PNAS 114:5195–200
    [Google Scholar]
  33. De Pascalis C, Etienne-Manneville S 2017. Single and collective cell migration: the mechanics of adhesions. Mol. Biol. Cell 28:1833–46
    [Google Scholar]
  34. DePianto D, Coulombe PA 2004. Intermediate filaments and tissue repair. Exp. Cell Res. 301:68–76
    [Google Scholar]
  35. Dobrzynska A, Gonzalo S, Shanahan C, Askjaer P 2016. The nuclear lamina in health and disease. Nucleus 7:233–48
    [Google Scholar]
  36. Dupin I, Etienne-Manneville S 2011. Nuclear positioning: mechanisms and functions. Int. J. Biochem. Cell Biol. 43:1698–707
    [Google Scholar]
  37. Dupin I, Sakamoto Y, Etienne-Manneville S 2011. Cytoplasmic intermediate filaments mediate actin-driven positioning of the nucleus. J. Cell Sci. 124:865–72
    [Google Scholar]
  38. Eckhart L, Lippens S, Tschachler E, Declercq W 2013. Cell death by cornification. Biochim. Biophys. Acta 1833:3471–80
    [Google Scholar]
  39. Eriksson JE, Dechat T, Grin B, Helfand B, Mendez M et al. 2009. Introducing intermediate filaments: from discovery to disease. J. Clin. Investig. 119:1763–71
    [Google Scholar]
  40. Eriksson JE, Opal P, Goldman RD 1992. Intermediate filament dynamics. Curr. Opin. Cell Biol. 4:99–104
    [Google Scholar]
  41. Etienne-Manneville S 2013. Microtubules in cell migration. Annu. Rev. Cell Dev. Biol. 29:471–99
    [Google Scholar]
  42. Favre B, Schneider Y, Lingasamy P, Bouameur JE, Begre N et al. 2011. Plectin interacts with the rod domain of type III intermediate filament proteins desmin and vimentin. Eur. J. Cell Biol. 90:390–400
    [Google Scholar]
  43. Felkl M, Tomas K, Smid M, Mattes J, Windoffer R, Leube RE 2012. Monitoring the cytoskeletal EGF response in live gastric carcinoma cells. PLOS ONE 7:e45280
    [Google Scholar]
  44. Fine JD 2007. Epidermolysis bullosa: a genetic disease of altered cell adhesion and wound healing, and the possible clinical utility of topically applied thymosin β4. Ann. N. Y. Acad. Sci. 1112:396–406
    [Google Scholar]
  45. Fingar DC, Blenis J 2004. Target of rapamycin (TOR): an integrator of nutrient and growth factor signals and coordinator of cell growth and cell cycle progression. Oncogene 23:3151–71
    [Google Scholar]
  46. Flitney EW, Kuczmarski ER, Adam SA, Goldman RD 2009. Insights into the mechanical properties of epithelial cells: the effects of shear stress on the assembly and remodeling of keratin intermediate filaments. FASEB J 23:2110–19
    [Google Scholar]
  47. Foisner R 1997. Dynamic organisation of intermediate filaments and associated proteins during the cell cycle. BioEssays 19:297–305
    [Google Scholar]
  48. Fontao L, Favre B, Riou S, Geerts D, Jaunin F et al. 2003. Interaction of the bullous pemphigoid antigen 1 (BP230) and desmoplakin with intermediate filaments is mediated by distinct sequences within their COOH terminus. Mol. Biol. Cell 14:1978–92
    [Google Scholar]
  49. Fortier AM, Asselin E, Cadrin M 2013. Keratin 8 and 18 loss in epithelial cancer cells increases collective cell migration and cisplatin sensitivity through claudin1 up-regulation. J. Biol. Chem. 288:11555–71
    [Google Scholar]
  50. Furst DO, Goldfarb LG, Kley RA, Vorgerd M, Olive M, van der Ven PF 2013. Filamin C–related myopathies: pathology and mechanisms. Acta Neuropathol 125:33–46
    [Google Scholar]
  51. Galarneau L, Loranger A, Gilbert S, Marceau N 2007. Keratins modulate hepatic cell adhesion, size and G1/S transition. Exp. Cell Res. 313:179–94
    [Google Scholar]
  52. Gallicano GI, Bauer C, Fuchs E 2001. Rescuing desmoplakin function in extra-embryonic ectoderm reveals the importance of this protein in embryonic heart, neuroepithelium, skin and vasculature. Development 128:929–41
    [Google Scholar]
  53. Gan Z, Ding L, Burckhardt CJ, Lowery J, Zaritsky A et al. 2016. Vimentin intermediate filaments template microtubule networks to enhance persistence in cell polarity and directed migration. Cell Syst 3:500–01
    [Google Scholar]
  54. Geisler F, Leube RE 2016. Epithelial intermediate filaments: guardians against microbial infection. ? Cells 5:E29
    [Google Scholar]
  55. Gentil BJ, McLean JR, Xiao S, Zhao B, Durham HD, Robertson J 2014. A two-hybrid screen identifies an unconventional role for the intermediate filament peripherin in regulating the subcellular distribution of the SNAP25-interacting protein, SIP30. J. Neurochem. 131:588–601
    [Google Scholar]
  56. Gentil BJ, Tibshirani M, Durham HD 2015. Neurofilament dynamics and involvement in neurological disorders. Cell Tissue Res 360:609–20
    [Google Scholar]
  57. Gerace L, Tapia O 2018. Messages from the voices within: regulation of signaling by proteins of the nuclear lamina. Curr. Opin. Cell Biol. 52:14–21
    [Google Scholar]
  58. Gilbert S, Loranger A, Marceau N 2004. Keratins modulate c-Flip/extracellular signal-regulated kinase 1 and 2 antiapoptotic signaling in simple epithelial cells. Mol. Cell. Biol. 24:7072–81
    [Google Scholar]
  59. Goldfarb LG, Olive M, Vicart P, Goebel HH 2008. Intermediate filament diseases: desminopathy. Adv. Exp. Med. Biol. 642:131–64
    [Google Scholar]
  60. Goossens S, Janssens B, Bonne S, De Rycke R, Braet F et al. 2007. A unique and specific interaction between αT-catenin and plakophilin-2 in the area composita, the mixed-type junctional structure of cardiac intercalated discs. J. Cell Sci. 120:2126–36
    [Google Scholar]
  61. Goshima F, Watanabe D, Suzuki H, Takakuwa H, Yamada H, Nishiyama Y 2001. The US2 gene product of herpes simplex virus type 2 interacts with cytokeratin 18. Arch. Virol. 146:2201–9
    [Google Scholar]
  62. Govaere O, Komuta M, Berkers J, Spee B, Janssen C et al. 2014. Keratin 19: a key role player in the invasion of human hepatocellular carcinomas. Gut 63:674–85
    [Google Scholar]
  63. Green KJ, Bohringer M, Gocken T, Jones JC 2005. Intermediate filament associated proteins. Adv. Protein Chem. 70:143–202
    [Google Scholar]
  64. Gregor M, Osmanagic-Myers S, Burgstaller G, Wolfram M, Fischer I et al. 2014. Mechanosensing through focal adhesion–anchored intermediate filaments. FASEB J 28:715–29
    [Google Scholar]
  65. Grevesse T, Dabiri BE, Parker KK, Gabriele S 2015. Opposite rheological properties of neuronal microcompartments predict axonal vulnerability in brain injury. Sci. Rep. 5:9475
    [Google Scholar]
  66. Gu LH, Coulombe PA 2007. Keratin function in skin epithelia: a broadening palette with surprising shades. Curr. Opin. Cell Biol. 19:13–23
    [Google Scholar]
  67. Guldiken N, Usachov V, Levada K, Trautwein C, Ziol M et al. 2015. Keratins 8 and 18 are type II acute-phase responsive genes overexpressed in human liver disease. Liver Int 35:1203–12
    [Google Scholar]
  68. Guo L, Degenstein L, Dowling J, Yu QC, Wollmann R et al. 1995. Gene targeting of BPAG1: abnormalities in mechanical strength and cell migration in stratified epithelia and neurologic degeneration. Cell 81:233–43
    [Google Scholar]
  69. Guo M, Ehrlicher AJ, Mahammad S, Fabich H, Jensen MH et al. 2013. The role of vimentin intermediate filaments in cortical and cytoplasmic mechanics. Biophys. J. 105:1562–68
    [Google Scholar]
  70. Guzenko D, Chernyatina AA, Strelkov SV 2017. Crystallographic studies of intermediate filament proteins. Subcell. Biochem. 82:151–70
    [Google Scholar]
  71. Habtezion A, Toivola DM, Asghar MN, Kronmal GS, Brooks JD et al. 2011. Absence of keratin 8 confers a paradoxical microflora-dependent resistance to apoptosis in the colon. PNAS 108:1445–50
    [Google Scholar]
  72. Hamill KJ, Hopkinson SB, DeBiase P, Jones JC 2009. BPAG1e maintains keratinocyte polarity through β4 integrin–mediated modulation of Rac1 and cofilin activities. Mol. Biol. Cell 20:2954–62
    [Google Scholar]
  73. Havel LS, Kline ER, Salgueiro AM, Marcus AI 2015. Vimentin regulates lung cancer cell adhesion through a VAV2-Rac1 pathway to control focal adhesion kinase activity. Oncogene 34:1979–90
    [Google Scholar]
  74. He T, Stepulak A, Holmstrom TH, Omary MB, Eriksson JE 2002. The intermediate filament protein keratin 8 is a novel cytoplasmic substrate for c-Jun N-terminal kinase. J. Biol. Chem. 277:10767–74
    [Google Scholar]
  75. Herrmann H, Aebi U 2016. Intermediate filaments: structure and assembly. Cold Spring Harb. Perspect. Biol. 8:a018242
    [Google Scholar]
  76. Herrmann H, Strelkov SV 2011. History and phylogeny of intermediate filaments: now in insects. BMC Biol 9:16
    [Google Scholar]
  77. Hijikata T, Murakami T, Ishikawa H, Yorifuji H 2003. Plectin tethers desmin intermediate filaments onto subsarcolemmal dense plaques containing dystrophin and vinculin. Histochem. Cell Biol. 119:109–23
    [Google Scholar]
  78. Hijikata T, Nakamura A, Isokawa K, Imamura M, Yuasa K et al. 2008. Plectin 1 links intermediate filaments to costameric sarcolemma through β-synemin, α-dystrobrevin and actin. J. Cell Sci. 121:2062–74
    [Google Scholar]
  79. Hol EM, Capetanaki Y 2017. Type III intermediate filaments desmin, glial fibrillary acidic protein (GFAP), vimentin, and peripherin. Cold Spring Harb. Perspect. Biol. 9:a021642
    [Google Scholar]
  80. Hol EM, Pekny M 2015. Glial fibrillary acidic protein (GFAP) and the astrocyte intermediate filament system in diseases of the central nervous system. Curr. Opin. Cell Biol. 32:121–30
    [Google Scholar]
  81. Hookway C, Ding L, Davidson MW, Rappoport JZ, Danuser G, Gelfand VI 2015. Microtubule-dependent transport and dynamics of vimentin intermediate filaments. Mol. Biol. Cell 26:1675–86
    [Google Scholar]
  82. Horwitz B, Kupfer H, Eshhar Z, Geiger B 1981. Reorganization of arrays of prekeratin filaments during mitosis. Immunofluorescence microscopy with multiclonal and monoclonal prekeratin antibodies. Exp. Cell Res. 134:281–90
    [Google Scholar]
  83. Huber F, Boire A, Lopez MP, Koenderink GH 2015. Cytoskeletal crosstalk: when three different personalities team up. Curr. Opin. Cell Biol. 32:39–47
    [Google Scholar]
  84. Huen AC, Park JK, Godsel LM, Chen X, Bannon LJ et al. 2002. Intermediate filament–membrane attachments function synergistically with actin-dependent contacts to regulate intercellular adhesive strength. J. Cell Biol. 159:1005–17
    [Google Scholar]
  85. Hyder CL, Lazaro G, Pylvanainen JW, Roberts MW, Qvarnstrom SM, Eriksson JE 2014. Nestin regulates prostate cancer cell invasion by influencing the localisation and functions of FAK and integrins. J. Cell Sci. 127:2161–73
    [Google Scholar]
  86. Ikawa K, Satou A, Fukuhara M, Matsumura S, Sugiyama N et al. 2014. Inhibition of endocytic vesicle fusion by Plk1-mediated phosphorylation of vimentin during mitosis. Cell Cycle 13:126–37
    [Google Scholar]
  87. Ivaska J, Pallari HM, Nevo J, Eriksson JE 2007. Novel functions of vimentin in cell adhesion, migration, and signaling. Exp. Cell Res. 313:2050–62
    [Google Scholar]
  88. Ivaska J, Vuoriluoto K, Huovinen T, Izawa I, Inagaki M, Parker PJ 2005. PKCε-mediated phosphorylation of vimentin controls integrin recycling and motility. EMBO J 24:3834–45
    [Google Scholar]
  89. Izawa I, Inagaki M 2006. Regulatory mechanisms and functions of intermediate filaments: a study using site- and phosphorylation state–specific antibodies. Cancer Sci 97:167–74
    [Google Scholar]
  90. Jiu Y, Lehtimaki J, Tojkander S, Cheng F, Jaalinoja H et al. 2015. Bidirectional interplay between vimentin intermediate filaments and contractile actin stress fibers. Cell Rep 11:1511–18
    [Google Scholar]
  91. Jiu Y, Peranen J, Schaible N, Cheng F, Eriksson JE et al. 2017. Vimentin intermediate filaments control actin stress fiber assembly through GEF-H1 and RhoA. J. Cell Sci. 130:892–902
    [Google Scholar]
  92. Ju JH, Yang W, Lee KM, Oh S, Nam K et al. 2013. Regulation of cell proliferation and migration by keratin19-induced nuclear import of early growth response-1 in breast cancer cells. Clin. Cancer Res. 19:4335–46
    [Google Scholar]
  93. Kawajiri A, Yasui Y, Goto H, Tatsuka M, Takahashi M et al. 2003. Functional significance of the specific sites phosphorylated in desmin at cleavage furrow: Aurora-B may phosphorylate and regulate type III intermediate filaments during cytokinesis coordinatedly with Rho-kinase. Mol. Biol. Cell 14:1489–500
    [Google Scholar]
  94. Keeling MC, Flores LR, Dodhy AH, Murray ER, Gavara N 2017. Actomyosin and vimentin cytoskeletal networks regulate nuclear shape, mechanics and chromatin organization. Sci. Rep. 7:5219
    [Google Scholar]
  95. Ketema M, Kreft M, Secades P, Janssen H, Sonnenberg A 2013. Nesprin-3 connects plectin and vimentin to the nuclear envelope of Sertoli cells but is not required for Sertoli cell function in spermatogenesis. Mol. Biol. Cell 24:2454–66
    [Google Scholar]
  96. Kim H, Nakamura F, Lee W, Shifrin Y, Arora P, McCulloch CA 2010. Filamin A is required for vimentin-mediated cell adhesion and spreading. Am. J. Physiol. Cell Physiol. 298:C221–36
    [Google Scholar]
  97. Kim J, Yang C, Kim EJ, Jang J, Kim SJ et al. 2016. Vimentin filaments regulate integrin-ligand interactions by binding to the cytoplasmic tail of integrin β3. J. Cell Sci. 129:2030–42
    [Google Scholar]
  98. Kim S, Coulombe PA 2007. Intermediate filament scaffolds fulfill mechanical, organizational, and signaling functions in the cytoplasm. Genes Dev 21:1581–97
    [Google Scholar]
  99. Kim S, Wong P, Coulombe PA 2006. A keratin cytoskeletal protein regulates protein synthesis and epithelial cell growth. Nature 441:362–65
    [Google Scholar]
  100. Kirkcaldie MTK, Dwyer ST 2017. The third wave: intermediate filaments in the maturing nervous system. Mol. Cell. Neurosci. 84:68–76
    [Google Scholar]
  101. Kornreich M, Avinery R, Malka-Gibor E, Laser-Azogui A, Beck R 2015. Order and disorder in intermediate filament proteins. FEBS Lett 589:2464–76
    [Google Scholar]
  102. Kosako H, Goto H, Yanagida M, Matsuzawa K, Fujita M et al. 1999. Specific accumulation of Rho-associated kinase at the cleavage furrow during cytokinesis: cleavage furrow–specific phosphorylation of intermediate filaments. Oncogene 18:2783–88
    [Google Scholar]
  103. Koster J, Geerts D, Favre B, Borradori L, Sonnenberg A 2003. Analysis of the interactions between BP180, BP230, plectin and the integrin α6β4 important for hemidesmosome assembly. J. Cell Sci. 116:387–99
    [Google Scholar]
  104. Koster J, van Wilpe S, Kuikman I, Litjens SH, Sonnenberg A 2004. Role of binding of plectin to the integrin β4 subunit in the assembly of hemidesmosomes. Mol. Biol. Cell 15:1211–23
    [Google Scholar]
  105. Koster S, Weitz DA, Goldman RD, Aebi U, Herrmann H 2015. Intermediate filament mechanics in vitro and in the cell: from coiled coils to filaments, fibers and networks. Curr. Opin. Cell Biol. 32:82–91
    [Google Scholar]
  106. Kouloumenta A, Mavroidis M, Capetanaki Y 2007. Proper perinuclear localization of the TRIM-like protein myospryn requires its binding partner desmin. J. Biol. Chem. 282:35211–21
    [Google Scholar]
  107. Kreis S, Schonfeld HJ, Melchior C, Steiner B, Kieffer N 2005. The intermediate filament protein vimentin binds specifically to a recombinant integrin α2/β1 cytoplasmic tail complex and co-localizes with native α2/β1 in endothelial cell focal adhesions. Exp. Cell Res. 305:110–21
    [Google Scholar]
  108. Kreplak L, Bar H, Leterrier JF, Herrmann H, Aebi U 2005. Exploring the mechanical behavior of single intermediate filaments. J. Mol. Biol. 354:569–77
    [Google Scholar]
  109. Kroger C, Loschke F, Schwarz N, Windoffer R, Leube RE, Magin TM 2013. Keratins control intercellular adhesion involving PKC-α-mediated desmoplakin phosphorylation. J. Cell Biol. 201:681–92
    [Google Scholar]
  110. Kruger K, Stefansson IM, Collett K, Arnes JB, Aas T, Akslen LA 2013. Microvessel proliferation by co-expression of endothelial nestin and Ki-67 is associated with a basal-like phenotype and aggressive features in breast cancer. Breast 22:282–88
    [Google Scholar]
  111. Ku NO, Fu H, Omary MB 2004. Raf-1 activation disrupts its binding to keratins during cell stress. J. Cell Biol. 166:479–85
    [Google Scholar]
  112. Ku NO, Michie S, Resurreccion EZ, Broome RL, Omary MB 2002. Keratin binding to 14-3-3 proteins modulates keratin filaments and hepatocyte mitotic progression. PNAS 99:4373–78
    [Google Scholar]
  113. Ku NO, Omary MB 2006. A disease- and phosphorylation-related nonmechanical function for keratin 8. J. Cell Biol. 174:115–25
    [Google Scholar]
  114. Leduc C, Etienne-Manneville S 2015. Intermediate filaments in cell migration and invasion: the unusual suspects. Curr. Opin. Cell Biol. 32:102–12
    [Google Scholar]
  115. Leduc C, Etienne-Manneville S 2017.a Intermediate filaments join the action. Cell Cycle 16:1389–90
    [Google Scholar]
  116. Leduc C, Etienne-Manneville S 2017.b Regulation of microtubule-associated motors drives intermediate filament network polarization. J. Cell Biol. 216:1689–703
    [Google Scholar]
  117. Leube RE, Moch M, Windoffer R 2015. Intermediate filaments and the regulation of focal adhesion. Curr. Opin. Cell Biol. 32:13–20
    [Google Scholar]
  118. Li J, Wang R, Gannon OJ, Rezey AC, Jiang S et al. 2016. Polo-like kinase 1 regulates vimentin phosphorylation at Ser-56 and contraction in smooth muscle. J. Biol. Chem. 291:23693–703
    [Google Scholar]
  119. Liao J, Omary MB 1996. 14-3-3 proteins associate with phosphorylated simple epithelial keratins during cell cycle progression and act as a solubility cofactor. J. Cell Biol. 133:345–57
    [Google Scholar]
  120. Liu CY, Lin HH, Tang MJ, Wang YK 2015. Vimentin contributes to epithelial-mesenchymal transition cancer cell mechanics by mediating cytoskeletal organization and focal adhesion maturation. Oncotarget 6:15966–83
    [Google Scholar]
  121. Liu T, Ghamloush MM, Aldawood A, Warburton R, Toksoz D et al. 2014. Modulating endothelial barrier function by targeting vimentin phosphorylation. J. Cell. Physiol. 229:1484–93
    [Google Scholar]
  122. Loschke F, Seltmann K, Bouameur JE, Magin TM 2015. Regulation of keratin network organization. Curr. Opin. Cell Biol. 32:56–64
    [Google Scholar]
  123. Loufrani L, Henrion D 2008. Role of the cytoskeleton in flow (shear stress)-induced dilation and remodeling in resistance arteries. Med. Biol. Eng. Comput. 46:451–60
    [Google Scholar]
  124. Lu YB, Iandiev I, Hollborn M, Korber N, Ulbricht E et al. 2011. Reactive glial cells: Increased stiffness correlates with increased intermediate filament expression. FASEB J 25:624–31
    [Google Scholar]
  125. Lugassy J, Itin P, Ishida-Yamamoto A, Holland K, Huson S et al. 2006. Naegeli-Franceschetti-Jadassohn syndrome and dermatopathia pigmentosa reticularis: two allelic ectodermal dysplasias caused by dominant mutations in KRT14. Am. J. Hum. Genet. 79:724–30
    [Google Scholar]
  126. Lyon RC, Mezzano V, Wright AT, Pfeiffer E, Chuang J et al. 2014. Connexin defects underlie arrhythmogenic right ventricular cardiomyopathy in a novel mouse model. Hum. Mol. Genet. 23:1134–50
    [Google Scholar]
  127. Machowska M, Piekarowicz K, Rzepecki R 2015. Regulation of lamin properties and functions: Does phosphorylation do it all. ? Open Biol 5:150094
    [Google Scholar]
  128. Magin TM, Reichelt J, Hatzfeld M 2004. Emerging functions: diseases and animal models reshape our view of the cytoskeleton. Exp. Cell Res. 301:91–102
    [Google Scholar]
  129. Makihara H, Inaba H, Enomoto A, Tanaka H, Tomono Y et al. 2016. Desmin phosphorylation by Cdk1 is required for efficient separation of desmin intermediate filaments in mitosis and detected in murine embryonic/newborn muscle and human rhabdomyosarcoma tissues. Biochem. Biophys. Res. Commun. 478:1323–29
    [Google Scholar]
  130. Marceau N, Schutte B, Gilbert S, Loranger A, Henfling ME et al. 2007. Dual roles of intermediate filaments in apoptosis. Exp. Cell Res. 313:2265–81
    [Google Scholar]
  131. Margiotta A, Bucci C 2016. Role of intermediate filaments in vesicular traffic. Cells 5:E20
    [Google Scholar]
  132. Margolis SS, Perry JA, Forester CM, Nutt LK, Guo Y et al. 2006. Role for the PP2A/B56δ phosphatase in regulating 14-3-3 release from Cdc25 to control mitosis. Cell 127:759–73
    [Google Scholar]
  133. Mathew J, Loranger A, Gilbert S, Faure R, Marceau N 2013. Keratin 8/18 regulation of glucose metabolism in normal versus cancerous hepatic cells through differential modulation of hexokinase status and insulin signaling. Exp. Cell Res. 319:474–86
    [Google Scholar]
  134. Matsuda Y, Hagio M, Ishiwata T 2013. Nestin: a novel angiogenesis marker and possible target for tumor angiogenesis. World J. Gastroenterol. 19:42–48
    [Google Scholar]
  135. Matsuda Y, Yoshimura H, Ueda J, Naito Z, Korc M, Ishiwata T 2014. Nestin delineates pancreatic cancer stem cells in metastatic foci of NOD/Shi-scid IL2Rγnull (NOG) mice. Am. J. Pathol. 184:674–85
    [Google Scholar]
  136. Matveeva EA, Venkova LS, Chernoivanenko IS, Minin AA 2015. Vimentin is involved in regulation of mitochondrial motility and membrane potential by Rac1. Biol. Open 4:1290–97
    [Google Scholar]
  137. McIntosh PB, Laskey P, Sullivan K, Davy C, Wang Q et al. 2010. E1–E4-mediated keratin phosphorylation and ubiquitylation: a mechanism for keratin depletion in HPV16-infected epithelium. J. Cell Sci. 123:2810–22
    [Google Scholar]
  138. Mendez MG, Kojima S, Goldman RD 2010. Vimentin induces changes in cell shape, motility, and adhesion during the epithelial to mesenchymal transition. FASEB J 24:1838–51
    [Google Scholar]
  139. Mendez MG, Restle D, Janmey PA 2014. Vimentin enhances cell elastic behavior and protects against compressive stress. Biophys. J. 107:314–23
    [Google Scholar]
  140. Menko AS, Bleaken BM, Libowitz AA, Zhang L, Stepp MA, Walker JL 2014. A central role for vimentin in regulating repair function during healing of the lens epithelium. Mol. Biol. Cell 25:776–90
    [Google Scholar]
  141. Mitchell MJ, Denais C, Chan MF, Wang Z, Lammerding J, King MR 2015. Lamin A/C deficiency reduces circulating tumor cell resistance to fluid shear stress. Am. J. Physiol. Cell Physiol. 309:C736–46
    [Google Scholar]
  142. Moch M, Herberich G, Aach T, Leube RE, Windoffer R 2013. Measuring the regulation of keratin filament network dynamics. PNAS 110:10664–69
    [Google Scholar]
  143. Moeton M, Kanski R, Stassen OM, Sluijs JA, Geerts D et al. 2014. Silencing GFAP isoforms in astrocytoma cells disturbs laminin-dependent motility and cell adhesion. FASEB J 28:2942–54
    [Google Scholar]
  144. Mruk DD, Lau AS, Sarkar O, Xia W 2007. Rab4A GTPase catenin interactions are involved in cell junction dynamics in the testis. J. Androl. 28:742–54
    [Google Scholar]
  145. Mukhopadhyay R, Kumar S, Hoh JH 2004. Molecular mechanisms for organizing the neuronal cytoskeleton. BioEssays 26:1017–25
    [Google Scholar]
  146. Murata T, Goshima F, Nishizawa Y, Daikoku T, Takakuwa H et al. 2002. Phosphorylation of cytokeratin 17 by herpes simplex virus type 2 US3 protein kinase. Microbiol. Immunol. 46:707–19
    [Google Scholar]
  147. Murray ME, Mendez MG, Janmey PA 2014. Substrate stiffness regulates solubility of cellular vimentin. Mol. Biol. Cell 25:87–94
    [Google Scholar]
  148. Naetar N, Ferraioli S, Foisner R 2017. Lamins in the nuclear interior: life outside the lamina. J. Cell Sci. 130:2087–96
    [Google Scholar]
  149. Narita K, Matsuda Y, Seike M, Naito Z, Gemma A, Ishiwata T 2014. Nestin regulates proliferation, migration, invasion and stemness of lung adenocarcinoma. Int. J. Oncol. 44:1118–30
    [Google Scholar]
  150. Nekrasova T, Minden A 2011. PAK4 is required for regulation of the cell-cycle regulatory protein p21, and for control of cell-cycle progression. J. Cell. Biochem. 112:1795–806
    [Google Scholar]
  151. Nguyen-Ngoc KV, Cheung KJ, Brenot A, Shamir ER, Gray RS et al. 2012. ECM microenvironment regulates collective migration and local dissemination in normal and malignant mammary epithelium. PNAS 109:E2595–604
    [Google Scholar]
  152. Noding B, Koster S 2012. Intermediate filaments in small configuration spaces. Phys. Rev. Lett. 108:088101
    [Google Scholar]
  153. Obsilova V, Kopecka M, Kosek D, Kacirova M, Kylarova S et al. 2014. Mechanisms of the 14-3-3 protein function: regulation of protein function through conformational modulation. Physiol. Res. 63:Suppl. 1155–64
    [Google Scholar]
  154. Omary MB 2009. “IF-pathies”: a broad spectrum of intermediate filament–associated diseases. J. Clin. Investig. 119:1756–62
    [Google Scholar]
  155. Omary MB, Coulombe PA, McLean WH 2004. Intermediate filament proteins and their associated diseases. New Engl. J. Med. 351:2087–100
    [Google Scholar]
  156. Omary MB, Ku NO, Strnad P, Hanada S 2009. Toward unraveling the complexity of simple epithelial keratins in human disease. J. Clin. Investig. 119:1794–805
    [Google Scholar]
  157. Omary MB, Ku NO, Tao GZ, Toivola DM, Liao J 2006. “Heads and tails” of intermediate filament phosphorylation: multiple sites and functional insights. Trends Biochem. Sci. 31:383–94
    [Google Scholar]
  158. Osmanagic-Myers S, Gregor M, Walko G, Burgstaller G, Reipert S, Wiche G 2006. Plectin-controlled keratin cytoarchitecture affects MAP kinases involved in cellular stress response and migration. J. Cell Biol. 174:557–68
    [Google Scholar]
  159. Pallari HM, Eriksson JE 2006. Intermediate filaments as signaling platforms. Sci. STKE 2006:pe53
    [Google Scholar]
  160. Pan Y, Jing R, Pitre A, Williams BJ, Skalli O 2008. Intermediate filament protein synemin contributes to the migratory properties of astrocytoma cells by influencing the dynamics of the actin cytoskeleton. FASEB J 22:3196–206
    [Google Scholar]
  161. Paramio JM, Jorcano JL 2002. Beyond structure: Do intermediate filaments modulate cell signalling. ? BioEssays 24:836–44
    [Google Scholar]
  162. Pekny M, Lane EB 2007. Intermediate filaments and stress. Exp. Cell Res. 313:2244–54
    [Google Scholar]
  163. Peter A, Stick R 2015. Evolutionary aspects in intermediate filament proteins. Curr. Opin. Cell Biol. 32:48–55
    [Google Scholar]
  164. Planko L, Bohse K, Hohfeld J, Betz RC, Hanneken S et al. 2007. Identification of a keratin-associated protein with a putative role in vesicle transport. Eur. J. Cell Biol. 86:827–39
    [Google Scholar]
  165. Postel R, Ketema M, Kuikman I, de Pereda JM, Sonnenberg A 2011. Nesprin-3 augments peripheral nuclear localization of intermediate filaments in zebrafish. J. Cell Sci. 124:755–64
    [Google Scholar]
  166. Potokar M, Stenovec M, Gabrijel M, Li L, Kreft M et al. 2010. Intermediate filaments attenuate stimulation-dependent mobility of endosomes/lysosomes in astrocytes. Glia 58:1208–19
    [Google Scholar]
  167. Ralston E, Lu Z, Biscocho N, Soumaka E, Mavroidis M et al. 2006. Blood vessels and desmin control the positioning of nuclei in skeletal muscle fibers. J. Cell. Physiol. 209:874–82
    [Google Scholar]
  168. Ramms L, Fabris G, Windoffer R, Schwarz N, Springer R et al. 2013. Keratins as the main component for the mechanical integrity of keratinocytes. PNAS 110:18513–18
    [Google Scholar]
  169. Rezniczek GA, Konieczny P, Nikolic B, Reipert S, Schneller D et al. 2007. Plectin 1f scaffolding at the sarcolemma of dystrophic (mdx) muscle fibers through multiple interactions with β-dystroglycan. J. Cell Biol. 176:965–77
    [Google Scholar]
  170. Robert A, Herrmann H, Davidson MW, Gelfand VI 2014. Microtubule-dependent transport of vimentin filament precursors is regulated by actin and by the concerted action of Rho- and p21-activated kinases. FASEB J 28:2879–90
    [Google Scholar]
  171. Robert A, Hookway C, Gelfand VI 2016. Intermediate filament dynamics: what we can see now and why it matters. BioEssays 38:232–43
    [Google Scholar]
  172. Rotty JD, Coulombe PA 2012. A wound-induced keratin inhibits Src activity during keratinocyte migration and tissue repair. J. Cell Biol. 197:381–89
    [Google Scholar]
  173. Roux A, Gilbert S, Loranger A, Marceau N 2016. Impact of keratin intermediate filaments on insulin-mediated glucose metabolism regulation in the liver and disease association. FASEB J 30:491–502
    [Google Scholar]
  174. Sakamoto Y, Boeda B, Etienne-Manneville S 2013. APC binds intermediate filaments and is required for their reorganization during cell migration. J. Cell Biol. 200:249–58
    [Google Scholar]
  175. Sanghvi-Shah R, Weber GF 2017. Intermediate filaments at the junction of mechanotransduction, migration, and development. Front. Cell Dev. Biol. 5:81
    [Google Scholar]
  176. Sawant MS, Leube RE 2017. Consequences of keratin phosphorylation for cytoskeletal organization and epithelial functions. Int. Rev. Cell Mol. Biol. 330:171–225
    [Google Scholar]
  177. Schmelz M, Franke WW 1993. Complexus adhaerentes, a new group of desmoplakin-containing junctions in endothelial cells: the syndesmos connecting retothelial cells of lymph nodes. Eur. J. Cell Biol. 61:274–89
    [Google Scholar]
  178. Schopferer M, Bar H, Hochstein B, Sharma S, Mucke N et al. 2009. Desmin and vimentin intermediate filament networks: their viscoelastic properties investigated by mechanical rheometry. J. Mol. Biol. 388:133–43
    [Google Scholar]
  179. Schroder R, Schoser B 2009. Myofibrillar myopathies: a clinical and myopathological guide. Brain Pathol 19:483–92
    [Google Scholar]
  180. Schwarz N, Leube RE 2016. Intermediate filaments as organizers of cellular space: how they affect mitochondrial structure and function. Cells 5:E30
    [Google Scholar]
  181. Seltmann K, Cheng F, Wiche G, Eriksson JE, Magin TM 2015. Keratins stabilize hemidesmosomes through regulation of β4-integrin turnover. J. Investig. Dermatol. 135:1609–20
    [Google Scholar]
  182. Seltmann K, Fritsch AW, Kas JA, Magin TM 2013.a Keratins significantly contribute to cell stiffness and impact invasive behavior. PNAS 110:18507–12
    [Google Scholar]
  183. Seltmann K, Roth W, Kroger C, Loschke F, Lederer M et al. 2013.b Keratins mediate localization of hemidesmosomes and repress cell motility. J. Investig. Dermatol. 133:181–90
    [Google Scholar]
  184. Sharma P, Bolten ZT, Wagner DR, Hsieh AH 2017. Deformability of human mesenchymal stem cells is dependent on vimentin intermediate filaments. Ann. Biomed. Eng. 45:1365–74
    [Google Scholar]
  185. Shibuya S, Miyamoto O, Auer RN, Itano T, Mori S, Norimatsu H 2002. Embryonic intermediate filament, nestin, expression following traumatic spinal cord injury in adult rats. Neuroscience 114:905–16
    [Google Scholar]
  186. Sivaramakrishnan S, DeGiulio JV, Lorand L, Goldman RD, Ridge KM 2008. Micromechanical properties of keratin intermediate filament networks. PNAS 105:889–94
    [Google Scholar]
  187. Sivaramakrishnan S, Schneider JL, Sitikov A, Goldman RD, Ridge KM 2009. Shear stress induced reorganization of the keratin intermediate filament network requires phosphorylation by protein kinase C ζ. Mol. Biol. Cell 20:2755–65
    [Google Scholar]
  188. Sluchanko NN 2018. Association of multiple phosphorylated proteins with the 14-3-3 regulatory hubs: problems and perspectives. J. Mol. Biol. 430:20–26
    [Google Scholar]
  189. Snider NT, Omary MB 2014. Post-translational modifications of intermediate filament proteins: mechanisms and functions. Nat. Rev. Mol. Cell Biol. 15:163–77
    [Google Scholar]
  190. Song S, Landsbury A, Dahm R, Liu Y, Zhang Q, Quinlan RA 2009. Functions of the intermediate filament cytoskeleton in the eye lens. J. Clin. Investig. 119:1837–48
    [Google Scholar]
  191. Styers ML, Salazar G, Love R, Peden AA, Kowalczyk AP, Faundez V 2004. The endo-lysosomal sorting machinery interacts with the intermediate filament cytoskeleton. Mol. Biol. Cell 15:5369–82
    [Google Scholar]
  192. Tang DD, Gerlach BD 2017. The roles and regulation of the actin cytoskeleton, intermediate filaments and microtubules in smooth muscle cell migration. Respir. Res. 18:54
    [Google Scholar]
  193. Thaiparambil JT, Bender L, Ganesh T, Kline E, Patel P et al. 2011. Withaferin A inhibits breast cancer invasion and metastasis at sub-cytotoxic doses by inducing vimentin disassembly and serine 56 phosphorylation. Int. J. Cancer 129:2744–55
    [Google Scholar]
  194. Toivola DM, Boor P, Alam C, Strnad P 2015. Keratins in health and disease. Curr. Opin. Cell Biol. 32:73–81
    [Google Scholar]
  195. Toivola DM, Nieminen MI, Hesse M, He T, Baribault H et al. 2001. Disturbances in hepatic cell-cycle regulation in mice with assembly-deficient keratins 8/18. Hepatology 34:1174–83
    [Google Scholar]
  196. Toivola DM, Strnad P, Habtezion A, Omary MB 2010. Intermediate filaments take the heat as stress proteins. Trends Cell Biol 20:79–91
    [Google Scholar]
  197. Toivola DM, Tao GZ, Habtezion A, Liao J, Omary MB 2005. Cellular integrity plus: organelle-related and protein-targeting functions of intermediate filaments. Trends Cell Biol 15:608–17
    [Google Scholar]
  198. Toivola DM, Zhou Q, English LS, Omary MB 2002. Type II keratins are phosphorylated on a unique motif during stress and mitosis in tissues and cultured cells. Mol. Biol. Cell 13:1857–70
    [Google Scholar]
  199. Tong X, Coulombe PA 2006. Keratin 17 modulates hair follicle cycling in a TNFα-dependent fashion. Genes Dev 20:1353–64
    [Google Scholar]
  200. Tsujimura K, Ogawara M, Takeuchi Y, Imajoh-Ohmi S, Ha MH, Inagaki M 1994. Visualization and function of vimentin phosphorylation by cdc2 kinase during mitosis. J. Biol. Chem. 269:31097–106
    [Google Scholar]
  201. Turgay Y, Medalia O 2017. The structure of lamin filaments in somatic cells as revealed by cryo-electron tomography. Nucleus 8:475–81
    [Google Scholar]
  202. Vardjan N, Gabrijel M, Potokar M, Svajger U, Kreft M et al. 2012. IFN-γ-induced increase in the mobility of MHC class II compartments in astrocytes depends on intermediate filaments. J. Neuroinflamm. 9:144
    [Google Scholar]
  203. Vasioukhin V, Bowers E, Bauer C, Degenstein L, Fuchs E 2001. Desmoplakin is essential in epidermal sheet formation. Nat. Cell Biol. 3:1076–85
    [Google Scholar]
  204. Vijayaraj P, Kroger C, Reuter U, Windoffer R, Leube RE, Magin TM 2009. Keratins regulate protein biosynthesis through localization of GLUT1 and -3 upstream of AMP kinase and Raptor. J. Cell Biol. 187:175–84
    [Google Scholar]
  205. Walter M, Chen FW, Tamari F, Wang R, Ioannou YA 2009. Endosomal lipid accumulation in NPC1 leads to inhibition of PKC, hypophosphorylation of vimentin and Rab9 entrapment. Biol. Cell 101:141–52
    [Google Scholar]
  206. Wang Q, Griffin H, Southern S, Jackson D, Martin A et al. 2004. Functional analysis of the human papillomavirus type 16 E1E4 protein provides a mechanism for in vivo and in vitro keratin filament reorganization. J. Virol. 78:821–33
    [Google Scholar]
  207. Wang RC, Wei Y, An Z, Zou Z, Xiao G et al. 2012. Akt-mediated regulation of autophagy and tumorigenesis through Beclin 1 phosphorylation. Science 338:956–59
    [Google Scholar]
  208. Weisleder N, Taffet GE, Capetanaki Y 2004. Bcl-2 overexpression corrects mitochondrial defects and ameliorates inherited desmin null cardiomyopathy. PNAS 101:769–74
    [Google Scholar]
  209. Wiche G, Osmanagic-Myers S, Castanon MJ 2015. Networking and anchoring through plectin: a key to IF functionality and mechanotransduction. Curr. Opin. Cell Biol. 32:21–29
    [Google Scholar]
  210. Wiese C, Rolletschek A, Kania G, Blyszczuk P, Tarasov KV et al. 2004. Nestin expression—a property of multi-lineage progenitor cells. ? Cell. Mol. Life Sci. 61:2510–22
    [Google Scholar]
  211. Windoffer R, Kolsch A, Woll S, Leube RE 2006. Focal adhesions are hotspots for keratin filament precursor formation. J. Cell Biol. 173:341–48
    [Google Scholar]
  212. Winter L, Wiche G 2013. The many faces of plectin and plectinopathies: pathology and mechanisms. Acta Neuropathol 125:77–93
    [Google Scholar]
  213. Woll S, Windoffer R, Leube RE 2007. p38 MAPK-dependent shaping of the keratin cytoskeleton in cultured cells. J. Cell Biol. 177:795–807
    [Google Scholar]
  214. Yamaguchi T, Goto H, Yokoyama T, Sillje H, Hanisch A et al. 2005. Phosphorylation by Cdk1 induces Plk1-mediated vimentin phosphorylation during mitosis. J. Cell Biol. 171:431–36
    [Google Scholar]
  215. Yasui Y, Amano M, Nagata K, Inagaki N, Nakamura H et al. 1998. Roles of Rho-associated kinase in cytokinesis; mutations in Rho-associated kinase phosphorylation sites impair cytokinetic segregation of glial filaments. J. Cell Biol. 143:1249–58
    [Google Scholar]
  216. Yuan A, Rao MV, Veeranna, Nixon RA 2017. Neurofilaments and neurofilament proteins in health and disease. Cold Spring Harb. Perspect. Biol. 9:a018309
    [Google Scholar]
  217. Zatloukal K, French SW, Stumptner C, Strnad P, Harada M et al. 2007. From Mallory to Mallory-Denk bodies: what, how and why. ? Exp. Cell Res. 313:2033–49
    [Google Scholar]
  218. Zhu QS, Rosenblatt K, Huang KL, Lahat G, Brobey R et al. 2011. Vimentin is a novel AKT1 target mediating motility and invasion. Oncogene 30:457–70
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062534
Loading
/content/journals/10.1146/annurev-cellbio-100617-062534
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error