1932

Abstract

Constitutive heterochromatin is a major component of the eukaryotic nucleus and is essential for the maintenance of genome stability. Highly concentrated at pericentromeric and telomeric domains, heterochromatin is riddled with repetitive sequences and has evolved specific ways to compartmentalize, silence, and repair repeats. The delicate balance between heterochromatin epigenetic maintenance and cellular processes such as mitosis and DNA repair and replication reveals a highly dynamic and plastic chromatin domain that can be perturbed by multiple mechanisms, with far-reaching consequences for genome integrity. Indeed, heterochromatin dysfunction provokes genetic turmoil by inducing aberrant repeat repair, chromosome segregation errors, transposon activation, and replication stress and is strongly implicated in aging and tumorigenesis. Here, we summarize the general principles of heterochromatin structure and function, discuss the importance of its maintenance for genome integrity, and propose that more comprehensive analyses of heterochromatin roles in tumorigenesis will be integral to future innovations in cancer treatment.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062653
2018-10-06
2024-12-13
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062653.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062653&mimeType=html&fmt=ahah

Literature Cited

  1. Aagaard L, Laible G, Selenko P, Schmid M, Dorn R et al. 1999. Functional mammalian homologues of the Drosophila PEV-modifier Su(var)3–9 encode centromere-associated proteins which complex with the heterochromatin component M31. EMBO J 18:1923–38
    [Google Scholar]
  2. Aasland R, Stewart AF 1995. The chromo shadow domain, a second chromo domain in heterochromatin-binding protein 1, HP1. Nucleic Acids Res 23:3168–73
    [Google Scholar]
  3. Abe Y, Sako K, Takagaki K, Hirayama Y, Uchida KS et al. 2016. HP1-assisted Aurora B kinase activity prevents chromosome segregation errors. Dev. Cell 36:487–97
    [Google Scholar]
  4. Adar S, Hu J, Lieb JD, Sancar A 2016. Genome-wide kinetics of DNA excision repair in relation to chromatin state and mutagenesis. PNAS 113:E2124–33
    [Google Scholar]
  5. Aguilera A, Garcia-Muse T 2013. Causes of genome instability. Annu. Rev. Genet. 47:1–32
    [Google Scholar]
  6. Ahmad K, Henikoff S 2002. Histone H3 variants specify modes of chromatin assembly. PNAS 99:Suppl. 416477–84
    [Google Scholar]
  7. Ainsztein AM, Kandels-Lewis SE, Mackay AM, Earnshaw WC 1998. INCENP centromere and spindle targeting: identification of essential conserved motifs and involvement of heterochromatin protein HP1. J. Cell Biol. 143:1763–74
    [Google Scholar]
  8. Allshire RC, Madhani HD 2018. Ten principles of heterochromatin formation and function. Nat. Rev. Mol. Cell Biol. 19:229–44
    [Google Scholar]
  9. Alper BJ, Job G, Yadav RK, Shanker S, Lowe BR, Partridge JF 2013. Sir2 is required for Clr4 to initiate centromeric heterochromatin assembly in fission yeast. EMBO J 32:2321–35
    [Google Scholar]
  10. Arora R, Lee Y, Wischnewski H, Brun CM, Schwarz T, Azzalin CM 2014. RNaseH1 regulates TERRA-telomeric DNA hybrids and telomere maintenance in ALT tumour cells. Nat. Commun. 5:5220
    [Google Scholar]
  11. Ayoub N, Jeyasekharan AD, Bernal JA, Venkitaraman AR 2008. HP1-β mobilization promotes chromatin changes that initiate the DNA damage response. Nature 453:682–86
    [Google Scholar]
  12. Ayrapetov MK, Gursoy-Yuzugullu O, Xu C, Xu Y, Price BD 2014. DNA double-strand breaks promote methylation of histone H3 on lysine 9 and transient formation of repressive chromatin. PNAS 111:9169–74
    [Google Scholar]
  13. Baldeyron C, Soria G, Roche D, Cook AJL, Almouzni G 2011. HP1α recruitment to DNA damage by p150CAF-1 promotes homologous recombination repair. J. Cell Biol. 193:81–95
    [Google Scholar]
  14. Becker JS, Nicetto D, Zaret KS 2016. H3K9me3-dependent heterochromatin: barrier to cell fate changes. Trends Genet 32:29–41
    [Google Scholar]
  15. Bernard P, Maure JF, Partridge JF, Genier S, Javerzat JP, Allshire RC 2001. Requirement of heterochromatin for cohesion at centromeres. Science 294:2539–42
    [Google Scholar]
  16. Black JC, Manning AL, Van Rechem C, Kim J, Ladd B et al. 2013. KDM4A lysine demethylase induces site-specific copy gain and rereplication of regions amplified in tumors. Cell 154:541–55
    [Google Scholar]
  17. Black JC, Van Rechem C, Whetstine JR 2012. Histone lysine methylation dynamics: establishment, regulation, and biological impact. Mol. Cell 48:491–507
    [Google Scholar]
  18. Bouzinba-Segard H, Guais A, Francastel C 2006. Accumulation of small murine minor satellite transcripts leads to impaired centromeric architecture and function. PNAS 103:8709–14
    [Google Scholar]
  19. Braig M, Lee S, Loddenkemper C, Rudolph C, Peters AH et al. 2005. Oncogene-induced senescence as an initial barrier in lymphoma development. Nature 436:660–65
    [Google Scholar]
  20. Branzei D, Foiani M 2010. Maintaining genome stability at the replication fork. Nat. Rev. Mol. Cell Biol. 11:208–19
    [Google Scholar]
  21. Bulut-Karslioglu A, De La Rosa–Velázquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M et al. 2014. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55:277–90
    [Google Scholar]
  22. Bulut-Karslioglu A, Perrera V, Scaranaro M, de la Rosa–Velazquez IA, van de Nobelen S et al. 2012. A transcription factor–based mechanism for mouse heterochromatin formation. Nat. Struct. Mol. Biol. 19:1023–30
    [Google Scholar]
  23. Burns KH 2017. Transposable elements in cancer. Nat. Rev. Cancer 17:415–24
    [Google Scholar]
  24. Burrell RA, McClelland SE, Endesfelder D, Groth P, Weller MC et al. 2013. Replication stress links structural and numerical cancer chromosomal instability. Nature 494:492–96
    [Google Scholar]
  25. Canzio D, Liao M, Naber N, Pate E, Larson A et al. 2013. A conformational switch in HP1 releases auto-inhibition to drive heterochromatin assembly. Nature 496:377–81
    [Google Scholar]
  26. Caridi CP, D'Agostino C, Ryu T, Zapotoczny G, Delabaere L et al. 2018. Nuclear F-actin and myosins drive relocalization of heterochromatic breaks. Nature 559:54–60
    [Google Scholar]
  27. Caridi PC, Delabaere L, Zapotoczny G, Chiolo I 2017. And yet, it moves: nuclear and chromatin dynamics of a heterochromatic double-strand break. Philos. Trans. R. Soc. B Biol. Sci. 372:20160291
    [Google Scholar]
  28. Cheutin T, Gorski SA, May KM, Singh PB, Misteli T 2004. In vivo dynamics of Swi6 in yeast: evidence for a stochastic model of heterochromatin. Mol. Cell. Biol. 24:3157–67
    [Google Scholar]
  29. Chiolo I, Minoda A, Colmenares SU, Polyzos A, Costes SV, Karpen GH 2011. Double-strand breaks in heterochromatin move outside of a dynamic HP1a domain to complete recombinational repair. Cell 144:732–44
    [Google Scholar]
  30. Cho S, Park JS, Kwon S, Kang YK 2012. Dynamics of Setdb1 expression in early mouse development. Gene Expr. Patterns 12:213–18
    [Google Scholar]
  31. Ciccia A, Elledge SJ 2010. The DNA damage response: making it safe to play with knives. Mol. Cell 40:179–204
    [Google Scholar]
  32. Colmenares SU, Swenson JM, Langley SA, Kennedy C, Costes SV, Karpen GH 2017. Drosophila histone demethylase KDM4A has enzymatic and non-enzymatic roles in controlling heterochromatin integrity. Dev. Cell 42:156–69.e5
    [Google Scholar]
  33. Contrepois K, Thuret JY, Courbeyrette R, Fenaille F, Mann C 2012. Deacetylation of H4-K16Ac and heterochromatin assembly in senescence. Epigenet. Chromatin 5:15
    [Google Scholar]
  34. Cordaux R, Batzer MA 2009. The impact of retrotransposons on human genome evolution. Nat. Rev. Genet. 10:691–703
    [Google Scholar]
  35. Cramer D, Serrano L, Schaefer MH 2016. A network of epigenetic modifiers and DNA repair genes controls tissue-specific copy number alteration preference. eLife 5:e16519
    [Google Scholar]
  36. Crasta K, Ganem NJ, Dagher R, Lantermann AB, Ivanova EV et al. 2012. DNA breaks and chromosome pulverization from errors in mitosis. Nature 482:53–58
    [Google Scholar]
  37. Cuellar TL, Herzner AM, Zhang X, Goyal Y, Watanabe C et al. 2017. Silencing of retrotransposons by SETDB1 inhibits the interferon response in acute myeloid leukemia. J. Cell Biol. 216:3535–49
    [Google Scholar]
  38. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD 2011. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genet 7:e1002384
    [Google Scholar]
  39. De Koning L, Savignoni A, Boumendil C, Rehman H, Asselain B et al. 2009. Heterochromatin protein 1α: a hallmark of cell proliferation relevant to clinical oncology. EMBO Mol. Med. 1:178–91
    [Google Scholar]
  40. de Magalhaes JP 2013. How ageing processes influence cancer. Nat. Rev. Cancer 13:357–65
    [Google Scholar]
  41. Dialynas GK, Vitalini MW, Wallrath LL 2008. Linking heterochromatin protein 1 (HP1) to cancer progression. Mutat. Res. 647:13–20
    [Google Scholar]
  42. Dinant C, Luijsterburg MS 2009. The emerging role of HP1 in the DNA damage response. Mol. Cell. Biol. 29:6335–40
    [Google Scholar]
  43. Dorer DR, Henikoff S 1994. Expansions of transgene repeats cause heterochromatin formation and gene silencing in Drosophila. . Cell 77:993–1002
    [Google Scholar]
  44. Dunham MA, Neumann AA, Fasching CL, Reddel RR 2000. Telomere maintenance by recombination in human cells. Nat. Genet. 26:447–50
    [Google Scholar]
  45. Edelbrock MA, Kaliyaperumal S, Williams KJ 2009. DNA mismatch repair efficiency and fidelity are elevated during DNA synthesis in human cells. Mutat. Res. 662:59–66
    [Google Scholar]
  46. Ekwall K, Javerzat JP, Lorentz A, Schmidt H, Cranston G, Allshire R 1995. The chromodomain protein Swi6: a key component at fission yeast centromeres. Science 269:1429–31
    [Google Scholar]
  47. Ekwall K, Nimmo ER, Javerzat JP, Borgstrom B, Egel R et al. 1996. Mutations in the fission yeast silencing factors clr4+ and rik1+ disrupt the localisation of the chromo domain protein Swi6p and impair centromere function. J. Cell Sci. 109:Pt 112637–48
    [Google Scholar]
  48. Elgin SCR, Reuter G 2013. Position-effect variegation, heterochromatin formation, and gene silencing in Drosophila. Cold Spring Harb. Perspect. . Biol 5:a017780
    [Google Scholar]
  49. Eskeland R, Eberharter A, Imhof A 2007. HP1 binding to chromatin methylated at H3K9 is enhanced by auxiliary factors. Mol. Cell. Biol. 27:453–65
    [Google Scholar]
  50. Eustermann S, Yang JC, Law MJ, Amos R, Chapman LM et al. 2011. Combinatorial readout of histone H3 modifications specifies localization of ATRX to heterochromatin. Nat. Struct. Mol. Biol. 18:777–82
    [Google Scholar]
  51. Eymery A, Callanan M, Vourc'h C 2009. The secret message of heterochromatin: new insights into the mechanisms and function of centromeric and pericentric repeat sequence transcription. Int. J. Dev. Biol. 53:259–68
    [Google Scholar]
  52. Eymery A, Liu Z, Ozonov EA, Stadler MB, Peters AH 2016. The methyltransferase Setdb1 is essential for meiosis and mitosis in mouse oocytes and early embryos. Development 143:2767–79
    [Google Scholar]
  53. Feinberg AP, Koldobskiy MA, Gondor A 2016. Epigenetic modulators, modifiers and mediators in cancer aetiology and progression. Nat. Rev. Genet. 17:284–99
    [Google Scholar]
  54. Filipponi D, Muller J, Emelyanov A, Bulavin DV 2013. Wip1 controls global heterochromatin silencing via ATM/BRCA1-dependent DNA methylation. Cancer Cell 24:528–41
    [Google Scholar]
  55. Fischer T, Cui B, Dhakshnamoorthy J, Zhou M, Rubin C et al. 2009. Diverse roles of HP1 proteins in heterochromatin assembly and functions in fission yeast. PNAS 106:8998–9003
    [Google Scholar]
  56. Flavahan WA, Gaskell E, Bernstein BE 2017. Epigenetic plasticity and the hallmarks of cancer. Science 357:eaal2380
    [Google Scholar]
  57. Fodor BD, Kubicek S, Yonezawa M, O'Sullivan RJ, Sengupta R et al. 2006. Jmjd2b antagonizes H3K9 trimethylation at pericentric heterochromatin in mammalian cells. Genes Dev 20:1557–62
    [Google Scholar]
  58. Folco HD, Pidoux AL, Urano T, Allshire RC 2008. Heterochromatin and RNAi are required to establish CENP-A chromatin at centromeres. Science 319:94–97
    [Google Scholar]
  59. Garcia-Cao M, O'Sullivan R, Peters AH, Jenuwein T, Blasco MA 2004. Epigenetic regulation of telomere length in mammalian cells by the Suv39h1 and Suv39h2 histone methyltransferases. Nat. Genet. 36:94–99
    [Google Scholar]
  60. Garcia-Nieto PE, Schwartz EK, King DA, Paulsen J, Collas P et al. 2017. Carcinogen susceptibility is regulated by genome architecture and predicts cancer mutagenesis. EMBO J 36:2829–43
    [Google Scholar]
  61. Garcia-Perez JL, Morell M, Scheys JO, Kulpa DA, Morell S et al. 2010. Epigenetic silencing of engineered L1 retrotransposition events in human embryonic carcinoma cells. Nature 466:769–73
    [Google Scholar]
  62. Gonzalo S, Jaco I, Fraga MF, Chen T, Li E et al. 2006. DNA methyltransferases control telomere length and telomere recombination in mammalian cells. Nat. Cell Biol. 8:416–24
    [Google Scholar]
  63. Goodarzi AA, Noon AT, Deckbar D, Ziv Y, Shiloh Y et al. 2008. ATM signaling facilitates repair of DNA double-strand breaks associated with heterochromatin. Mol. Cell 31:167–77
    [Google Scholar]
  64. Gorgoulis VG, Vassiliou LV, Karakaidos P, Zacharatos P, Kotsinas A et al. 2005. Activation of the DNA damage checkpoint and genomic instability in human precancerous lesions. Nature 434:907–13
    [Google Scholar]
  65. Gowen JW, Gay EH 1934. Chromosome constitution and behavior in eversporting and mottling in Drosophila melanogaster. . Genetics 19:189–208
    [Google Scholar]
  66. Guelen L, Pagie L, Brasset E, Meuleman W, Faza MB et al. 2008. Domain organization of human chromosomes revealed by mapping of nuclear lamina interactions. Nature 453:948–51
    [Google Scholar]
  67. Guler GD, Tindell CA, Pitti R, Wilson C, Nichols K et al. 2017. Repression of stress-induced LINE-1 expression protects cancer cell subpopulations from lethal drug exposure. Cancer Cell 32:221–37.e13
    [Google Scholar]
  68. Hanahan D, Weinberg RA 2011. Hallmarks of cancer: the next generation. Cell 144:646–74
    [Google Scholar]
  69. Heitz E 1928. Das Heterochromatin der Moose. Jahrb. Wiss. Bot. 69:762–818
    [Google Scholar]
  70. Hermsen MA, Joenje H, Arwert F, Welters MJ, Braakhuis BJ et al. 1996. Centromeric breakage as a major cause of cytogenetic abnormalities in oral squamous cell carcinoma. Genes Chromosomes Cancer 15:1–9
    [Google Scholar]
  71. Hirota T, Lipp JJ, Toh B-H, Peters J-M 2005. Histone H3 serine 10 phosphorylation by Aurora B causes HP1 dissociation from heterochromatin. Nature 438:1176–80
    [Google Scholar]
  72. Horsley D, Hutchings A, Butcher GW, Singh PB 1996. M32, a murine homologue of Drosophila heterochromatin protein 1 (HP1), localises to euchromatin within interphase nuclei and is largely excluded from constitutive heterochromatin. Cytogenet. Cell Genet. 73:308–11
    [Google Scholar]
  73. Hu J, Lieb JD, Sancar A, Adar S 2016. Cisplatin DNA damage and repair maps of the human genome at single-nucleotide resolution. PNAS 113:11507–12
    [Google Scholar]
  74. Iwase S, Xiang B, Ghosh S, Ren T, Lewis PW et al. 2011. ATRX ADD domain links an atypical histone methylation recognition mechanism to human mental-retardation syndrome. Nat. Struct. Mol. Biol. 18:769–76
    [Google Scholar]
  75. Jack APM, Bussemer S, Hahn M, Pünzeler S, Snyder M et al. 2013. H3K56me3 is a novel, conserved heterochromatic mark that largely but not completely overlaps with H3K9me3 in both regulation and localization. PLOS ONE 8:e51765
    [Google Scholar]
  76. Jackson JP, Lindroth AM, Cao X, Jacobsen SE 2002. Control of CpNpG DNA methylation by the KRYPTONITE histone H3 methyltransferase. Nature 416:556–60
    [Google Scholar]
  77. James TC, Elgin SC 1986. Identification of a nonhistone chromosomal protein associated with heterochromatin in Drosophila melanogaster and its gene. Mol. Cell. Biol. 6:3862–72
    [Google Scholar]
  78. Janssen A, Breuer GA, Brinkman EK, van der Meulen AI, Borden SV et al. 2016. A single double-strand break system reveals repair dynamics and mechanisms in heterochromatin and euchromatin. Genes Dev 30:1645–57
    [Google Scholar]
  79. Janssen A, Medema RH 2013. Genetic instability: tipping the balance. Oncogene 32:4459–70
    [Google Scholar]
  80. Janssen A, van der Burg M, Szuhai K, Kops GJ, Medema RH 2011. Chromosome segregation errors as a cause of DNA damage and structural chromosome aberrations. Science 333:1895–98
    [Google Scholar]
  81. Jiang Y, Lucas I, Young DJ, Davis EM, Karrison T et al. 2009. Common fragile sites are characterized by histone hypoacetylation. Hum. Mol. Genet. 18:4501–12
    [Google Scholar]
  82. Jin Y, Jin C, Salemark L, Martins C, Wennerberg J, Mertens F 2000. Centromere cleavage is a mechanism underlying isochromosome formation in skin and head and neck carcinomas. Chromosoma 109:476–81
    [Google Scholar]
  83. Joh RI, Khanduja JS, Calvo IA, Mistry M, Palmieri CM et al. 2016. Survival in quiescence requires the euchromatic deployment of Clr4/SUV39H by Argonaute-associated small RNAs. Mol. Cell 64:1088–101
    [Google Scholar]
  84. Johnson WL, Yewdell WT, Bell JC, McNulty SM, Duda Z et al. 2017. RNA-dependent stabilization of SUV39H1 at constitutive heterochromatin. eLife 6:e25299
    [Google Scholar]
  85. Kang J, Chaudhary J, Dong H, Kim S, Brautigam CA, Yu H 2011. Mitotic centromeric targeting of HP1 and its binding to Sgo1 are dispensable for sister-chromatid cohesion in human cells. Mol. Biol. Cell 22:1181–90
    [Google Scholar]
  86. Kim TD, Shin S, Berry WL, Oh S, Janknecht R 2012. The JMJD2A demethylase regulates apoptosis and proliferation in colon cancer cells. J. Cell. Biochem. 113:1368–76
    [Google Scholar]
  87. Kloc A, Zaratiegui M, Nora E, Martienssen R 2008. RNA interference guides histone modification during the S phase of chromosomal replication. Curr. Biol. 18:490–95
    [Google Scholar]
  88. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921
    [Google Scholar]
  89. Lange UC, Siebert S, Wossidlo M, Weiss T, Ziegler-Birling C et al. 2013. Dissecting the role of H3K64me3 in mouse pericentromeric heterochromatin. Nat. Commun. 4:2233
    [Google Scholar]
  90. Larson AG, Elnatan D, Keenen MM, Trnka MJ, Johnston JB et al. 2017. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature 547:236–40
    [Google Scholar]
  91. Lee E, Iskow R, Yang L, Gokcumen O, Haseley P et al. 2012. Landscape of somatic retrotransposition in human cancers. Science 337:967–71
    [Google Scholar]
  92. Lehnertz B, Ueda Y, Derijck AA, Braunschweig U, Perez-Burgos L et al. 2003. Suv39h-mediated histone H3 lysine 9 methylation directs DNA methylation to major satellite repeats at pericentric heterochromatin. Curr. Biol. 13:1192–200
    [Google Scholar]
  93. Lewis PW, Elsaesser SJ, Noh KM, Stadler SC, Allis CD 2010. Daxx is an H3.3-specific histone chaperone and cooperates with ATRX in replication-independent chromatin assembly at telomeres. PNAS 107:14075–80
    [Google Scholar]
  94. Li F, Mao G, Tong D, Huang J, Gu L et al. 2013. The histone mark H3K36me3 regulates human DNA mismatch repair through its interaction with MutSα. Cell 153:590–600
    [Google Scholar]
  95. Li Y, Danzer JR, Alvarez P, Belmont AS, Wallrath LL 2003. Effects of tethering HP1 to euchromatic regions of the Drosophila genome. Development 130:1817–24
    [Google Scholar]
  96. Lim B, Mun J, Kim YS, Kim SY 2017. Variability in chromatin architecture and associated DNA repair at genomic positions containing somatic mutations. Cancer Res 77:2822–33
    [Google Scholar]
  97. Lima-de-Faria A, Jaworska H 1968. Late DNA synthesis in heterochromatin. Nature 217:138–42
    [Google Scholar]
  98. Lovejoy CA, Li W, Reisenweber S, Thongthip S, Bruno J et al. 2012. Loss of ATRX, genome instability, and an altered DNA damage response are hallmarks of the alternative lengthening of telomeres pathway. PLOS Genet 8:e1002772
    [Google Scholar]
  99. Lu J, Gilbert DM 2007. Proliferation-dependent and cell cycle regulated transcription of mouse pericentric heterochromatin. J. Cell Biol. 179:411–21
    [Google Scholar]
  100. Maison C, Bailly D, Peters AHFM, Quivy J-P, Roche D et al. 2002. Higher-order structure in pericentric heterochromatin involves a distinct pattern of histone modification and an RNA component. Nat. Genet. 30:329–34
    [Google Scholar]
  101. Martienssen RA, Kloc A, Slotkin RK, Tanurdzic M 2008. Epigenetic inheritance and reprogramming in plants and fission yeast. Cold Spring Harb. Symp. Quant. Biol. 73:265–71
    [Google Scholar]
  102. Mayer R, Brero A, von Hase J, Schroeder T, Cremer T, Dietzel S 2005. Common themes and cell type specific variations of higher order chromatin arrangements in the mouse. BMC Cell Biol 6:44
    [Google Scholar]
  103. McStay B, Grummt I 2008. The epigenetics of rRNA genes: from molecular to chromosome biology. Annu. Rev. Cell Dev. Biol. 24:131–57
    [Google Scholar]
  104. Meshorer E, Yellajoshula D, George E, Scambler PJ, Brown DT, Misteli T 2006. Hyperdynamic plasticity of chromatin proteins in pluripotent embryonic stem cells. Dev. Cell 10:105–16
    [Google Scholar]
  105. Miga KH 2015. Completing the human genome: the progress and challenge of satellite DNA assembly. Chromosome Res 23:421–26
    [Google Scholar]
  106. Miller KM, Rog O, Cooper JP 2006. Semi-conservative DNA replication through telomeres requires Taz1. Nature 440:824–28
    [Google Scholar]
  107. Minc E, Allory Y, Worman HJ, Courvalin JC, Buendia B 1999. Localization and phosphorylation of HP1 proteins during the cell cycle in mammalian cells. Chromosoma 108:220–34
    [Google Scholar]
  108. Motamedi MR, Hong E-JE, Li X, Gerber S, Denison C et al. 2008. HP1 proteins form distinct complexes and mediate heterochromatic gene silencing by nonoverlapping mechanisms. Mol. Cell 32:778–90
    [Google Scholar]
  109. Nair N, Shoaib M, Sørensen CS 2017. Chromatin dynamics in genome stability: roles in suppressing endogenous DNA damage and facilitating DNA repair. Int. J. Mol. Sci. 18:E1486
    [Google Scholar]
  110. Nonaka N, Kitajima T, Yokobayashi S, Xiao G, Yamamoto M et al. 2002. Recruitment of cohesin to heterochromatic regions by Swi6/HP1 in fission yeast. Nat. Cell Biol. 4:89–93
    [Google Scholar]
  111. O'Carroll D, Scherthan H, Peters AH, Opravil S, Haynes AR et al. 2000. Isolation and characterization of Suv39h2, a second histone H3 methyltransferase gene that displays testis-specific expression. Mol. Cell. Biol. 20:9423–33
    [Google Scholar]
  112. Oka Y, Suzuki K, Yamauchi M, Mitsutake N, Yamashita S 2011. Recruitment of the cohesin loading factor NIPBL to DNA double-strand breaks depends on MDC1, RNF168 and HP1γ in human cells. Biochem. Biophys. Res. Commun. 411:762–67
    [Google Scholar]
  113. Padeken J, Zeller P, Gasser SM 2015. Repeat DNA in genome organization and stability. Curr. Opin. Genet. Dev. 31:12–19
    [Google Scholar]
  114. Papazyan R, Voronina E, Chapman JR, Luperchio TR, Gilbert TM et al. 2014. Methylation of histone H3K23 blocks DNA damage in pericentric heterochromatin during meiosis. eLife 3:e02996
    [Google Scholar]
  115. Paro R, Hogness DS 1991. The Polycomb protein shares a homologous domain with a heterochromatin-associated protein of Drosophila. . PNAS 88:263–67
    [Google Scholar]
  116. Pearson CE, Nichol Edamura K, Cleary JD 2005. Repeat instability: mechanisms of dynamic mutations. Nat. Rev. Genet. 6:729–42
    [Google Scholar]
  117. Peng JC, Karpen GH 2007. H3K9 methylation and RNA interference regulate nucleolar organization and repeated DNA stability. Nat. Cell Biol. 9:25–35
    [Google Scholar]
  118. Peng JC, Karpen GH 2009. Heterochromatic genome stability requires regulators of histone H3 K9 methylation. PLOS Genet 5:e1000435
    [Google Scholar]
  119. Perera D, Taylor SS 2010. Sgo1 establishes the centromeric cohesion protection mechanism in G2 before subsequent Bub1-dependent recruitment in mitosis. J. Cell Sci. 123:653–59
    [Google Scholar]
  120. Peters AH, Carroll D, Scherthan H, Mechtler K, Sauer S et al. 2001. Loss of the Suv39h histone methyltransferases impairs mammalian heterochromatin and genome stability. Cell 107:323–37
    [Google Scholar]
  121. Peters AHFM, Kubicek S, Mechtler K, O'Sullivan RJ, Derijck AAHA et al. 2003. Partitioning and plasticity of repressive histone methylation states in mammalian chromatin. Mol. Cell 12:1577–89
    [Google Scholar]
  122. Pfister SX, Ashworth A 2017. Marked for death: targeting epigenetic changes in cancer. Nat. Rev. Drug Discov. 16:241–63
    [Google Scholar]
  123. Polak P, Karlic R, Koren A, Thurman R, Sandstrom R et al. 2015. Cell-of-origin chromatin organization shapes the mutational landscape of cancer. Nature 518:360–64
    [Google Scholar]
  124. Price BD, D'Andrea AD 2013. Chromatin remodeling at DNA double-strand breaks. Cell 152:1344–54
    [Google Scholar]
  125. Probst AV, Okamoto I, Casanova M, El Marjou F, Le Baccon P, Almouzni G 2010. A strand-specific burst in transcription of pericentric satellites is required for chromocenter formation and early mouse development. Dev. Cell 19:625–38
    [Google Scholar]
  126. Quivy J-P, Gérard A, Cook AJL, Roche Dl, Almouzni G 2008. The HP1-p150/CAF-1 interaction is required for pericentric heterochromatin replication and S-phase progression in mouse cells. Nat. Struct. Mol. Biol. 15:972–79
    [Google Scholar]
  127. Quivy J-P, Roche D, Kirschner D, Tagami H, Nakatani Y, Almouzni G 2004. A CAF-1 dependent pool of HP1 during heterochromatin duplication. EMBO J 23:3516–26
    [Google Scholar]
  128. Roche B, Arcangioli B, Martienssen RA 2016. RNA interference is essential for cellular quiescence. Science 354:aah5651
    [Google Scholar]
  129. Rondinelli B, Rosano D, Antonini E, Frenquelli M, Montanini L et al. 2015. Histone demethylase JARID1C inactivation triggers genomic instability in sporadic renal cancer. J. Clin. Investig. 125:4625–37
    [Google Scholar]
  130. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S et al. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–40
    [Google Scholar]
  131. Ryu T, Spatola B, Delabaere L, Bowlin K, Hopp H et al. 2015. Heterochromatic breaks move to the nuclear periphery to continue recombinational repair. Nat. Cell Biol. 17:1401–11
    [Google Scholar]
  132. Saksouk N, Barth TK, Ziegler-Birling C, Olova N, Nowak A et al. 2014. Redundant mechanisms to form silent chromatin at pericentromeric regions rely on BEND3 and DNA methylation. Mol. Cell 56:580–94
    [Google Scholar]
  133. Scaffidi P, Misteli T 2006. Lamin A–dependent nuclear defects in human aging. Science 312:1059–63
    [Google Scholar]
  134. Schotta G, Lachner M, Sarma K, Ebert A, Sengupta R et al. 2004. A silencing pathway to induce H3-K9 and H4-K20 trimethylation at constitutive heterochromatin. Genes Dev 18:1251–62
    [Google Scholar]
  135. Schotta G, Sengupta R, Kubicek S, Malin S, Kauer M et al. 2008. A chromatin-wide transition to H4K20 monomethylation impairs genome integrity and programmed DNA rearrangements in the mouse. Genes Dev 22:2048–61
    [Google Scholar]
  136. Schuster-Bockler B, Lehner B 2012. Chromatin organization is a major influence on regional mutation rates in human cancer cells. Nature 488:504–7
    [Google Scholar]
  137. Shen H, Laird PW 2013. Interplay between the cancer genome and epigenome. Cell 153:38–55
    [Google Scholar]
  138. Shirai A, Kawaguchi T, Shimojo H, Muramatsu D, Ishida-Yonetani M et al. 2017. Impact of nucleic acid and methylated H3K9 binding activities of Suv39h1 on its heterochromatin assembly. eLife 6:e25317
    [Google Scholar]
  139. Shumaker DK, Dechat T, Kohlmaier A, Adam SA, Bozovsky MR et al. 2006. Mutant nuclear lamin A leads to progressive alterations of epigenetic control in premature aging. PNAS 103:8703–8
    [Google Scholar]
  140. Slee RB, Steiner CM, Herbert BS, Vance GH, Hickey RJ et al. 2012. Cancer-associated alteration of pericentromeric heterochromatin may contribute to chromosome instability. Oncogene 31:3244–53
    [Google Scholar]
  141. Slotkin RK, Martienssen R 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8:272–85
    [Google Scholar]
  142. Solovei I, Kreysing M, Lanctôt C, Kösem S, Peichl L et al. 2009. Nuclear architecture of rod photoreceptor cells adapts to vision in mammalian evolution. Cell 137:356–68
    [Google Scholar]
  143. Solyom S, Ewing AD, Rahrmann EP, Doucet T, Nelson HH et al. 2012. Extensive somatic L1 retrotransposition in colorectal tumors. Genome Res 22:2328–38
    [Google Scholar]
  144. Soria G, Almouzni G 2012. Differential contribution of HP1 proteins to DNA end resection and homology-directed repair. Cell Cycle 12:422–29
    [Google Scholar]
  145. Sridharan R, Gonzales-Cope M, Chronis C, Bonora G, McKee R et al. 2013. Proteomic and genomic approaches reveal critical functions of H3K9 methylation and heterochromatin protein-1γ in reprogramming to pluripotency. Nat. Cell Biol. 15:872–82
    [Google Scholar]
  146. Stephens AD, Liu PZ, Banigan EJ, Almassalha LM, Backman V et al. 2018. Chromatin histone modifications and rigidity affect nuclear morphology independent of lamins. Mol. Biol. Cell 29:220–33
    [Google Scholar]
  147. Strom AR, Emelyanov AV, Mir M, Fyodorov DV, Darzacq X, Karpen GH 2017. Phase separation drives heterochromatin domain formation. Nature 547:241–45
    [Google Scholar]
  148. Sullivan BA, Karpen GH 2004. Centromeric chromatin exhibits a histone modification pattern that is distinct from both euchromatin and heterochromatin. Nat. Struct. Mol. Biol. 11:1076–83
    [Google Scholar]
  149. Supek F, Lehner B 2015. Differential DNA mismatch repair underlies mutation rate variation across the human genome. Nature 521:81–84
    [Google Scholar]
  150. Swenson JM, Colmenares SU, Strom AR, Costes SV, Karpen GH 2016. The composition and organization of Drosophila heterochromatin are heterogeneous and dynamic. eLife 5:e16096
    [Google Scholar]
  151. Tachibana M, Sugimoto K, Nozaki M, Ueda J, Ohta T et al. 2002. G9a histone methyltransferase plays a dominant role in euchromatic histone H3 lysine 9 methylation and is essential for early embryogenesis. Genes Dev 16:1779–91
    [Google Scholar]
  152. Tachibana M, Ueda J, Fukuda M, Takeda N, Ohta T et al. 2005. Histone methyltransferases G9a and GLP form heteromeric complexes and are both crucial for methylation of euchromatin at H3-K9. Genes Dev 19:815–26
    [Google Scholar]
  153. Taddei A, Maison C, Roche D, Almouzni G 2001. Reversible disruption of pericentric heterochromatin and centromere function by inhibiting deacetylases. Nat. Cell Biol. 3:114–20
    [Google Scholar]
  154. Tamaru H, Selker EU 2001. A histone H3 methyltransferase controls DNA methylation in Neurospora crassa. . Nature 414:277–83
    [Google Scholar]
  155. Timp W, Bravo HC, McDonald OG, Goggins M, Umbricht C et al. 2014. Large hypomethylated blocks as a universal defining epigenetic alteration in human solid tumors. Genome Med 6:61
    [Google Scholar]
  156. Torres-Rosell J, Sunjevaric I, De Piccoli G, Sacher M, Eckert-Boulet N et al. 2007. The Smc5-Smc6 complex and SUMO modification of Rad52 regulates recombinational repair at the ribosomal gene locus. Nat. Cell Biol. 9:923–31
    [Google Scholar]
  157. Trewick SC, Minc E, Antonelli R, Urano T, Allshire RC 2007. The JmjC domain protein Epe1 prevents unregulated assembly and disassembly of heterochromatin. EMBO J 26:4670–82
    [Google Scholar]
  158. Tsouroula K, Furst A, Rogier M, Heyer V, Maglott-Roth A et al. 2016. Temporal and spatial uncoupling of DNA double strand break repair pathways within mammalian heterochromatin. Mol. Cell 63:293–305
    [Google Scholar]
  159. Tubio JM, Li Y, Ju YS, Martincorena I, Cooke SL et al. 2014. Extensive transduction of nonrepetitive DNA mediated by L1 retrotransposition in cancer genomes. Science 345:1251343
    [Google Scholar]
  160. Vad-Nielsen J, Jakobsen KR, Daugaard TF, Thomsen R, Brugmann A et al. 2016. Regulatory dissection of the CBX5 and hnRNPA1 bi-directional promoter in human breast cancer cells reveals novel transcript variants differentially associated with HP1α down-regulation in metastatic cells. BMC Cancer 16:32
    [Google Scholar]
  161. Velazquez Camacho O, Galan C, Swist-Rosowska K, Ching R, Gamalinda M et al. 2017. Major satellite repeat RNA stabilize heterochromatin retention of Suv39h enzymes by RNA-nucleosome association and RNA:DNA hybrid formation. eLife 6:e25293
    [Google Scholar]
  162. Verschure PJ, van der Kraan I, de Leeuw W, van der Vlag J, Carpenter AE et al. 2005. In vivo HP1 targeting causes large-scale chromatin condensation and enhanced histone lysine methylation. Mol. Cell. Biol. 25:4552–64
    [Google Scholar]
  163. Vicient CM, Casacuberta JM 2017. Impact of transposable elements on polyploid plant genomes. Ann. Bot. 120:195–207
    [Google Scholar]
  164. Vogel MJ, Guelen L, de Wit E, Peric-Hupkes D, Loden M et al. 2006. Human heterochromatin proteins form large domains containing KRAB-ZNF genes. Genome Res 16:1493–504
    [Google Scholar]
  165. Woo YH, Li WH 2012. DNA replication timing and selection shape the landscape of nucleotide variation in cancer genomes. Nat. Commun. 3:1004
    [Google Scholar]
  166. Wu W, Nishikawa H, Fukuda T, Vittal V, Asano M et al. 2015. Interaction of BARD1 and HP1 is required for BRCA1 retention at sites of DNA damage. Cancer Res 75:1311–21
    [Google Scholar]
  167. Wurzenberger C, Gerlich DW 2011. Phosphatases: providing safe passage through mitotic exit. Nat. Rev. Mol. Cell Biol. 12:469–82
    [Google Scholar]
  168. Yamada T, Fischle W, Sugiyama T, Allis CD, Grewal SI 2005. The nucleation and maintenance of heterochromatin by a histone deacetylase in fission yeast. Mol. Cell 20:173–85
    [Google Scholar]
  169. Yamagishi Y, Sakuno T, Shimura M, Watanabe Y 2008. Heterochromatin links to centromeric protection by recruiting shugoshin. Nature 455:251–55
    [Google Scholar]
  170. Zeller P, Padeken J, van Schendel R, Kalck V, Tijsterman M, Gasser SM 2016. Histone H3K9 methylation is dispensable for Caenorhabditis elegans development but suppresses RNA:DNA hybrid-associated repeat instability. Nat. Genet. 48:1385–95
    [Google Scholar]
  171. Zhang W, Deng H, Bao X, Lerach S, Girton J et al. 2006. The JIL-1 histone H3S10 kinase regulates dimethyl H3K9 modifications and heterochromatic spreading in Drosophila. . Development 133:229–35
    [Google Scholar]
  172. Zhang W, Li J, Suzuki K, Qu J, Wang P et al. 2015. A Werner syndrome stem cell model unveils heterochromatin alterations as a driver of human aging. Science 348:1160–63
    [Google Scholar]
  173. Zhao J, Bacolla A, Wang G, Vasquez KM 2010. Non-B DNA structure–induced genetic instability and evolution. Cell. Mol. Life Sci. 67:43–62
    [Google Scholar]
  174. Zheng CL, Wang NJ, Chung J, Moslehi H, Sanborn JZ et al. 2014. Transcription restores DNA repair to heterochromatin, determining regional mutation rates in cancer genomes. Cell Rep 9:1228–34
    [Google Scholar]
  175. Zhu Q, Pao GM, Huynh AM, Suh H, Tonnu N et al. 2011. BRCA1 tumour suppression occurs via heterochromatin-mediated silencing. Nature 477:179–84
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062653
Loading
/content/journals/10.1146/annurev-cellbio-100617-062653
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error