1932

Abstract

We present an overview of symmetry breaking in early mammalian development as a continuous process from compaction to specification of the body axes. While earlier studies have focused on individual symmetry-breaking events, recent advances enable us to explore progressive symmetry breaking during early mammalian development. Although we primarily discuss embryonic development of the mouse, as it is the best-studied mammalian model system to date, we also highlight the shared and distinct aspects between different mammalian species. Finally, we discuss how insights gained from studying mammalian development can be generalized in light of self-organization principles. With this review, we hope to highlight new perspectives in studying symmetry breaking and self-organization in multicellular systems.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062616
2018-10-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062616.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062616&mimeType=html&fmt=ahah

Literature Cited

  1. Alarcón VB, Marikawa Y 2005. Unbiased contribution of the first two blastomeres to mouse blastocyst development. Mol. Reprod. Dev. 72:3354–61
    [Google Scholar]
  2. Anani S, Bhat S, Honma-Yamanaka N, Krawchuk D, Yamanaka Y 2014. Initiation of Hippo signaling is linked to polarity rather than to cell position in the pre-implantation mouse embryo. Development 141:142813–24
    [Google Scholar]
  3. Antczak M, Van Blerkom J 1997. Oocyte influences on early development: The regulatory proteins leptin and STAT3 are polarized in mouse and human oocytes and differentially distributed within the cells of the preimplantation stage embryo. Mol. Hum. Reprod. 3:121067–86
    [Google Scholar]
  4. Arnold SJ, Robertson EJ 2009. Making a commitment: cell lineage allocation and axis patterning in the early mouse embryo. Nat. Rev. Mol. Cell Biol. 10:291
    [Google Scholar]
  5. Artus J, Chazaud C 2014. A close look at the mammalian blastocyst: epiblast and primitive endoderm formation. Cell. Mol. Life Sci. 71:173327–38
    [Google Scholar]
  6. Bauer T, Motosugi N, Miura K, Sabe H, Hiiragi T 2008. Dynamic rearrangement of surface proteins is essential for cytokinesis. Genesis 46:3152–62
    [Google Scholar]
  7. Becker S, Casanova J, Grabel L 1992. Localization of endoderm-specific mRNAs in differentiating F9 embryoid bodies. Mech. Dev. 37:1–23–12
    [Google Scholar]
  8. Beddington RSP, Robertson EJ 1998. Anterior patterning in mouse. Trends Genet 14:7277–84
    [Google Scholar]
  9. Beddington RSP, Robertson EJ 1999. Axis development and early asymmetry in mammals. Cell 96:2195–209
    [Google Scholar]
  10. Bedzhov I, Leung CY, Bialecka M, Zernicka-Goetz M 2014. In vitro culture of mouse blastocysts beyond the implantation stages. Nat. Protoc. 9:122732–39
    [Google Scholar]
  11. Bedzhov I, Zernicka-Goetz M 2014. Self-organizing properties of mouse pluripotent cells initiate morphogenesis upon implantation. Cell 156:51032–44
    [Google Scholar]
  12. Belo JA, Bouwmeester T, Leyns L, Kertesz N, Gallo M et al. 1997. Cerberus-like is a secreted factor with neutralizing activity expressed in the anterior primitive endoderm of the mouse gastrula. Mech. Dev. 68:1–245–57
    [Google Scholar]
  13. Bessonnard S, Mot LD, Gonze D, Barriol M, Dennis C et al. 2014. Gata6, Nanog and Erk signaling control cell fate in the inner cell mass through a tristable regulatory network. Development 141:193637–48
    [Google Scholar]
  14. Bienkowska D, Cowan CR 2012. Centrosomes can initiate a polarity axis from any position within one-cell C.elegans embryos. Curr. Biol. 22:7583–89
    [Google Scholar]
  15. Bloomekatz J, Grego-Bessa J, Migeotte I, Anderson KV 2012. Pten regulates collective cell migration during specification of the anterior-posterior axis of the mouse embryo. Dev. Biol. 364:2192–201
    [Google Scholar]
  16. Brennan J, Lu CC, Norris DP, Rodriguez TA, Beddington RS, Robertson EJ 2001. Nodal signalling in the epiblast patterns the early mouse embryo. Nature 411:6840965–69
    [Google Scholar]
  17. Burute M, Prioux M, Blin G, Truchet S, Letort G et al. 2017. Polarity reversal by centrosome repositioning primes cell scattering during epithelial-to-mesenchymal transition. Dev. Cell 40:2168–84
    [Google Scholar]
  18. Canham MA, Sharov AA, Ko MSH, Brickman JM 2010. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLOS Biol 8:5e1000379
    [Google Scholar]
  19. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B et al. 2007. Nanog safeguards pluripotency and mediates germline development. Nature 450:71731230–34
    [Google Scholar]
  20. Chazaud C, Yamanaka Y 2016. Lineage specification in the mouse preimplantation embryo. Development 143:71063–74
    [Google Scholar]
  21. Chazaud C, Yamanaka Y, Pawson T, Rossant J 2006. Early lineage segregation between epiblast and primitive endoderm in mouse blastocysts through the Grb2-MAPK pathway. Dev. Cell 10:5615–24
    [Google Scholar]
  22. Chisholm JC, Houliston E 1987. Cytokeratin filament assembly in the preimplantation mouse embryo. Development 101:3565–82
    [Google Scholar]
  23. Deglincerti A, Croft GF, Pietila LN, Zernicka-Goetz M, Siggia ED, Brivanlou AH 2016. Self-organization of the in vitro attached human embryo. Nature 533:7602251–54
    [Google Scholar]
  24. Dietrich J-E, Hiiragi T 2007. Stochastic patterning in the mouse pre-implantation embryo. Development 134:234219–31
    [Google Scholar]
  25. Frankenberg S, Gerbe F, Bessonnard S, Belville C, Pouchin P et al. 2011. Primitive endoderm differentiates via a three-step mechanism involving Nanog and RTK signaling. Dev. Cell 21:61005–13
    [Google Scholar]
  26. Gardner RL 1996. Can developmentally significant spatial patterning of the egg be discounted in mammals?. Hum. Reprod. Update 2:13–27
    [Google Scholar]
  27. Gardner RL 2001. Specification of embryonic axes begins before cleavage in normal mouse development. Development 128:6839–47
    [Google Scholar]
  28. Gardner RL, Davies TJ 2003. The basis and significance of pre-patterning in mammals. Philos. Trans. R. Soc. B 358:14361331–39
    [Google Scholar]
  29. Godt D, Tepass U 1998. Drosophila oocyte localization is mediated by differential cadherin-based adhesion. Nature 395:6700387–91
    [Google Scholar]
  30. González-Reyes A, St. Johnston D 1998. The Drosophila AP axis is polarised by the cadherin-mediated positioning of the oocyte. Development 125:183635–44
    [Google Scholar]
  31. Goolam M, Scialdone A, Graham SJL, Macaulay IC, Jedrusik A et al. 2016. Heterogeneity in Oct4 and Sox2 targets biases cell fate in 4-cell mouse embryos. Cell 165:161–74
    [Google Scholar]
  32. Granier C, Gurchenkov V, Perea-Gomez A, Camus A, Ott S et al. 2011. Nodal cis-regulatory elements reveal epiblast and primitive endoderm heterogeneity in the peri-implantation mouse embryo. Dev. Biol. 349:2350–62
    [Google Scholar]
  33. Gross P, Kumar KV, Grill SW 2017. How active mechanics and regulatory biochemistry combine to form patterns in development. Annu. Rev. Biophys. 46:1337–56
    [Google Scholar]
  34. Guo G, Huss M, Tong GQ, Wang C, Li Sun L et al. 2010. Resolution of cell fate decisions revealed by single-cell gene expression analysis from zygote to blastocyst. Dev. Cell 18:4675–85
    [Google Scholar]
  35. Hamada H, Tam PPL 2014. Mechanisms of left-right asymmetry and patterning: driver, mediator and responder. F1000Prime Rep 6:110
    [Google Scholar]
  36. Harrison SE, Sozen B, Christodoulou N, Kyprianou C, Zernicka-Goetz M 2017. Assembly of embryonic and extra-embryonic stem cells to mimic embryogenesis in vitro. Science 356:6334eaal1810
    [Google Scholar]
  37. Hatano S, Tada M, Kimura H, Yamaguchi S, Kono T et al. 2005. Pluripotential competence of cells associated with Nanog activity. Mech. Dev. 122:167–79
    [Google Scholar]
  38. Hayashi K, de Sousa Lopes SMC, Tang F, Lao K, Surani MA 2008. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:4391–401
    [Google Scholar]
  39. Hermitte S, Chazaud C 2014. Primitive endoderm differentiation: from specification to epithelium formation. Philos. Trans. R. Soc. B 369:165720130537
    [Google Scholar]
  40. Hiiragi T, Louvet-Vallée S, Solter D, Maro B 2006. Embryology: Does prepatterning occur in the mouse egg. ? Nature 442:7099E3–4; discussion E4
    [Google Scholar]
  41. Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han S-W, Mochida K et al. 2013. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev. Cell 27:2131–44
    [Google Scholar]
  42. Hirate Y, Hirahara S, Inoue K-I, Suzuki A, Alarcon VB et al. 2013. Polarity-dependent distribution of angiomotin localizes Hippo signaling in preimplantation embryos. Curr. Biol. 23:131181–94
    [Google Scholar]
  43. Hong L, Dumond M, Tsugawa S, Sapala A, Routier-Kierzkowska A-L et al. 2016. Variable cell growth yields reproducible organ development through spatiotemporal averaging. Dev. Cell 38:115–32
    [Google Scholar]
  44. Hoshino H, Shioi G, Aizawa S 2015. AVE protein expression and visceral endoderm cell behavior during anterior-posterior axis formation in mouse embryos: asymmetry in OTX2 and DKK1 expression. Dev. Biol. 402:2175–91
    [Google Scholar]
  45. Hough SR, Laslett AL, Grimmond SB, Kolle G, Pera MF 2009. A continuum of cell states spans pluripotency and lineage commitment in human embryonic stem cells. PLOS ONE 4:11e7708
    [Google Scholar]
  46. Hsu Y-C 1973. Differentiation in vitro of mouse embryos to the stage of early somite. Dev. Biol. 33:2403–11
    [Google Scholar]
  47. Huisken J, Swoger J, Del Bene F, Wittbrodt J, Stelzer EHK 2004. Optical sectioning deep inside live embryos by selective plane illumination microscopy. Science 305:56861007–9
    [Google Scholar]
  48. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EHK et al. 2013. Live imaging of whole mouse embryos during gastrulation: migration analyses of epiblast and mesodermal cells. PLOS ONE 8:7e64506
    [Google Scholar]
  49. Ichikawa T, Nakazato K, Keller PJ, Kajiura-Kobayashi H, Stelzer EHK et al. 2014. Live imaging and quantitative analysis of gastrulation in mouse embryos using light-sheet microscopy and 3D tracking tools. Nat. Protoc. 9:3575–85
    [Google Scholar]
  50. Johnson MH, McConnell JML 2004. Lineage allocation and cell polarity during mouse embryogenesis. Semin. Cell Dev. Biol. 15:5583–97
    [Google Scholar]
  51. Johnson MH, Ziomek CA 1981. The foundation of two distinct cell lineages within the mouse morula. Cell 24:171–80
    [Google Scholar]
  52. Johnson MH, Ziomek CA 1983. Cell interactions influence the fate of mouse blastomeres undergoing the transition from the 16- to the 32-cell stage. Dev. Biol. 95:1211–18
    [Google Scholar]
  53. Kalmar T, Lim C, Hayward P, Muñoz-Descalzo S, Nichols J et al. 2009. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLOS Biol 7:7e1000149
    [Google Scholar]
  54. Kang M, Garg V, Hadjantonakis A-K 2017. Lineage establishment and progression within the inner cell mass of the mouse blastocyst requires FGFR1 and FGFR2. Dev. Cell 41:5496–510.e5
    [Google Scholar]
  55. Kang M, Piliszek A, Artus J, Hadjantonakis A-K 2013. FGF4 is required for lineage restriction and salt-and-pepper distribution of primitive endoderm factors but not their initial expression in the mouse. Development 140:2267–79
    [Google Scholar]
  56. Kimura C, Yoshinaga K, Tian E, Suzuki M, Aizawa S, Matsuo I 2000. Visceral endoderm mediates forebrain development by suppressing posteriorizing signals. Dev. Biol. 225:2304–21
    [Google Scholar]
  57. Kimura-Yoshida C, Nakano H, Okamura D, Nakao K, Yonemura S et al. 2005. Canonical Wnt signaling and its antagonist regulate anterior-posterior axis polarization by guiding cell migration in mouse visceral endoderm. Dev. Cell 9:5639–50
    [Google Scholar]
  58. Komatsu Y, Mishina Y 2013. Establishment of left-right asymmetry in vertebrate development: the node in mouse embryos. Cell. Mol. Life Sci. 70:244659–66
    [Google Scholar]
  59. Korotkevich E, Niwayama R, Courtois A, Friese S, Berger N et al. 2017. The apical domain is required and sufficient for the first lineage segregation in the mouse embryo. Dev. Cell 40:3235–47.e7
    [Google Scholar]
  60. Koutsourakis M, Langeveld A, Patient R, Beddington R, Grosveld F 1999. The transcription factor GATA6 is essential for early extraembryonic development. Development 126:9723–32
    [Google Scholar]
  61. Krawchuk D, Honma-Yamanaka N, Anani S, Yamanaka Y 2013. FGF4 is a limiting factor controlling the proportions of primitive endoderm and epiblast in the ICM of the mouse blastocyst. Dev. Biol. 384:165–71
    [Google Scholar]
  62. Krupa M, Mazur E, Szczepańska K, Filimonow K, Maleszewski M, Suwińska A 2014. Allocation of inner cells to epiblast versus primitive endoderm in the mouse embryo is biased but not determined by the round of asymmetric divisions (8→16- and 16→32-cells). Dev. Biol. 385:1136–48
    [Google Scholar]
  63. Kurotaki Y, Hatta K, Nakao K, Nabeshima Y-I, Fujimori T 2007. Blastocyst axis is specified independently of early cell lineage but aligns with the ZP shape. Science 316:5825719–23
    [Google Scholar]
  64. Littwin T, Denker H-W 2011. Segregation during cleavage in the mammalian embryo? A critical comparison of whole-mount/CLSM and section immunohistochemistry casts doubts on segregation of axis-relevant leptin domains in the rabbit. Histochem. Cell Biol 135:6553–70
    [Google Scholar]
  65. Louvet-Vallée S, Vinot S, Maro B 2005. Mitotic spindles and cleavage planes are oriented randomly in the two-cell mouse embryo. Curr. Biol. 15:5464–69
    [Google Scholar]
  66. Maître J-L, Niwayama R, Turlier H, Nédélec F, Hiiragi T 2015. Pulsatile cell-autonomous contractility drives compaction in the mouse embryo. Nat. Cell Biol. 17:7849
    [Google Scholar]
  67. Maître J-L, Turlier H, Illukkumbura R, Eismann B, Niwayama R et al. 2016. Asymmetric division of contractile domains couples cell positioning and fate specification. Nature 536:7616344–48
    [Google Scholar]
  68. Martin GR, Evans MJ 1975. Differentiation of clonal lines of teratocarcinoma cells: formation of embryoid bodies in vitro. PNAS 72:41441–45
    [Google Scholar]
  69. Matsuo I, Hiramatsu R 2016. Mechanical perspectives on the anterior-posterior axis polarization of mouse implanted embryos. Mech. Dev. 144:Part A62–70
    [Google Scholar]
  70. Meilhac SM, Adams RJ, Morris SA, Danckaert A, Le Garrec J-F, Zernicka-Goetz M 2009. Active cell movements coupled to positional induction are involved in lineage segregation in the mouse blastocyst. Dev. Biol. 331:2210–21
    [Google Scholar]
  71. Meno C, Gritsman K, Ohishi S, Ohfuji Y, Heckscher E et al. 1999. Mouse Lefty2 and zebrafish antivin are feedback inhibitors of nodal signaling during vertebrate gastrulation. Mol. Cell 4:3287–98
    [Google Scholar]
  72. Mesnard D, Filipe M, Belo JA, Zernicka-Goetz M 2004. The anterior-posterior axis emerges respecting the morphology of the mouse embryo that changes and aligns with the uterus before gastrulation. Curr. Biol. 14:3184–96
    [Google Scholar]
  73. Mesnard D, Guzman-Ayala M, Constam DB 2006. Nodal specifies embryonic visceral endoderm and sustains pluripotent cells in the epiblast before overt axial patterning. Development 133:132497–505
    [Google Scholar]
  74. Migeotte I, Omelchenko T, Hall A, Anderson KV 2010. Rac1-dependent collective cell migration is required for specification of the anterior-posterior body axis of the mouse. PLOS Biol 8:8e1000442
    [Google Scholar]
  75. Mitsui K, Tokuzawa Y, Itoh H, Segawa K, Murakami M et al. 2003. The homeoprotein Nanog is required for maintenance of pluripotency in mouse epiblast and ES cells. Cell 113:5631–42
    [Google Scholar]
  76. Molotkov A, Mazot P, Brewer JR, Cinalli RM, Soriano P 2017. Distinct requirements for FGFR1 and FGFR2 in primitive endoderm development and exit from pluripotency. Dev. Cell 41:5511–26.e4
    [Google Scholar]
  77. Moore R, Cai KQ, Escudero DO, Xu X-X 2009. Cell adhesive affinity does not dictate primitive endoderm segregation and positioning during murine embryoid body formation. Genesis 47:9579–89
    [Google Scholar]
  78. Moore R, Tao W, Meng Y, Smith ER, Xu X-X 2014. Cell adhesion and sorting in embryoid bodies derived from N- or E-cadherin deficient murine embryonic stem cells. Biol. Open 2014:3121–28
    [Google Scholar]
  79. Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP et al. 2013. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep 3:61945–57
    [Google Scholar]
  80. Morris SA 2011. Cell fate in the early mouse embryo: sorting out the influence of developmental history on lineage choice. Reprod. Biomed. Online 22:6521–24
    [Google Scholar]
  81. Morris SA, Grewal S, Barrios F, Patankar SN, Strauss B et al. 2012. Dynamics of anterior-posterior axis formation in the developing mouse embryo. Nat. Commun. 3:673
    [Google Scholar]
  82. Morris SA, Teo RTY, Li H, Robson P, Glover DM, Zernicka-Goetz M 2010. Origin and formation of the first two distinct cell types of the inner cell mass in the mouse embryo. PNAS 107:146364–69
    [Google Scholar]
  83. Motosugi N, Bauer T, Polanski Z, Solter D, Hiiragi T 2005. Polarity of the mouse embryo is established at blastocyst and is not prepatterned. Genes Dev 19:91081–92
    [Google Scholar]
  84. Nakamura T, Hamada H 2012. Left-right patterning: conserved and divergent mechanisms. Development 139:183257–62
    [Google Scholar]
  85. Niakan KK, Eggan K 2013. Analysis of human embryos from zygote to blastocyst reveals distinct gene expression patterns relative to the mouse. Dev. Biol. 375:154–64
    [Google Scholar]
  86. Nishioka N, Inoue K, Adachi K, Kiyonari H, Ota M et al. 2009. The Hippo signaling pathway components Lats and Yap pattern Tead4 activity to distinguish mouse trophectoderm from inner cell mass. Dev. Cell 16:3398–410
    [Google Scholar]
  87. O'Farrell PH 2015. Growing an embryo from a single cell: a hurdle in animal life. Cold Spring Harb. Perspect. Biol. 7:11a019042
    [Google Scholar]
  88. O'Farrell PH, Stumpff J, Su TT 2004. Embryonic cleavage cycles: How is a mouse like a fly. ? Curr. Biol. 14:1R35–45
    [Google Scholar]
  89. Ohnishi Y, Huber W, Tsumura A, Kang M, Xenopoulos P et al. 2014. Cell-to-cell expression variability followed by signal reinforcement progressively segregates early mouse lineages. Nat. Cell Biol. 16:127–37
    [Google Scholar]
  90. Perea-Gomez A, Lawson KA, Rhinn M, Zakin L, Brûlet P et al. 2001. Otx2 is required for visceral endoderm movement and for the restriction of posterior signals in the epiblast of the mouse embryo. Development 128:5753–65
    [Google Scholar]
  91. Perea-Gómez A, Shawlot W, Sasaki H, Behringer RR, Ang S 1999. HNF3β and Lim1 interact in the visceral endoderm to regulate primitive streak formation and anterior-posterior polarity in the mouse embryo. Development 126:204499–511
    [Google Scholar]
  92. Perea-Gomez A, Vella FDJ, Shawlot W, Oulad-Abdelghani M, Chazaud C et al. 2002. Nodal antagonists in the anterior visceral endoderm prevent the formation of multiple primitive streaks. Dev. Cell 3:5745–56
    [Google Scholar]
  93. Petropoulos S, Edsgärd D, Reinius B, Deng Q, Panula SP et al. 2016. Single-cell RNA-seq reveals lineage and X chromosome dynamics in human preimplantation embryos. Cell 165:41012–26
    [Google Scholar]
  94. Piotrowska K, Wianny F, Pedersen RA, Zernicka-Goetz M 2001. Blastomeres arising from the first cleavage division have distinguishable fates in normal mouse development. Development 128:193739–48
    [Google Scholar]
  95. Piotrowska K, Zernicka-Goetz M 2001. Role for sperm in spatial patterning of the early mouse embryo. Nature 409:6819517–21
    [Google Scholar]
  96. Piotrowska-Nitsche K, Perea-Gomez A, Haraguchi S, Zernicka-Goetz M 2005. Four-cell stage mouse blastomeres have different developmental properties. Development 132:3479–90
    [Google Scholar]
  97. Piotrowska-Nitsche K, Zernicka-Goetz M 2005. Spatial arrangement of individual 4-cell stage blastomeres and the order in which they are generated correlate with blastocyst pattern in the mouse embryo. Mech. Dev. 122:4487–500
    [Google Scholar]
  98. Plusa B, Piliszek A, Frankenberg S, Artus J, Hadjantonakis A-K 2008. Distinct sequential cell behaviours direct primitive endoderm formation in the mouse blastocyst. Development 135:183081–91
    [Google Scholar]
  99. Plusa B, Piotrowska K, Zernicka-Goetz M 2002. Sperm entry position provides a surface marker for the first cleavage plane of the mouse zygote. Genesis 32:3193–98
    [Google Scholar]
  100. Posfai E, Petropoulos S, de Barros FRO, Schell JP, Jurisica I et al. 2017. Position- and Hippo signaling-dependent plasticity during lineage segregation in the early mouse embryo. eLife 6:e22906
    [Google Scholar]
  101. Power RM, Huisken J 2017. A guide to light-sheet fluorescence microscopy for multiscale imaging. Nat. Methods 14:4360–73
    [Google Scholar]
  102. Ralston A, Rossant J 2008. Cdx2 acts downstream of cell polarization to cell-autonomously promote trophectoderm fate in the early mouse embryo. Dev. Biol. 313:2614–29
    [Google Scholar]
  103. Rios AC, Clevers H 2018. Imaging organoids: a bright future ahead. Nat. Methods 15:124–26
    [Google Scholar]
  104. Rodriguez TA, Srinivas S, Clements MP, Smith JC, Beddington RSP 2005. Induction and migration of the anterior visceral endoderm is regulated by the extra-embryonic ectoderm. Development 132:112513–20
    [Google Scholar]
  105. Roode M, Blair K, Snell P, Elder K, Marchant S et al. 2012. Human hypoblast formation is not dependent on FGF signalling. Dev. Biol. 361:2358–63
    [Google Scholar]
  106. Rossant J 2016. Making the mouse blastocyst: past, present, and future. Curr. Top. Dev. Biol. 117:275–88
    [Google Scholar]
  107. Rossant J, Chazaud C, Yamanaka Y 2003. Lineage allocation and asymmetries in the early mouse embryo. Philos. Trans. R. Soc. B 358:14361341–48; discussion 1349
    [Google Scholar]
  108. Rossant J, Lis WT 1979. Potential of isolated mouse inner cell masses to form trophectoderm derivatives in vivo. Dev. Biol. 70:1255–61
    [Google Scholar]
  109. Rossant J, Tam PPL 2004. Emerging asymmetry and embryonic patterning in early mouse development. Dev. Cell 7:2155–64
    [Google Scholar]
  110. Rossant J, Tam PPL 2009. Blastocyst lineage formation, early embryonic asymmetries and axis patterning in the mouse. Development 136:5701–13
    [Google Scholar]
  111. Rossant J, Tam PPL 2017. New insights into early human development: lessons for stem cell derivation and differentiation. Cell Stem Cell 20:118–28
    [Google Scholar]
  112. Rossant J, Vijh KM 1980. Ability of outside cells from preimplantation mouse embryos to form inner cell mass derivatives. Dev. Biol. 76:2475–82
    [Google Scholar]
  113. Saiz N, Williams KM, Seshan VE, Hadjantonakis A-K 2016. Asynchronous fate decisions by single cells collectively ensure consistent lineage composition in the mouse blastocyst. Nat. Commun 7:13463
    [Google Scholar]
  114. Samarage CR, White MD, Álvarez YD, Fierro-González JC, Henon Y et al. 2015. Cortical tension allocates the first inner cells of the mammalian embryo. Dev. Cell 34:4435–47
    [Google Scholar]
  115. Sato T, Clevers H 2013. Growing self-organizing mini-guts from a single intestinal stem cell: mechanism and applications. Science 340:61371190–94
    [Google Scholar]
  116. Schrode N, Saiz N, Di Talia S, Hadjantonakis A-K 2014. GATA6 levels modulate primitive endoderm cell fate choice and timing in the mouse blastocyst. Dev. Cell 29:4454–67
    [Google Scholar]
  117. Schulz LC, Roberts RM 2011. Dynamic changes in leptin distribution in the progression from ovum to blastocyst of the pre-implantation mouse embryo. Reproduction 141:6767–77
    [Google Scholar]
  118. Selwood L, Johnson MH 2006. Trophoblast and hypoblast in the monotreme, marsupial and eutherian mammal: evolution and origins. BioEssays 28:2128–45
    [Google Scholar]
  119. Shahbazi MN, Jedrusik A, Vuoristo S, Recher G, Hupalowska A et al. 2016. Self-organisation of the human embryo in the absence of maternal tissues. Nat. Cell Biol. 18:6700–8
    [Google Scholar]
  120. Shahbazi MN, Scialdone A, Skorupska N, Weberling A, Recher G et al. 2017. Pluripotent state transitions coordinate morphogenesis in mouse and human embryos. Nature 552:7684239–43
    [Google Scholar]
  121. Sheng G 2015. Epiblast morphogenesis before gastrulation. Dev. Biol. 401:117–24
    [Google Scholar]
  122. Snow MHL 1977. Gastrulation in the mouse: growth and regionalization of the epiblast. J. Embryol. Exp. Morphol. 42:293–303
    [Google Scholar]
  123. Solter D 2016. Preformation versus epigenesis in early mammalian development. Curr. Top. Dev. Biol. 117:377–91
    [Google Scholar]
  124. Srinivas S, Rodriguez T, Clements M, Smith JC, Beddington RSP 2004. Active cell migration drives the unilateral movements of the anterior visceral endoderm. Development 131:51157–64
    [Google Scholar]
  125. Steinberg MS 1963. Reconstruction of tissues by dissociated cells. Some morphogenetic tissue movements and the sorting out of embryonic cells may have a common explanation. Science 141:3579401–8
    [Google Scholar]
  126. Stewart MH, Bossé M, Chadwick K, Menendez P, Bendall SC, Bhatia M 2006. Clonal isolation of hESCs reveals heterogeneity within the pluripotent stem cell compartment. Nat. Methods 3:10807–15
    [Google Scholar]
  127. Stower MJ, Bertocchini F 2016. The evolution of amniote gastrulation: the blastopore‐primitive streak transition. WIREs Dev. Biol. 6:2e262
    [Google Scholar]
  128. Stower MJ, Srinivas S 2014. Heading forwards: anterior visceral endoderm migration in patterning the mouse embryo. Philos. Trans. R. Soc. B 369:165720130546
    [Google Scholar]
  129. Strnad P, Gunther S, Reichmann J, Krzic U, Balazs B et al. 2016. Inverted light-sheet microscope for imaging mouse pre-implantation development. Nat. Methods 13:2139–42
    [Google Scholar]
  130. Stuckey DW, Clements M, Di-Gregorio A, Senner CE, Le Tissier P et al. 2011. Coordination of cell proliferation and anterior-posterior axis establishment in the mouse embryo. Development 138:81521–30
    [Google Scholar]
  131. Sutherland AE 2016. Tissue morphodynamics shaping the early mouse embryo. Semin. Cell Dev. Biol. 55:89–98
    [Google Scholar]
  132. Takaoka K, Hamada H 2012. Cell fate decisions and axis determination in the early mouse embryo. Development 139:13–14
    [Google Scholar]
  133. Takaoka K, Nishimura H, Hamada H 2017. Both Nodal signalling and stochasticity select for prospective distal visceral endoderm in mouse embryos. Nat. Commun. 8:11492
    [Google Scholar]
  134. Takaoka K, Yamamoto M, Hamada H 2011. Origin and role of distal visceral endoderm, a group of cells that determines anterior-posterior polarity of the mouse embryo. Nat. Cell Biol. 13:7743–52
    [Google Scholar]
  135. Takaoka K, Yamamoto M, Shiratori H, Meno C, Rossant J et al. 2006. The mouse embryo autonomously acquires anterior-posterior polarity at implantation. Dev. Cell 10:4451–59
    [Google Scholar]
  136. Tarkowski AK 1959. Experiments on the development of isolated blastomeres of mouse eggs. Nature 184:46951286–87
    [Google Scholar]
  137. Tarkowski AK 1961. Mouse chimaeras developed from fused eggs. Nature 190:857–60
    [Google Scholar]
  138. Tarkowski AK, Wróblewska J 1967. Development of blastomeres of mouse eggs isolated at the 4- and 8-cell stage. J. Embryol. Exp. Morphol. 18:1155–80
    [Google Scholar]
  139. Thomas P, Beddington R 1996. Anterior primitive endoderm may be responsible for patterning the anterior neural plate in the mouse embryo. Curr. Biol. 6:111487–96
    [Google Scholar]
  140. Thomas PQ, Brown A, Beddington RS 1998. Hex: a homeobox gene revealing peri-implantation asymmetry in the mouse embryo and an early transient marker of endothelial cell precursors. Development 125:185–94
    [Google Scholar]
  141. Torres-Padilla M-E, Parfitt D-E, Kouzarides T, Zernicka-Goetz M 2007.a Histone arginine methylation regulates pluripotency in the early mouse embryo. Nature 445:7124214–18
    [Google Scholar]
  142. Torres-Padilla M-E, Richardson L, Kolasinska P, Meilhac SM, Luetke-Eversloh MV, Zernicka-Goetz M 2007.b The anterior visceral endoderm of the mouse embryo is established from both preimplantation precursor cells and by de novo gene expression after implantation. Dev. Biol. 309:197–112
    [Google Scholar]
  143. Townes PL, Holtfreter J 1955. Directed movements and selective adhesion of embryonic amphibian cells. J. Exp. Zool. A 128:153–120
    [Google Scholar]
  144. Trichas G, Joyce B, Crompton LA, Wilkins V, Clements M et al. 2011. Nodal dependent differential localisation of dishevelled-2 demarcates regions of differing cell behaviour in the visceral endoderm. PLOS Biol 9:2e1001019
    [Google Scholar]
  145. Trichas G, Smith AM, White N, Wilkins V, Watanabe T et al. 2012. Multi-cellular rosettes in the mouse visceral endoderm facilitate the ordered migration of anterior visceral endoderm cells. PLOS Biol 10:2e1001256
    [Google Scholar]
  146. Turner DA, Girgin M, Alonso-Crisostomo L, Trivedi V, Baillie-Johnson P et al. 2017. Anteroposterior polarity and elongation in the absence of extra-embryonic tissues and of spatially localised signalling in gastruloids: mammalian embryonic organoids. Development 144:213894–906
    [Google Scholar]
  147. van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis A-K, Nowotschin S et al. 2014. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141:224231–42
    [Google Scholar]
  148. VerMilyea MD, Maneck M, Yoshida N, Blochberger I, Suzuki E et al. 2011. Transcriptome asymmetry within mouse zygotes but not between early embryonic sister blastomeres. EMBO J 30:91841–51
    [Google Scholar]
  149. Vinot S, Le T, Ohno S, Pawson T, Maro B, Louvet-Vallée S 2005. Asymmetric distribution of PAR proteins in the mouse embryo begins at the 8-cell stage during compaction. Dev. Biol. 282:2307–19
    [Google Scholar]
  150. Viotti M, Nowotschin S, Hadjantonakis A-K 2014. SOX17 links gut endoderm morphogenesis and germ layer segregation. Nat. Cell Biol 16:121146–56
    [Google Scholar]
  151. Watanabe T, Biggins JS, Tannan NB, Srinivas S 2014. Limited predictive value of blastomere angle of division in trophectoderm and inner cell mass specification. Development 141:112279–88
    [Google Scholar]
  152. Weber RJ, Pedersen RA, Wianny F, Evans MJ, Zernicka-Goetz M 1999. Polarity of the mouse embryo is anticipated before implantation. Development 126:245591–98
    [Google Scholar]
  153. Wennekamp S, Mesecke S, Nédélec F, Hiiragi T 2013. A self-organization framework for symmetry breaking in the mammalian embryo. Nat. Rev. Mol. Cell Biol. 14:7452–59
    [Google Scholar]
  154. White MD, Angiolini JF, Alvarez YD, Kaur G, Zhao ZW et al. 2016. Long-lived binding of Sox2 to DNA predicts cell fate in the four-cell mouse embryo. Cell 165:175–87
    [Google Scholar]
  155. Xenopoulos P, Kang M, Puliafito A, Di Talia S, Hadjantonakis A-K 2015. Heterogeneities in Nanog expression drive stable commitment to pluripotency in the mouse blastocyst. Cell Rep 10:91508–20
    [Google Scholar]
  156. Yamamoto M, Saijoh Y, Perea-Gomez A, Shawlot W, Behringer RR et al. 2004. Nodal antagonists regulate formation of the anteroposterior axis of the mouse embryo. Nature 428:6981387–92
    [Google Scholar]
  157. Yamanaka Y 2011. Response: Cell fate in the early mouse embryo—sorting out the influence of developmental history on lineage choice. Reprod. Biomed. Online 22:6525–27; discussion 528
    [Google Scholar]
  158. Yamanaka Y, Lanner F, Rossant J 2010. FGF signal–dependent segregation of primitive endoderm and epiblast in the mouse blastocyst. Development 137:5715–24
    [Google Scholar]
  159. Yamanaka Y, Ralston A, Stephenson RO, Rossant J 2006. Cell and molecular regulation of the mouse blastocyst. Dev. Dyn. 235:92301–14
    [Google Scholar]
  160. Yan L, Yang M, Guo H, Yang L, Wu J et al. 2013. Single-cell RNA-Seq profiling of human preimplantation embryos and embryonic stem cells. Nat. Struct. Mol. Biol. 20:91131–39
    [Google Scholar]
  161. Zernicka-Goetz M 2003. Determining the first cleavage of the mouse zygote. Reprod. Biomed. Online 6:2160–63
    [Google Scholar]
  162. Zernicka-Goetz M 2005. Cleavage pattern and emerging asymmetry of the mouse embryo. Nat. Rev. Mol. Cell Biol. 6:12919–28
    [Google Scholar]
  163. Zhu M, Leung CY, Shahbazi MN, Zernicka-Goetz M 2017. Actomyosin polarisation through PLC-PKC triggers symmetry breaking of the mouse embryo. Nat. Commun. 8:1921
    [Google Scholar]
  164. Zimyanin VL, Belaya K, Pecreaux J, Gilchrist MJ, Clark A et al. 2008. In vivo imaging of oskar mRNA transport reveals the mechanism of posterior localization. Cell 134:5843–53
    [Google Scholar]
  165. Ziomek CA, Johnson MH 1980. Cell surface interaction induces polarization of mouse 8-cell blastomeres at compaction. Cell 21:3935–42
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062616
Loading
/content/journals/10.1146/annurev-cellbio-100617-062616
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error