1932

Abstract

Endocytosis has long been identified as a key cellular process involved in bringing in nutrients, in clearing cellular debris in tissue, in the regulation of signaling, and in maintaining cell membrane compositional homeostasis. While clathrin-mediated endocytosis has been most extensively studied, a number of clathrin-independent endocytic pathways are continuing to be delineated. Here we provide a current survey of the different types of endocytic pathways available at the cell surface and discuss a new classification and plausible molecular mechanisms for some of the less characterized pathways. Along with an evolutionary perspective of the origins of some of these pathways, we provide an appreciation of the distinct roles that these pathways play in various aspects of cellular physiology, including the control of signaling and membrane tension.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062710
2019-10-06
2024-04-14
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100617-062710.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062710&mimeType=html&fmt=ahah

Literature Cited

  1. Aboulaich N, Vainonen JP, Strålfors P, Vener AV, Stralfors P 2004. Vectorial proteomics reveal targeting, phosphorylation and specific fragmentation of polymerase I and transcript release factor (PTRF) at the surface of caveolae in human adipocytes. Biochem. J. 383:Pt 2237–48
    [Google Scholar]
  2. Aït-Slimane T, Galmes R, Trugnan G, Maurice M 2009. Basolateral internalization of GPI-anchored proteins occurs via a clathrin-independent flotillin-dependent pathway in polarized hepatic cells. Mol. Biol. Cell 20:173792–800
    [Google Scholar]
  3. Anderson RG, Brown MS, Goldstein JL 1977a. Role of the coated endocytic vesicle in the uptake of receptor-bound low density lipoprotein in human fibroblasts. Cell 10:3351–64
    [Google Scholar]
  4. Anderson RG, Goldstein JL, Brown MS 1977b. A mutation that impairs the ability of lipoprotein receptors to localise in coated pits on the cell surface of human fibroblasts. Nature 270:5639695–99
    [Google Scholar]
  5. Apodaca G. 2002. Modulation of membrane traffic by mechanical stimuli. Am. J. Physiol. Ren. Physiol. 282:2F179–90
    [Google Scholar]
  6. Arjonen A, Alanko J, Veltel S, Ivaska J 2012. Distinct recycling of active and inactive β1 integrins. Traffic 13:4610–25
    [Google Scholar]
  7. Bairstow SF, Ling K, Su X, Firestone AJ, Carbonara C, Anderson RA 2006. Type Iγ661 phosphatidylinositol phosphate kinase directly interacts with AP2 and regulates endocytosis. J. Biol. Chem. 281:2920632–42
    [Google Scholar]
  8. Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:31019–137
    [Google Scholar]
  9. Bar-Sagi D, Feramisco JR. 1986. Induction of membrane ruffling and fluid-phase pinocytosis in quiescent fibroblasts by ras proteins. Science 233:47681061–68
    [Google Scholar]
  10. Baral A, Irani NG, Fujimoto M, Nakano A, Mayor S, Mathew MK 2015. Salt-induced remodeling of spatially restricted clathrin-independent endocytic pathways in Arabidopsis root. Plant Cell 27:41297–315
    [Google Scholar]
  11. Bastiani M, Liu L, Hill MM, Jedrychowski MP, Nixon SJ et al. 2009. MURC/Cavin-4 and cavin family members form tissue-specific caveolar complexes. J. Cell Biol. 185:71259–73
    [Google Scholar]
  12. Behnia R, Munro S. 2005. Organelle identity and the signposts for membrane traffic. Nature 438:7068597–604
    [Google Scholar]
  13. Bitsikas V, Corrêa IR, Nichols BJ 2014. Clathrin-independent pathways do not contribute significantly to endocytic flux. eLife 3:e03970
    [Google Scholar]
  14. Bökel C, Brand M. 2014. Endocytosis and signaling during development. Cold Spring Harb. Perspect. Biol. 6:3a017020
    [Google Scholar]
  15. Bonazzi M, Spanò S, Turacchio G, Cericola C, Valente C et al. 2005. CtBP3/BARS drives membrane fission in dynamin-independent transport pathways. Nat. Cell Biol. 7:6570–80
    [Google Scholar]
  16. Boucrot E, Ferreira APA, Almeida-Souza L, Debard S, Vallis Y et al. 2015. Endophilin marks and controls a clathrin-independent endocytic pathway. Nature 517:7535460–65
    [Google Scholar]
  17. Boulant S, Kural C, Zeeh J-C, Ubelmann F, Kirchhausen T 2011. Actin dynamics counteract membrane tension during clathrin-mediated endocytosis. Nat. Cell Biol. 13:91124–31
    [Google Scholar]
  18. Bretscher MS, Thomson JN, Pearse BM 1980. Coated pits act as molecular filters. PNAS 77:74156–59
    [Google Scholar]
  19. Brown FD, Rozelle AL, Yin HL, Balla T, Donaldson JG 2001. Phosphatidylinositol 4,5-bisphosphate and Arf6-regulated membrane traffic. J. Cell Biol. 154:51007–17
    [Google Scholar]
  20. Brown MS, Goldstein JL. 1979. Receptor-mediated endocytosis: insights from the lipoprotein receptor system. PNAS 76:73330–37
    [Google Scholar]
  21. Bucher D, Frey F, Sochacki KA, Kummer S, Bergeest J-P et al. 2018. Clathrin-adaptor ratio and membrane tension regulate the flat-to-curved transition of the clathrin coat during endocytosis. Nat. Commun. 9:11109
    [Google Scholar]
  22. Campelo F, Malhotra V. 2012. Membrane fission: the biogenesis of transport carriers. Annu. Rev. Biochem. 81:407–27
    [Google Scholar]
  23. Cavalier-Smith T. 1987. The simultaneous symbiotic origin of mitochondria, chloroplasts, and microbodies. Ann. N. Y. Acad. Sci. 503:155–71
    [Google Scholar]
  24. Chadda R, Howes MT, Plowman SJ, Hancock JF, Parton RG, Mayor S 2007. Cholesterol-sensitive Cdc42 activation regulates actin polymerization for endocytosis via the GEEC pathway. Traffic 8:6702–17
    [Google Scholar]
  25. Chan Wah Hak L, Khan S, Di Meglio I, Law A, Lucken-Ardjomande Häsler S et al. 2018. FBP17 and CIP4 recruit SHIP2 and lamellipodin to prime the plasma membrane for fast endophilin-mediated endocytosis. Nat. Cell Biol. 20:91023–31
    [Google Scholar]
  26. Chanez A-L, Hehl AB, Engstler M, Schneider A 2006. Ablation of the single dynamin of T. brucei blocks mitochondrial fission and endocytosis and leads to a precise cytokinesis arrest. J. Cell Sci. 119:142968–74
    [Google Scholar]
  27. Chaudhary N, Gomez GA, Howes MT, Lo HP, McMahon K-A et al. 2014. Endocytic crosstalk: Cavins, caveolins, and caveolae regulate clathrin-independent endocytosis. PLOS Biol 12:4e1001832
    [Google Scholar]
  28. Chaudhry A, Das SR, Hussain A, Mayor S, George A et al. 2005. The Nef protein of HIV-1 induces loss of cell surface costimulatory molecules CD80 and CD86 in APCs. J. Immunol. 175:74566–74
    [Google Scholar]
  29. Chaudhry A, Das SR, Jameel S, George A, Bal V et al. 2007. A two-pronged mechanism for HIV-1 Nef-mediated endocytosis of immune costimulatory molecules CD80 and CD86. Cell Host Microbe 1:137–49
    [Google Scholar]
  30. Collinet C, Stöter M, Bradshaw CR, Samusik N, Rink JC et al. 2010. Systems survey of endocytosis by multiparametric image analysis. Nature 464:7286243–49
    [Google Scholar]
  31. Commisso C, Davidson SM, Soydaner-Azeloglu RG, Parker SJ, Kamphorst JJ et al. 2013. Macropinocytosis of protein is an amino acid supply route in Ras-transformed cells. Nature 497:7451633–37
    [Google Scholar]
  32. Compeer EB, Kraus F, Ecker M, Redpath G, Amiezer M et al. 2018. A mobile endocytic network connects clathrin-independent receptor endocytosis to recycling and promotes T cell activation. Nat. Commun. 9:11597
    [Google Scholar]
  33. Conner SD, Schmid SL. 2003. Regulated portals of entry into the cell. Nature 422:692737–44
    [Google Scholar]
  34. Cullen PJ, Steinberg F. 2018. To degrade or not to degrade: mechanisms and significance of endocytic recycling. Nat. Rev. Mol. Cell Biol. 19:11679–96
    [Google Scholar]
  35. Dacks JB, Poon PP, Field MC 2008. Phylogeny of endocytic components yields insight into the process of nonendosymbiotic organelle evolution. PNAS 105:2588–93
    [Google Scholar]
  36. Damke H, Baba T, Van Der Bliek AM, Schmid SL 1995. Clathrin-independent pinocytosis is induced in cells overexpressing a temperature-sensitive mutant of dynamin. J. Cell Biol. 131:169–80
    [Google Scholar]
  37. Damke H, Baba T, Warnock DE, Schmid SL 1994. Induction of mutant dynamin specifically blocks endocytic coated vesicle formation. J. Cell Biol. 127:4915–34
    [Google Scholar]
  38. Daumke O, Lundmark R, Vallis Y, Martens S, Butler PJG, McMahon HT 2007. Architectural and mechanistic insights into an EHD ATPase involved in membrane remodelling. Nature 449:7164923–27
    [Google Scholar]
  39. David C, McPherson PS, Mundigl O, de Camilli P 1996. A role of amphiphysin in synaptic vesicle endocytosis suggested by its binding to dynamin in nerve terminals. PNAS 93:1331–35
    [Google Scholar]
  40. Day CA, Baetz NW, Copeland CA, Kraft LJ, Han B et al. 2015. Microtubule motors power plasma membrane tubulation in clathrin-independent endocytosis. Traffic 16:6572–90
    [Google Scholar]
  41. De Donatis A, Comito G, Buricchi F, Vinci MC, Parenti A et al. 2008. Proliferation versus migration in platelet-derived growth factor signaling: the key role of endocytosis. J. Biol. Chem. 283:2919948–56
    [Google Scholar]
  42. De Franceschi N, Arjonen A, Elkhatib N, Denessiouk K, Wrobel AG et al. 2016. Selective integrin endocytosis is driven by interactions between the integrin α-chain and AP2. Nat. Struct. Mol. Biol. 23:2172–79
    [Google Scholar]
  43. Deisl C, Fine M, Hilgemann DW, Dai G, Magi S et al. 2018. Lipid signaling to membrane proteins: from second messengers to membrane domains and adapter-free endocytosis. J. Gen. Physiol. 150:2211–24
    [Google Scholar]
  44. Delaney KA, Murph MM, Brown LM, Radhakrishna H 2002. Transfer of M2 muscarinic acetylcholine receptors to clathrin-derived early endosomes following clathrin-independent endocytosis. J. Biol. Chem. 277:3633439–46
    [Google Scholar]
  45. del Pozo MA, Alderson NB, Kiosses WB, Chiang H-H, Anderson RGW, Schwartz MA 2004. Integrins regulate Rac targeting by internalization of membrane domains. Science 303:5659839–42
    [Google Scholar]
  46. del Pozo MA, Balasubramanian N, Alderson NB, Kiosses WB, Grande-García A et al. 2005. Phospho-caveolin-1 mediates integrin-regulated membrane domain internalization. Nat. Cell Biol. 7:9901–8
    [Google Scholar]
  47. Delvendahl I, Vyleta NP, von Gersdorff H, Hallermann S 2016. Fast, temperature-sensitive and clathrin-independent endocytosis at central synapses. Neuron 90:3492–98
    [Google Scholar]
  48. Deo R, Kushwah MS, Kamerkar SC, Kadam NY, Dar S et al. 2018. ATP-dependent membrane remodeling links EHD1 functions to endocytic recycling. Nat. Commun. 9:15187
    [Google Scholar]
  49. Dey G, Gupta GD, Ramalingam B, Sathe M, Mayor S, Thattai M 2014. Exploiting cell-to-cell variability to detect cellular perturbations. PLOS ONE 9:3e90540
    [Google Scholar]
  50. Dey G, Thattai M, Baum B 2016. On the archaeal origins of eukaryotes and the challenges of inferring phenotype from genotype. Trends Cell Biol 26:7476–85
    [Google Scholar]
  51. Di Fiore PP, von Zastrow M 2014. Endocytosis, signaling, and beyond. Cold Spring Harb. Perspect. Biol. 6:8a016865
    [Google Scholar]
  52. Di Guglielmo GM, Baass PC, Ou W-J, Posner BI, Bergeron JJM 1994. Compartmentalization of SHC, GRB2 and mSOS, and hyperphosphorylation of Raf-1 by EGF but not insulin in liver parenchyma. EMBO J 13:184269–77
    [Google Scholar]
  53. Di Guglielmo GM, Le Roy C, Goodfellow AF, Wrana JL 2003. Distinct endocytic pathways regulate TGF-β receptor signalling and turnover. Nat. Cell Biol. 5:5410–21
    [Google Scholar]
  54. Di Paolo G, De Camilli P 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:7112651–57
    [Google Scholar]
  55. Diz-Muñoz A, Fletcher DA, Weiner OD 2013. Use the force: membrane tension as an organizer of cell shape and motility. Trends Cell Biol 23:247–53
    [Google Scholar]
  56. Doherty GJ, Åhlund MK, Howes MT, Morén B, Parton RG et al. 2011. The endocytic protein GRAF1 is directed to cell-matrix adhesion sites and regulates cell spreading. Mol. Biol. Cell 22:224380–89
    [Google Scholar]
  57. Doherty GJ, McMahon HT. 2009. Mechanisms of endocytosis. Annu. Rev. Biochem. 78:857–902
    [Google Scholar]
  58. Edeling MA, Smith C, Owen D 2006. Life of a clathrin coat: insights from clathrin and AP structures. Nat. Rev. Mol. Cell Biol. 7:132–44
    [Google Scholar]
  59. Elkhatib N, Bresteau E, Baschieri F, Rioja AL, van Niel G et al. 2017. Tubular clathrin/AP-2 lattices pinch collagen fibers to support 3D cell migration. Science 356:6343eaal4713
    [Google Scholar]
  60. Ferguson JP, Huber SD, Willy NM, Aygün E, Goker S et al. 2017. Mechanoregulation of clathrin-mediated endocytosis. J. Cell Sci. 130:213631–36
    [Google Scholar]
  61. Ferreira APA, Boucrot E. 2018. Mechanisms of carrier formation during clathrin-independent endocytosis. Trends Cell Biol 28:3188–200
    [Google Scholar]
  62. Field MC, Gabernet-Castello C, Dacks JB 2007. Reconstructing the evolution of the endocytic system: insights from genomics and molecular cell biology. Adv. Exp. Med. Biol. 607:184–96
    [Google Scholar]
  63. Flannagan RS, Jaumouillé V, Grinstein S 2012. The cell biology of phagocytosis. Annu. Rev. Pathol. Mech. Dis. 7:61–98
    [Google Scholar]
  64. Francis MK, Holst MR, Vidal-Quadras M, Henriksson S, Santarella-Mellwig R et al. 2015. Endocytic membrane turnover at the leading edge is driven by a transient interaction between Cdc42 and GRAF1. J. Cell Sci. 128:224183–95
    [Google Scholar]
  65. Frattini A, Fabbri M, Valli R, De Paoli E, Montalbano G et al. 2015. High variability of genomic instability and gene expression profiling in different HeLa clones. Sci. Rep. 5:15377
    [Google Scholar]
  66. Frick M, Bright NA, Riento K, Bray A, Merrified C, Nichols BJ 2007. Coassembly of flotillins induces formation of membrane microdomains, membrane curvature, and vesicle budding. Curr. Biol. 17:131151–56
    [Google Scholar]
  67. Fuerst JA, Sagulenko E. 2012. Keys to eukaryality: Planctomycetes and ancestral evolution of cellular complexity. Front. Microbiol. 3:167
    [Google Scholar]
  68. Fujita A, Cheng J, Tauchi-Sato K, Takenawa T, Fujimoto T 2009. A distinct pool of phosphatidylinositol 4,5-bisphosphate in caveolae revealed by a nanoscale labeling technique. PNAS 106:239256–61
    [Google Scholar]
  69. Funamoto S, Meili R, Lee S, Parry L, Firtel RA 2002. Spatial and temporal regulation of 3-phosphoinositides by PI 3-kinase and PTEN mediates chemotaxis. Cell 109:5611–23
    [Google Scholar]
  70. Gaechter V, Schraner E, Wild P, Hehl AB 2008. The single dynamin family protein in the primitive protozoan Giardia lamblia is essential for stage conversion and endocytic transport. Traffic 9:157–71
    [Google Scholar]
  71. Gauthier NC, Masters TA, Sheetz MP 2012. Mechanical feedback between membrane tension and dynamics. Trends Cell Biol 22:10527–35
    [Google Scholar]
  72. Gauthier NC, Rossier OM, Mathur A, Hone JC, Sheetz MP 2009. Plasma membrane area increases with spread area by exocytosis of a GPI-anchored protein compartment. Mol. Biol. Cell 20:143261–72
    [Google Scholar]
  73. Glebov OO, Bright NA, Nichols BJ 2006. Flotillin-1 defines a clathrin-independent endocytic pathway in mammalian cells. Nat. Cell Biol. 8:146–54
    [Google Scholar]
  74. Goh LK, Sorkin A. 2013. Endocytosis of receptor tyrosine kinases. Cold Spring Harb. Perspect. Biol. 5:5a017459
    [Google Scholar]
  75. Gold ES, Underhill DM, Morrissette NS, Guo J, McNiven MA, Aderem A 1999. Dynamin 2 is required for phagocytosis in macrophages. J. Exp. Med. 190:121849–56
    [Google Scholar]
  76. Gold S, Monaghan P, Mertens P, Jackson T 2010. A clathrin independent macropinocytosis–like entry mechanism used by bluetongue virus-1 during infection of BHK cells. PLOS ONE 5:6e011360
    [Google Scholar]
  77. Gordon S. 2016. Phagocytosis: an immunobiologic process. Immunity 44:3463–75
    [Google Scholar]
  78. Grandal MV, Grøvdal LM, Henriksen L, Andersen MH, Holst MR et al. 2012. Differential roles of Grb2 and AP-2 in p38 MAPK- and EGF-induced EGFR internalization. Traffic 13:4576–85
    [Google Scholar]
  79. Grant BD, Donaldson JG. 2009. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10:9597–608
    [Google Scholar]
  80. Guha A, Sriram V, Krishnan KS, Mayor S 2003. Shibire mutations reveal distinct dynamin-independent and -dependent endocytic pathways in primary cultures of Drosophila hemocytes. J. Cell Sci. 116:Pt 163373–86
    [Google Scholar]
  81. Gupta GD, Dey G, Swetha MG, Ramalingam B, Shameer K et al. 2014. Population distribution analyses reveal a hierarchy of molecular players underlying parallel endocytic pathways. PLOS ONE 9:6e100554
    [Google Scholar]
  82. Gupta GD, Swetha MG, Kumari S, Lakshminarayan R, Dey G et al. 2009. Analysis of endocytic pathways in drosophila cells reveals a conserved role for GBF1 in internalization via GEECs. PLOS ONE 4:8e6768
    [Google Scholar]
  83. Haney MS, Bohlen CJ, Morgens DW, Ousey JA, Barkal AA et al. 2018. Identification of phagocytosis regulators using magnetic genome-wide CRISPR screens. Nat. Genet. 50:121716–27
    [Google Scholar]
  84. Hansen CG, Nichols BJ. 2010. Exploring the caves: cavins, caveolins and caveolae. Trends Cell Biol 20:4177–86
    [Google Scholar]
  85. Hassinger JE, Oster G, Drubin DG, Rangamani P 2017. Design principles for robust vesiculation in clathrin-mediated endocytosis. PNAS 114:7E1118–27
    [Google Scholar]
  86. Haucke V. 2005. Phosphoinositide regulation of clathrin-mediated endocytosis. Biochem. Soc. Trans. 33:Pt 61285–89
    [Google Scholar]
  87. Haugsten EM, Zakrzewska M, Brech A, Pust S, Olsnes S et al. 2011. Clathrin- and dynamin-independent endocytosis of FGFR3—implications for signalling. PLOS ONE 6:7e21708
    [Google Scholar]
  88. Hayer A, Stoeber M, Bissig C, Helenius A 2010. Biogenesis of caveolae: stepwise assembly of large caveolin and cavin complexes. Traffic 11:3361–82
    [Google Scholar]
  89. Hemalatha A, Prabhakara C, Mayor S 2016. Endocytosis of Wingless via a dynamin-independent pathway is necessary for signaling in Drosophila wing discs. PNAS 113:45E6993–7002
    [Google Scholar]
  90. Henley JR, Krueger EWA, Oswald BJ, McNiven MA 1998. Dynamin-mediated internalization of caveolae. J. Cell Biol. 141:185–99
    [Google Scholar]
  91. Henriksen L, Grandal MV, Knudsen SLJ, van Deurs B, Grøvdal LM 2013. Internalization mechanisms of the epidermal growth factor receptor after activation with different ligands. PLOS ONE 8:3e58148
    [Google Scholar]
  92. Hilgemann DW, Fine M. 2011. Mechanistic analysis of massive endocytosis in relation to functionally defined surface membrane domains. J. Gen. Physiol. 137:2155–72
    [Google Scholar]
  93. Hill MM, Bastiani M, Luetterforst R, Kirkham M, Kirkham A et al. 2008. PTRF-cavin, a conserved cytoplasmic protein required for caveola formation and function. Cell 132:1113–24
    [Google Scholar]
  94. Hinrichsen L, Harborth J, Andrees L, Weber K, Ungewickell EJ 2003. Effect of clathrin heavy chain– and alpha-adaptin-specific small inhibitory RNAs on endocytic accessory proteins and receptor trafficking in HeLa cells. J. Biol. Chem. 278:4645160–70
    [Google Scholar]
  95. Hirst J, Barlow LD, Francisco GC, Sahlender DA, Seaman MNJ et al. 2011. The fifth adaptor protein complex. PLOS Biol 9:10e1001170
    [Google Scholar]
  96. Holst MR, Vidal-Quadras M, Larsson E, Song J, Hubert M et al. 2017. Clathrin-independent endocytosis suppresses cancer cell blebbing and invasion. Cell Rep 20:81893–905
    [Google Scholar]
  97. Honda A, Nogami M, Yokozeki T, Yamazaki M, Nakamura H et al. 1999. Phosphatidylinositol 4-phosphate 5-kinase alpha is a downstream effector of the small G protein ARF6. Cell 99:521–32
    [Google Scholar]
  98. Houk AR, Jilkine A, Mejean CO, Boltyanskiy R, Dufresne ER et al. 2012. Membrane tension maintains cell polarity by confining signals to the leading edge during neutrophil migration. Cell 148:1–2175–88
    [Google Scholar]
  99. Howes MT, Kirkham M, Riches J, Cortese K, Walser PJ et al. 2010. Clathrin-independent carriers form a high capacity endocytic sorting system at the leading edge of migrating cells. J. Cell Biol. 190:4675–91
    [Google Scholar]
  100. Huotari J, Helenius A. 2011. Endosome maturation. EMBO J 30:173481–500
    [Google Scholar]
  101. Idone V, Tam C, Goss JW, Toomre D, Pypaert M, Andrews NW 2008. Repair of injured plasma membrane by rapid Ca2+ dependent endocytosis. J. Cell Biol. 180:5905–14
    [Google Scholar]
  102. Itoh Y, Kida K, Hanawa-Suetsugu K, Suetsugu S 2016. Yeast Ivy1p is a putative I-BAR-domain protein with pH-sensitive filament forming ability in vitro. Cell Struct. Funct. 41:11–11
    [Google Scholar]
  103. Jackson AP, Seow HF, Holmes N, Drickamer K, Parham P 1987. Clathrin light chains contain brain-specific insertion sequences and a region of homology with intermediate filaments. Nature 326:6109154–59
    [Google Scholar]
  104. Jastrzębski K, Zdżalik-Bielecka D, Mamińska A, Kalaidzidis Y, Hellberg C, Miaczynska M 2017. Multiple routes of endocytic internalization of PDGFRβ contribute to PDGF-induced STAT3 signaling. J. Cell Sci. 130:3577–89
    [Google Scholar]
  105. Jennings BC, Lin M-J, Fine M, Hilgemann DW, Linder ME 2013. Massive endocytosis triggered by surface membrane palmitoylation under mitochondrial control in BHK fibroblasts. eLife 2:e01293
    [Google Scholar]
  106. Jiang Z, Redfern RE, Isler Y, Ross AH, Gericke A 2014. Cholesterol stabilizes fluid phosphoinositide domains. Chem. Phys. Lipids 182:552–61
    [Google Scholar]
  107. Johannes L, Mayor S. 2010. Induced domain formation in endocytic invagination, lipid sorting, and scission. Cell 142:4507–10
    [Google Scholar]
  108. Johannes L, Parton RG, Bassereau P, Mayor S 2015. Building endocytic pits without clathrin. Nat. Rev. Mol. Cell Biol. 16:5311–21
    [Google Scholar]
  109. Kaksonen M, Roux A. 2018. Mechanisms of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 19:5313–26
    [Google Scholar]
  110. Kaksonen M, Toret CP, Drubin DG 2005. A modular design for the clathrin- and actin-mediated endocytosis machinery. Cell 123:2305–20
    [Google Scholar]
  111. Kalia M, Kumari S, Chadda R, Hill MM, Parton RG, Mayor S 2006. Arf6-independent GPI-anchored protein–enriched early endosomal compartments fuse with sorting endosomes via a Rab5/phosphatidylinositol-3′-kinase-dependent machinery. Mol. Biol. Cell 17:83689–704
    [Google Scholar]
  112. Kamphorst JJ, Nofal M, Commisso C, Hackett SR, Lu W et al. 2015. Human pancreatic cancer tumors are nutrient poor and tumor cells actively scavenge extracellular protein. Cancer Res 75:3544–53
    [Google Scholar]
  113. Kazazic M, Roepstorff K, Johannessen LE, Pedersen NM, van Deurs B et al. 2006. EGF-induced activation of the EGF receptor does not trigger mobilization of caveolae. Traffic 7:111518–27
    [Google Scholar]
  114. Kettle E, Page SL, Morgan GP, Malladi CS, Wong CL et al. 2015. A cholesterol-dependent endocytic mechanism generates midbody tubules during cytokinesis. Traffic 16:111174–92
    [Google Scholar]
  115. Kim S, Nahm M, Kim N, Kwon Y, Kim J et al. 2017. Graf regulates hematopoiesis through GEEC endocytosis of EGFR. Development 144:224159–72
    [Google Scholar]
  116. Kim SM, Nguyen TT, Ravi A, Kubiniok P, Finicle BT et al. 2018. PTEN deficiency and AMPK activation promote nutrient scavenging and anabolism in prostate cancer cells. Cancer Discov 8:7866–83
    [Google Scholar]
  117. Kirchhausen T, Harrison SC, Chow EP, Mattaliano RJ, Ramachandran KL et al. 1987a. Clathrin heavy chain: molecular cloning and complete primary structure. PNAS 84:248805–9
    [Google Scholar]
  118. Kirchhausen T, Owen D, Harrison SC 2014. Molecular structure, function, and dynamics of clathrin-mediated membrane traffic. Cold Spring Harb. Perspect. Biol. 6:5a016725
    [Google Scholar]
  119. Kirchhausen T, Scarmato P, Harrison SC, Monroe JJ, Chow EP et al. 1987b. Clathrin light chains LCA and LCB are similar, polymorphic, and share repeated heptad motifs. Science 236:4799320–24
    [Google Scholar]
  120. Kirkham M, Nixon SJ, Howes MT, Abi-Rached L, Wakeham DE et al. 2008. Evolutionary analysis and molecular dissection of caveola biogenesis. J. Cell Sci. 121:122075–86
    [Google Scholar]
  121. Kirkham M, Parton RG. 2005. Clathrin-independent endocytosis: new insights into caveolae and non-caveolar lipid raft carriers. Biochim. Biophys. Acta Mol. Cell Res. 1745:3273–86
    [Google Scholar]
  122. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M et al. 2010. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188:4547–63
    [Google Scholar]
  123. Kosaka T, Ikeda K. 1983. Possible temperature-dependent blockage of synaptic vesicle recycling induced by a single gene mutation in Drosophila. J. Neurobiol 14:3207–25
    [Google Scholar]
  124. Kosmalska AJ, Casares L, Elosegui-Artola A, Thottacherry JJ, Moreno-Vicente R et al. 2015. Physical principles of membrane remodelling during cell mechanoadaptation. Nat. Commun. 6:7292
    [Google Scholar]
  125. Krag C, Malmberg EK, Salcini AE 2010. PI3KC2, a class II PI3K, is required for dynamin-independent internalization pathways. J. Cell Sci. 123:244240–50
    [Google Scholar]
  126. Krauss M, Kukhtina V, Pechstein A, Haucke V 2006. Stimulation of phosphatidylinositol kinase type I–mediated phosphatidylinositol (4,5)-bisphosphate synthesis by AP-2μ-cargo complexes. PNAS 103:3211934–39
    [Google Scholar]
  127. Kumari S, Borroni V, Chaudhry A, Chanda B, Massol R et al. 2008. Nicotinic acetylcholine receptor is internalized via a Rac-dependent, dynamin-independent endocytic pathway. J. Cell Biol. 181:71179–93
    [Google Scholar]
  128. Kumari S, Mayor S. 2008. ARF1 is directly involved in dynamin-independent endocytosis. Nat. Cell Biol. 10:130–41
    [Google Scholar]
  129. Kwik J, Boyle S, Fooksman D, Margolis L, Sheetz MP, Edidin M 2003. Membrane cholesterol, lateral mobility, and the phosphatidylinositol 4,5-bisphosphate–dependent organization of cell actin. PNAS 100:2413964–69
    [Google Scholar]
  130. Lakshminarayan R, Wunder C, Becken U, Howes MT, Benzing C et al. 2014. Galectin-3 drives glycosphingolipid-dependent biogenesis of clathrin-independent carriers. Nat. Cell Biol. 16:6592–603
    [Google Scholar]
  131. Lamaze C, Dujeancourt A, Baba T, Lo CG, Benmerah A, Dautry-Varsat A 2001. Interleukin 2 receptors and detergent-resistant membrane domains define a clathrin-independent endocytic pathway. Mol. Cell 7:3661–71
    [Google Scholar]
  132. Laporte SA, Oakley RH, Holt JA, Barak LS, Caron MG 2000. The interaction of β-arrestin with the AP-2 adaptor is required for the clustering of β2-adrenergic receptor into clathrin-coated pits. J. Biol. Chem. 275:3023120–26
    [Google Scholar]
  133. Lemmon MA, Schlessinger J. 2010. Cell signaling by receptor tyrosine kinases. Cell 141:71117–34
    [Google Scholar]
  134. Liu Y, Mi Y, Mueller T, Kreibich S, Williams EG et al. 2018. Genomic, proteomic and phenotypic heterogeneity in HeLa cells across laboratories: implications for reproducibility of research results. bioRxiv 307421
  135. Lundmark R, Doherty GJ, Howes MT, Cortese K, Vallis Y et al. 2008. The GTPase-activating protein GRAF1 regulates the CLIC/GEEC endocytic pathway. Curr. Biol. 18:221802–8
    [Google Scholar]
  136. Maldonado-Báez L, Cole NB, Krämer H, Donaldson JG 2013. Microtubule-dependent endosomal sorting of clathrin-independent cargo by Hook1. J. Cell Biol. 201:2233–47
    [Google Scholar]
  137. Mao L, Li N, Guo Y, Xu X, Gao L et al. 2013. AMPK phosphorylates GBF1 for mitotic Golgi disassembly. J. Cell Sci. 126:61498–505
    [Google Scholar]
  138. Marat AL, Wallroth A, Lo W-T, Müller R, Norata GD et al. 2017. mTORC1 activity repression by late endosomal phosphatidylinositol 3,4-bisphosphate. Science 356:6341968–72
    [Google Scholar]
  139. Marie-Anaïs F, Mazzolini J, Herit F, Niedergang F 2016. Dynamin-actin cross talk contributes to phagosome formation and closure. Traffic 17:5487–99
    [Google Scholar]
  140. Mathew MP, Donaldson JG. 2019. Glycosylation and glycan interactions can serve as extracellular machinery facilitating clathrin-independent endocytosis. Traffic 20:4295–300
    [Google Scholar]
  141. Maurer ME, Cooper JA. 2006. The adaptor protein Dab2 sorts LDL receptors into coated pits independently of AP-2 and ARH. J. Cell Sci. 119:204235–46
    [Google Scholar]
  142. Maxfield FR, McGraw TE. 2004. Endocytic recycling. Nat. Rev. Mol. Cell Biol. 5:2121–32
    [Google Scholar]
  143. Mayor S, Pagano RE. 2007. Pathways of clathrin-independent endocytosis. Nat. Rev. Mol. Cell Biol. 8:8603–12
    [Google Scholar]
  144. Mayor S, Parton RG, Donaldson JG 2014. Clathrin-independent pathways of endocytosis. Cold Spring Harb. Perspect. Biol. 6:6a016758
    [Google Scholar]
  145. Mazaki Y, Nishimura Y, Sabe H 2012. GBF1 bears a novel phosphatidylinositol-phosphate binding module, BP3K, to link PI3K activity with Arf1 activation involved in GPCR-mediated neutrophil chemotaxis and superoxide production. Mol. Biol. Cell 23:132457–67
    [Google Scholar]
  146. McMahon HT, Boucrot E. 2011. Molecular mechanism and physiological functions of clathrin-mediated endocytosis. Nat. Rev. Mol. Cell Biol. 12:8517–33
    [Google Scholar]
  147. Metchnikoff E. 1884. Ueber die Beziehung der Phagocyten zu Milzbrandbacillen. Arch. Pathol. Anat. Physiol. Klin. Med. 97:3502–26
    [Google Scholar]
  148. Mettlen M, Chen P, Srinivasan S, Danuser G, Schmid SL 2018. Regulation of clathrin-mediated endocytosis. Annu. Rev. Biochem. 87:871–96
    [Google Scholar]
  149. Moreau HD, Blanch-Mercader C, Attia R, Maurin M, Alraies Z et al. 2018. Macropinocytosis overcomes directional bias due to hydraulic resistance and facilitates space exploration. Dev. Cell 49:2171–88.e5
    [Google Scholar]
  150. Moren B, Shah C, Howes MT, Schieber NL, McMahon HT et al. 2012. EHD2 regulates caveolar dynamics via ATP-driven targeting and oligomerization. Mol. Biol. Cell 23:71316–29
    [Google Scholar]
  151. Moya M, Dautry-Varsat A, Goud B, Louvard D, Boquet P 1985. Inhibition of coated pit formation in Hep2 cells blocks the cytotoxicity of diphtheria toxin but not that of ricin toxin. J. Cell Biol. 101:2548–59
    [Google Scholar]
  152. Neumann S, Schmid SL. 2013. Dual role of BAR domain–containing proteins in regulating vesicle release catalyzed by the GTPase, Dynamin-2. J. Biol. Chem. 288:3525119–28
    [Google Scholar]
  153. Norman LL, Bruges J, Sengupta K, Sens P, Aranda-Espinoza H 2010. Cell blebbing and membrane area homeostasis in spreading and retracting cells. Biophys. J. 99:61726–33
    [Google Scholar]
  154. Ogata T, Ueyama T, Isodono K, Tagawa M, Takehara N et al. 2008. MURC, a muscle-restricted coiled-coil protein that modulates the Rho/ROCK pathway, induces cardiac dysfunction and conduction disturbance. Mol. Cell. Biol. 28:103424–36
    [Google Scholar]
  155. Okamoto Y, Ninomiya H, Miwa S, Masaki T 2000. Cholesterol oxidation switches the internalization pathway of endothelin receptor type A from caveolae to clathrin-coated pits in Chinese hamster ovary cells. J. Biol. Chem. 275:96439–46
    [Google Scholar]
  156. Otto GP, Nichols BJ. 2011. The roles of flotillin microdomains—endocytosis and beyond. J. Cell Sci. 124:233933–40
    [Google Scholar]
  157. Palade GE. 1953. The fine structure of blood capillaries. J. Appl. Phys. 24:1424
    [Google Scholar]
  158. Park RJ, Shen H, Liu L, Liu X, Ferguson SM, De Camilli P 2013. Dynamin triple knockout cells reveal off target effects of commonly used dynamin inhibitors. J. Cell Sci. 126:Pt 225305–12
    [Google Scholar]
  159. Parton RG, Del Pozo MA 2013. Caveolae as plasma membrane sensors, protectors and organizers. Nat. Rev. Mol. Cell Biol. 14:298–112
    [Google Scholar]
  160. Parton RG, Richards AA. 2003. Lipid rafts and caveolae as portals for endocytosis: new insights and common mechanisms. Traffic 4:11724–38
    [Google Scholar]
  161. Paul NR, Jacquemet G, Caswell PT 2015. Endocytic trafficking of integrins in cell migration. Curr. Biol. 25:22R1092–1105
    [Google Scholar]
  162. Pearse BMF. 1975. Coated vesicles from pig brain: purification and biochemical characterization. J. Mol. Biol. 97:193–98
    [Google Scholar]
  163. Pearse BMF. 1976. Clathrin: a unique protein associated with intracellular transfer of membrane by coated vesicles. PNAS 73:41255–59
    [Google Scholar]
  164. Pelkmans L, Fava E, Grabner H, Hannus M, Habermann B et al. 2005. Genome-wide analysis of human kinases in clathrin- and caveolae/raft-mediated endocytosis. Nature 436:704778–86
    [Google Scholar]
  165. Picco A, Kukulski W, Manenschijn HE, Specht T, Briggs JAG, Kaksonen M 2018. The contributions of the actin machinery to endocytic membrane bending and vesicle formation. Mol. Biol. Cell 29:111346–58
    [Google Scholar]
  166. Polo S, Sigismund S, Faretta M, Guidi M, Capua MR et al. 2002. A single motif responsible for ubiquitin recognition and monoubiquitination in endocytic proteins. Nature 416:6879451–55
    [Google Scholar]
  167. Preta G, Cronin JG, Sheldon IM 2015. Dynasore—not just a dynamin inhibitor. Cell Commun. Signal. 13:24
    [Google Scholar]
  168. Purkanti R, Thattai M. 2015. Ancient dynamin segments capture early stages of host-mitochondrial integration. PNAS 112:92800–5
    [Google Scholar]
  169. Qualmann B, Koch D, Kessels MM 2011. Let's go bananas: revisiting the endocytic BAR code. EMBO J 30:3501–15
    [Google Scholar]
  170. Radhakrishna H, Donaldson JG. 1997. ADP-ribosylation factor 6 regulates a novel plasma membrane recycling pathway. J. Cell Biol. 139:149–61
    [Google Scholar]
  171. Raghupathy R, Anilkumar AA, Polley A, Singh PP, Yadav M et al. 2015. Transbilayer lipid interactions mediate nanoclustering of lipid-anchored proteins. Cell 161:3581–94
    [Google Scholar]
  172. Rappoport JZ, Simon SM. 2009. Endocytic trafficking of activated EGFR is AP-2 dependent and occurs through preformed clathrin spots. J. Cell Sci. 122:91301–5
    [Google Scholar]
  173. Renard H-F, Simunovic M, Lemière J, Boucrot E, Garcia-Castillo MD et al. 2015. Endophilin-A2 functions in membrane scission in clathrin-independent endocytosis. Nature 517:7535493–96
    [Google Scholar]
  174. Ritter TE, Fajardo O, Matsuet H, Andersont RGW, Lacey SW 1995. Folate receptors targeted to clathrin-coated pits cannot regulate vitamin uptake. PNAS 92:93824–28
    [Google Scholar]
  175. Robinson MS. 1989. Cloning of cDNAs encoding two related 100-kD coated vesicle proteins (alpha-adaptins). J. Cell Biol. 108:3833–42
    [Google Scholar]
  176. Robinson MS. 2004. Adaptable adaptors for coated vesicles. Trends Cell Biol 14:4167–74
    [Google Scholar]
  177. Robinson MS. 2015. Forty years of clathrin-coated vesicles. Traffic 16:121210–38
    [Google Scholar]
  178. Rodal SK, Skretting G, Garred O, Vilhardt F, van Deurs B, Sandvig K 1999. Extraction of cholesterol with methyl-β-cyclodextrin perturbs formation of clathrin-coated endocytic vesicles. Mol. Biol. Cell 10:4961–74
    [Google Scholar]
  179. Rohatgi R, Ho HYH, Kirschner MW 2000. Mechanism of N-WASP activation by CDC42 and phosphatidylinositol 4,5-bisphosphate. J. Cell Biol. 150:61299–309
    [Google Scholar]
  180. Römer W, Pontani L-L, Sorre B, Rentero C, Berland L et al. 2010. Actin dynamics drive membrane reorganization and scission in clathrin-independent endocytosis. Cell 140:4540–53
    [Google Scholar]
  181. Roth TF, Porter KR. 1964. Yolk protein uptake in the oocyte of the mosquito Aedes aegypti. L. J. Cell Biol. 20:313–32
    [Google Scholar]
  182. Rothberg KG, Heuser JE, Donzell WC, Ying YS, Glenney JR, Anderson RG 1992. Caveolin, a protein component of caveolae membrane coats. Cell 68:4673–82
    [Google Scholar]
  183. Rusk N, Le PU, Mariggio S, Guay G, Lurisci C et al. 2003. Synaptojanin 2 functions at an early step of clathrin-mediated endocytosis. Curr. Biol. 13:8659–63
    [Google Scholar]
  184. Sabharanjak S, Sharma P, Parton RG, Mayor S 2002. GPI-anchored proteins are delivered to recycling endosomes via a distinct cdc42-regulated, clathrin-independent pinocytic pathway. Dev. Cell 2:4411–23
    [Google Scholar]
  185. Sadowski L, Jastrzebski K, Kalaidzidis Y, Heldin CH, Hellberg C, Miaczynska M 2013. Dynamin inhibitors impair endocytosis and mitogenic signaling of PDGF. Traffic 14:6725–36
    [Google Scholar]
  186. Salani B, Passalacqua M, Maffioli S, Briatore L, Hamoudane M et al. 2010. IGF-IR internalizes with Caveolin-1 and PTRF/Cavin in Hacat cells. PLOS ONE 5:11e14157
    [Google Scholar]
  187. Sandvig K. 1987. Acidification of the cytosol inhibits endocytosis from coated pits. J. Cell Biol. 105:2679–89
    [Google Scholar]
  188. Sandvig K, Kavaliauskiene S, Skotland T 2018. Clathrin-independent endocytosis: an increasing degree of complexity. Histochem. Cell Biol. 150:2107–18
    [Google Scholar]
  189. Santolini E, Puri C, Salcini AE, Gagliani MC, Pelicci PG et al. 2000. Numb is an endocytic protein. J. Cell Biol. 151:61345–51
    [Google Scholar]
  190. Sathe M, Muthukrishnan G, Rae J, Disanza A, Thattai M et al. 2018. Small GTPases and BAR domain proteins regulate branched actin polymerisation for clathrin and dynamin-independent endocytosis. Nat. Commun. 9:11835
    [Google Scholar]
  191. Scherer PE, Okamoto T, Chun M, Nishimoto I, Lodish HF, Lisanti MP 1996. Identification, sequence, and expression of caveolin-2 defines a caveolin gene family. PNAS 93:1131–35
    [Google Scholar]
  192. Schmid SL. 1997. Clathrin-coated vesicle formation and protein sorting: an integrated process. Annu. Rev. Biochem. 66:511–48
    [Google Scholar]
  193. Schmid SL, Sorkin A, Zerial M 2014. Endocytosis: past, present, and future. Cold Spring Harb. Perspect. Biol. 6:12a022509
    [Google Scholar]
  194. Schöneberg J, Dambournet D, Liu T-L, Forster R, Hockemeyer D et al. 2018. 4D cell biology: Big data image analytics and lattice light-sheet imaging reveal dynamics of clathrin-mediated endocytosis in stem cell–derived intestinal organoids. Mol. Biol. Cell 29:242911–68
    [Google Scholar]
  195. Scita G, Confalonieri S, Lappalainen P, Suetsugu S 2008. IRSp53: crossing the road of membrane and actin dynamics in the formation of membrane protrusions. Trends Cell Biol 18:252–60
    [Google Scholar]
  196. Scita G, Di Fiore PP 2010. The endocytic matrix. Nature 463:7280464–73
    [Google Scholar]
  197. Sehat B, Andersson S, Girnita L, Larsson O 2008. Identification of c-Cbl as a new ligase for insulin-like growth factor-I receptor with distinct roles from Mdm2 in receptor ubiquitination and endocytosis. Cancer Res 68:145669–77
    [Google Scholar]
  198. Sens P, Johannes L, Bassereau P 2008. Biophysical approaches to protein-induced membrane deformations in trafficking. Curr. Opin. Cell Biol. 20:4476–82
    [Google Scholar]
  199. Servant G, Weiner OD, Herzmark P, Balla T, Sedat JW, Bourne HR 2000. Polarization of chemoattractant receptor signaling during neutrophil chemotaxis. Science 287:54551037–40
    [Google Scholar]
  200. Sheetz MP, Dai J. 1996. Modulation of membrane dynamics and cell motility by membrane tension. Trends Cell Biol 6:385–89
    [Google Scholar]
  201. Shpetner HS, Vallee RB. 1989. Identification of dynamin, a novel mechanochemical enzyme that mediates interactions between microtubules. Cell 59:3421–32
    [Google Scholar]
  202. Sigismund S, Argenzio E, Tosoni D, Cavallaro E, Polo S et al. 2008. Clathrin-mediated internalization is essential for sustained EGFR signaling but dispensable for degradation. Dev. Cell 15:2209–19
    [Google Scholar]
  203. Sigismund S, Confalonieri S, Ciliberto A, Polo S, Scita G, Di Fiore PP 2012. Endocytosis and signaling: Cell logistics shape the eukaryotic cell plan. Physiol. Rev. 92:1273–366
    [Google Scholar]
  204. Sigismund S, Nappo G, Algisi V, Conte A, Pascolutti R et al. 2013. Threshold-controlled ubiquitination of the EGFR directs receptor fate. EMBO J 32:152140–57
    [Google Scholar]
  205. Sigismund S, Woelk T, Puri C, Maspero E, Tacchetti C et al. 2005. Clathrin-independent endocytosis of ubiquitinated cargos. PNAS 102:82760–65
    [Google Scholar]
  206. Simonsen A, Lippé R, Christoforidis S, Gaullier JM, Brech A et al. 1998. EEA1 links PI(3)K function to Rab5 regulation of endosome fusion. Nature 394:6692494–98
    [Google Scholar]
  207. Simunovic M, Manneville JB, Renard HF, Evergren E, Raghunathan K et al. 2017. Friction mediates scission of tubular membranes scaffolded by BAR proteins. Cell 170:1172–184.e11
    [Google Scholar]
  208. Sinha B, Köster D, Ruez R, Gonnord P, Bastiani M et al. 2011. Cells respond to mechanical stress by rapid disassembly of caveolae. Cell 144:3402–13
    [Google Scholar]
  209. Snead WT, Hayden CC, Gadok AK, Zhao C, Lafer EM et al. 2017. Membrane fission by protein crowding. PNAS 114:16E3258–67
    [Google Scholar]
  210. Sousa LP, Lax I, Shen H, Ferguson SM, De Camilli P, Schlessinger J 2012. Suppression of EGFR endocytosis by dynamin depletion reveals that EGFR signaling occurs primarily at the plasma membrane. PNAS 109:124419–24
    [Google Scholar]
  211. Stoeber M, Stoeck IK, Hänni C, Bleck CKE, Balistreri G, Helenius A 2012. Oligomers of the ATPase EHD2 confine caveolae to the plasma membrane through association with actin. EMBO J 31:102350–64
    [Google Scholar]
  212. Subtil A, Gaidarov I, Kobylarz K, Lampson MA, Keen JH, McGraw TE 1999. Acute cholesterol depletion inhibits clathrin-coated pit budding. PNAS 96:126775–80
    [Google Scholar]
  213. Tagawa M, Ueyama T, Ogata T, Takehara N, Nakajima N et al. 2008. MURC, a muscle-restricted coiled-coil protein, is involved in the regulation of skeletal myogenesis. Am. J. Physiol. Cell Physiol. 295:2C490–98
    [Google Scholar]
  214. Tam C, Idone V, Devlin C, Fernandes MC, Flannery A et al. 2010. Exocytosis of acid sphingomyelinase by wounded cells promotes endocytosis and plasma membrane repair. J. Cell Biol. 189:61027–38
    [Google Scholar]
  215. Tang Z, Scherer PE, Okamoto T, Song K, Chu C et al. 1996. Molecular cloning of caveolin-3, a novel member of the caveolin gene family expressed predominantly in muscle. J. Biol. Chem. 271:42255–61
    [Google Scholar]
  216. Taylor MJ, Perrais D, Merrifield CJ 2011. A high precision survey of the molecular dynamics of mammalian clathrin-mediated endocytosis. PLOS Biol 9:3e1000604
    [Google Scholar]
  217. Thottacherry JJ, Kosmalska AJ, Kumar A, Vishen AS, Elosegui-Artola A et al. 2018. Mechanochemical feedback control of dynamin independent endocytosis modulates membrane tension in adherent cells. Nat. Commun. 9:14217
    [Google Scholar]
  218. Thurieau C, Brosius J, Burne C, Jolles P, Keen JH et al. 1988. Molecular cloning and complete amino acid sequence of AP50, an assembly protein associated with clathrin-coated vesicles. DNA 7:10663–69
    [Google Scholar]
  219. Tse SML, Furuya W, Gold E, Schreiber AD, Sandvig K et al. 2003. Differential role of actin, clathrin, and dynamin in Fcγ receptor–mediated endocytosis and phagocytosis. J. Biol. Chem. 278:53331–38
    [Google Scholar]
  220. Villaseñor R, Kalaidzidis Y, Zerial M 2016. Signal processing by the endosomal system. Curr. Opin. Cell Biol. 39:53–60
    [Google Scholar]
  221. Wallroth A, Haucke V. 2018. Phosphoinositide conversion in endocytosis and the endolysosomal system. J. Biol. Chem. 293:51526–35
    [Google Scholar]
  222. Wandinger-Ness A, Zerial M. 2014. Rab proteins and the compartmentalization of the endosomal system. Cold Spring Harb. Perspect. Biol. 6:11a022616
    [Google Scholar]
  223. Wang J, Richards DA. 2012. Segregation of PIP2 and PIP3 into distinct nanoscale regions within the plasma membrane. Biol. Open 1:9857–62
    [Google Scholar]
  224. Way M, Parton RG. 1996. M-caveolin, a muscle-specific caveolin-related protein. FEBS Lett 378:1108–12
    [Google Scholar]
  225. West MA, Bretscher MS, Watts C 1989. Distinct endocytotic pathways in epidermal growth factor–stimulated human carcinoma A431 cells. J. Cell Biol. 109:6 Pt 12731–39
    [Google Scholar]
  226. West MA, Prescott AR, Eskelinen EL, Ridley AJ, Watts C 2000. Rac is required for constitutive macropinocytosis by dendritic cells but does not control its downregulation. Curr. Biol. 10:14839–48
    [Google Scholar]
  227. Yamada E. 1955. The fine structure of the gall bladder epithelium of the mouse. J. Biophys. Biochem. Cytol. 1:5445–58
    [Google Scholar]
  228. Yamamoto H, Komekado H, Kikuchi A 2006. Caveolin is necessary for Wnt-3a-dependent internalization of LRP6 and accumulation of β-catenin. Dev. Cell 11:2213–23
    [Google Scholar]
  229. Yang J-S, Hsu J-W, Park S-Y, Li J, Oldham WM et al. 2018. GAPDH inhibits intracellular pathways during starvation for cellular energy homeostasis. Nature 561:7722263–67
    [Google Scholar]
  230. Zha X, Pierini LM, Leopold PL, Skiba PJ, Tabas I, Maxfield FR 1998. Sphingomyelinase treatment induces ATP-independent endocytosis. J. Cell Biol. 140:139–47
    [Google Scholar]
  231. Zhang J, Ferguson SSG, Barak LS, Ménard L, Caron MG 1996. Dynamin and β-arrestin reveal distinct mechanisms for G protein–coupled receptor internalization. J. Biol. Chem. 271:3118302–5
    [Google Scholar]
  232. Zwaagstra JC, El-Alfy M, O'Connor-McCourt MD 2001. Transforming growth factor (TGF)-β1 internalization. J. Biol. Chem. 276:2927237–45
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062710
Loading
/content/journals/10.1146/annurev-cellbio-100617-062710
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error