1932

Abstract

We review what is currently understood about how the structure of the primary solid component of mucus, the glycoprotein mucin, gives rise to the mechanical and biochemical properties of mucus that are required for it to perform its diverse physiological roles. Macroscale processes such as lubrication require mucus of a certain stiffness and spinnability, which are set by structural features of the mucin network, including the identity and density of cross-links and the degree of glycosylation. At the microscale, these same features affect the mechanical environment experienced by small particles and play a crucial role in establishing an interaction-based filter. Finally, mucin glycans are critical for regulating microbial interactions, serving as receptor binding sites for adhesion, as nutrient sources, and as environmental signals. We conclude by discussing how these structural principles can be used in the design of synthetic mucin-mimetic materials and provide suggestions for directions of future work in this field.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062818
2018-10-06
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062818.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062818&mimeType=html&fmt=ahah

Literature Cited

  1. Aggazzotti A 1922. Modificazioni della viscosità della saliva mista dopo che è stata secreta in rapporto col potere filante e colla tensione superficiale. Arch. Fisiol. 20:3–15
    [Google Scholar]
  2. Ambort D, Johansson MEV, Gustafsson JK, Nilsson HE, Ermund A et al. 2012. Calcium and pH-dependent packing and release of the gel-forming MUC2 mucin. PNAS 109:155645–50
    [Google Scholar]
  3. Andersch-Björkman Y, Thomsson KA, Holmén Larsson JM, Ekerhovd E, Hansson GC 2007. Large scale identification of proteins, mucins, and their O glycosylation in the endocervical mucus during the menstrual cycle. Mol. Cell. Proteom. 6:4708–16
    [Google Scholar]
  4. Anna SL, McKinley GH 2001. Elasto-capillary thinning and breakup of model elastic liquids. J. Rheol. 45:1115–38
    [Google Scholar]
  5. Araújo F, Martins C, Azevedo C, Sarmento B 2018. Chemical modification of drug molecules as strategy to reduce interactions with mucus. Adv. Drug Deliv. Rev. 124:98–106
    [Google Scholar]
  6. Argüeso P, Gipson IK 2001. Epithelial mucins of the ocular surface: structure, biosynthesis and function. Exp. Eye Res. 73:3281–89
    [Google Scholar]
  7. Authimoolam SP, Dziubla TD 2016. Biopolymeric mucin and synthetic polymer analogs: their structure, function and role in biomedical applications. Polymers 8:371
    [Google Scholar]
  8. Bansil R, Celli JP, Hardcastle JM, Turner BS 2013. The influence of mucus microstructure and rheology in Helicobacter pylori infection. Front. Immunol. 4:310
    [Google Scholar]
  9. Bansil R, Hardcastle J, Constantino M 2015. Microrheology of mucin: tracking particles and Helicobacter pylori bacteria. J. Silic. Based Compos. Mater. 67:4150–54
    [Google Scholar]
  10. Bansil R, Turner BS 2006. Mucin structure, aggregation, physiological functions and biomedical applications. Curr. Opin. Colloid Interface Sci. 11:164–70
    [Google Scholar]
  11. Bansil R, Turner BS 2018. The biology of mucus: composition, synthesis and organization. Adv. Drug Deliv. Rev. 124:3–15
    [Google Scholar]
  12. Bastholm SK, Samson MH, Becher N, Hansen LK, Stubbe PR et al. 2017. Trefoil factor peptide 3 is positively correlated with the viscoelastic properties of the cervical mucus plug. Acta Obstet. Gynecol. Scand. 96:147–52
    [Google Scholar]
  13. Beeson JG, Rogerson SJ, Cooke BM, Reeder JC, Chai W et al. 2000. Adhesion of Plasmodium falciparum–infected erythrocytes to hyaluronic acid in placental malaria. Nat. Med. 6:186–90
    [Google Scholar]
  14. Bergstrom KSB, Xia L 2013. Mucin-type O-glycans and their roles in intestinal homeostasis. Glycobiology 23:91026–37
    [Google Scholar]
  15. Bhaskar KR, Gong DH, Bansil R, Pajevic S, Hamilton JA et al. 1991. Profound increase in viscosity and aggregation of pig gastric mucin at low pH. Am. J. Physiol. Liver Physiol. 261:5G827–32
    [Google Scholar]
  16. Bird RB, Armstrong RC, Hassager O 1987. Dynamics of Polymeric Liquids, Volume 1: Fluid Mechanics New York: Wiley
  17. Bode L, Kuhn L, Kim H-Y, Hsiao L, Nissan C et al. 2012. Human milk oligosaccharides and postnatal transmission of HIV through breastfeeding. Am. J. Clin. Nutr. 96:4831–39
    [Google Scholar]
  18. Boegh M, Nielsen HM 2015. Mucus as a barrier to drug delivery—understanding and mimicking the barrier properties. Basic Clin. Pharmacol. Toxicol. 116:3179–86
    [Google Scholar]
  19. Bokkasam H, Ernst M, Guenther M, Wagner C, Schaefer UF, Lehr C-M 2016. Different macro- and micro-rheological properties of native porcine respiratory and intestinal mucus. Int. J. Pharm 510:1164–67
    [Google Scholar]
  20. Bradshaw DJ, Homer KA, Marsh PD, Beighton D 1994. Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:123407–12
    [Google Scholar]
  21. Broedersz CP, MacKintosh FC 2014. Modeling semiflexible polymer networks. Rev. Mod. Phys. 86:3995–1036
    [Google Scholar]
  22. Buffie CG, Pamer EG 2013. Microbiota-mediated colonization resistance against intestinal pathogens. Nat. Rev. Immunol. 13:11790–801
    [Google Scholar]
  23. Burbidge AS, Le Révérend BJD 2016. Biophysics of food perception. J. Phys. D Appl. Phys. 49:11114001
    [Google Scholar]
  24. Button B, Anderson WH, Boucher RC 2016. Mucus hyperconcentration as a unifying aspect of the chronic bronchitic phenotype. Ann. Am. Thorac. Soc. 13:Apr.S156–62
    [Google Scholar]
  25. Caicedo J, Perilla JE 2015. Effect of pH on the rheological response of reconstituted gastric mucin. Ing. Investig. 35:243–48
    [Google Scholar]
  26. Caldara M, Friedlander RS, Kavanaugh NL, Aizenberg J, Foster KR, Ribbeck K 2012. Mucin biopolymers prevent bacterial aggregation by retaining cells in the free-swimming state. Curr. Biol. 22:242325–30
    [Google Scholar]
  27. Carlson TL, Lock JY, Carrier RL 2018. Engineering the mucus barrier. Annu. Rev. Biomed. Eng. 20:197–220
    [Google Scholar]
  28. Celli JP, Turner BS, Afdhal NH, Ewoldt RH, McKinley GH et al. 2007. Rheology of gastric mucin exhibits a pH-dependent sol-gel transition. Biomacromolecules 8:51580–86
    [Google Scholar]
  29. Celli JP, Turner BS, Afdhal NH, Keates S, Ghiran I et al. 2009. Helicobacter pylori moves through mucus by reducing mucin viscoelasticity. PNAS 106:3414321–26
    [Google Scholar]
  30. Chaudhury NMA, Proctor GB, Karlsson NG, Carpenter GH, Flowers SA 2016. Reduced mucin-7 (Muc7) sialylation and altered saliva rheology in Sjögren's syndrome associated oral dryness. Mol. Cell. Proteom. 15:31048–59
    [Google Scholar]
  31. Chaudhury NMA, Shirlaw P, Pramanik R, Carpenter GH, Proctor GB 2015. Changes in saliva rheological properties and mucin glycosylation in dry mouth. J. Dent. Res. 94:121660–67
    [Google Scholar]
  32. Chen EYT, Yang N, Quinton PM, Chin W-C 2010. A new role for bicarbonate in mucus formation. Am. J. Physiol. Lung Cell. Mol. Physiol 299:4L542–49
    [Google Scholar]
  33. Chretien FC, Engelmann P, Dubois R 1979. The variation of the mean spinability of human cervical mucus throughout the various stages of reproductive life. Automatic measurement and statistical study. Eur. J. Obstet. Gynecol. Reprod. Biol. 9:5289–97
    [Google Scholar]
  34. Cook MT, Smith SL, Khutoryanskiy VV 2015. Novel glycopolymer hydrogels as mucosa-mimetic materials to reduce animal testing. Chem. Commun. 51:14447–50
    [Google Scholar]
  35. Crater JS, Carrier RL 2010. Barrier properties of gastrointestinal mucus to nanoparticle transport. Macromol. Biosci. 10:121473–83
    [Google Scholar]
  36. Critchfield AS, Yao G, Jaishankar A, Friedlander RS, Lieleg O et al. 2013. Cervical mucus properties stratify risk for preterm birth. PLOS ONE 8:8e69528
    [Google Scholar]
  37. Crouzier T, Boettcher K, Geonnotti AR, Kavanaugh NL, Hirsch JB et al. 2015. Modulating mucin hydration and lubrication by deglycosylation and polyethylene glycol binding. Adv. Mater. Interfaces 2:181500308
    [Google Scholar]
  38. Cunha-Cruz J, Scott J, Rothen M, Mancl L, Lawhorn T et al. 2013. Salivary characteristics and dental caries: evidence from general dental practices. J. Am. Dent. Assoc. 144:5e31–40
    [Google Scholar]
  39. Dawson M, Wirtz D, Hanes J 2003. Enhanced viscoelasticity of human cystic fibrotic sputum correlates with increasing microheterogeneity in particle transport. J. Biol. Chem. 278:5050393–401
    [Google Scholar]
  40. Dekker J, Rossen JWA, Büller HA, Einerhand AWC 2002. The MUC family: an obituary. Trends Biochem. Sci. 27:3126–31
    [Google Scholar]
  41. Dohrman A, Miyata S, Gallup M, Li J-D, Chapelin C et al. 1998. Mucin gene (MUC 2 and MUC 5AC) upregulation by Gram-positive and Gram-negative bacteria. Biochim. Biophys. Acta Mol. Basis Dis. 1406:3251–59
    [Google Scholar]
  42. Duncan GA, Jung J, Hanes J, Suk JS 2016. The mucus barrier to inhaled gene therapy. Mol. Ther. 24:122043–53
    [Google Scholar]
  43. Eiwegger T, Stahl B, Schmitt J, Boehm G, Gerstmayr M et al. 2004. Human milk-derived oligosaccharides and plant-derived oligosaccharides stimulate cytokine production of cord blood T-cells in vitro. Pediatr. Res. 56:4536–40
    [Google Scholar]
  44. Ensign LM, Cone R, Hanes J 2012.a Oral drug delivery with polymeric nanoparticles: the gastrointestinal mucus barriers. Adv. Drug Deliv. Rev. 64:6557–70
    [Google Scholar]
  45. Ensign LM, Schneider C, Suk JS, Cone R, Hanes J 2012.b Mucus penetrating nanoparticles: biophysical tool and method of drug and gene delivery. Adv. Mater. 24:283887–94
    [Google Scholar]
  46. Esser D, Alvarez-Llamas G, de Vries M, Weening D, Vonk RJ, Roelofsen H 2008. Sample stability and protein composition of saliva: implications for its use as a diagnostic fluid. Biomark. Insights 3:25–37
    [Google Scholar]
  47. Ferguson MM, Barker MJ 1994. Saliva substitutes in the management of salivary gland dysfunction. Adv. Drug Deliv. Rev. 13:1–2151–59
    [Google Scholar]
  48. Fishman PH, Atikkan EE 1980. Mechanism of action of cholera toxin: effect of receptor density and multivalent binding on activation of adenylate cyclase. J. Membr. Biol. 54:51–60
    [Google Scholar]
  49. Flynn JM, Niccum D, Dunitz JM, Hunter RC 2016. Evidence and role for bacterial mucin degradation in cystic fibrosis airway disease. PLOS Pathog 12:8e1005846
    [Google Scholar]
  50. Frenkel ES, Ribbeck K 2015.a Salivary mucins in host defense and disease prevention. J. Oral Microbiol. 7:129759
    [Google Scholar]
  51. Frenkel ES, Ribbeck K 2015.b Salivary mucins protect surfaces from colonization by cariogenic bacteria. Appl. Environ. Microbiol. 81:1332–38
    [Google Scholar]
  52. Frenkel ES, Ribbeck K 2017. Salivary mucins promote the coexistence of competing oral bacterial species. ISME J 11:1286–90
    [Google Scholar]
  53. Fukuda M, Hiraoka N, Yeh J-C 1999. C-type lectins and sialyl Lewis X oligosaccharides: versatile roles in cell-cell interaction. J. Cell Biol 147:3467–70
    [Google Scholar]
  54. García-Díaz M, Birch D, Wan F, Nielsen HM 2018. The role of mucus as an invisible cloak to transepithelial drug delivery by nanoparticles. Adv. Drug Deliv. Rev. 124:107–24
    [Google Scholar]
  55. Garrido D, Ruiz-Moyano S, Lemay DG, Sela DA, German JB, Mills DA 2015. Comparative transcriptomics reveals key differences in the response to milk oligosaccharides of infant gut–associated bifidobacteria. Sci. Rep. 5:13517
    [Google Scholar]
  56. Georgiades P, Pudney PDA, Thornton DJ, Waigh TA 2014. Particle tracking microrheology of purified gastrointestinal mucins. Biopolymers 101:4366–77
    [Google Scholar]
  57. Godl K, Johansson ME, Lidell ME, Mörgelin M, Karlsson H et al. 2002. The N terminus of the MUC2 mucin forms trimers that are held together within a trypsin-resistant core fragment. J. Biol. Chem. 277:4947248–56
    [Google Scholar]
  58. Görke B, Stülke J 2008. Carbon catabolite repression in bacteria: many ways to make the most out of nutrients. Nat. Rev. Microbiol. 6:8613–24
    [Google Scholar]
  59. Gross A, Torge A, Schaefer UF, Schneider M, Lehr C-M, Wagner C 2017. A foam model highlights the differences of the macro- and microrheology of respiratory horse mucus. J. Mech. Behav. Biomed. Mater. 71:216–22
    [Google Scholar]
  60. Gustafsson JK, Ermund A, Ambort D, Johansson MEV, Nilsson HE et al. 2012. Bicarbonate and functional CFTR channel are required for proper mucin secretion and link cystic fibrosis with its mucus phenotype. J. Exp. Med. 209:71263–72
    [Google Scholar]
  61. Hall DJ, Khutoryanskaya OV, Khutoryanskiy VV 2011. Developing synthetic mucosa-mimetic hydrogels to replace animal experimentation in characterisation of mucoadhesive drug delivery systems. Soft Matter 7:209620–23
    [Google Scholar]
  62. Hall SC, Hassis ME, Williams KE, Albertolle ME, Prakobphol A et al. 2017. Alterations in the salivary proteome and N-glycome of Sjögren's syndrome patients. J. Proteome Res. 16:41693–705
    [Google Scholar]
  63. Hamed R, Fiegel J 2014. Synthetic tracheal mucus with native rheological and surface tension properties. J. Biomed. Mater. Res. A 102:61788–98
    [Google Scholar]
  64. Hattrup CL, Gendler SJ 2008. Structure and function of the cell surface (tethered) mucins. Annu. Rev. Physiol. 70:431–57
    [Google Scholar]
  65. Henke MO, John G, Germann M, Lindemann H, Rubin BK 2007. MUC5AC and MUC5B mucins increase in cystic fibrosis airway secretions during pulmonary exacerbation. Am. J. Respir. Crit. Care Med. 175:8816–21
    [Google Scholar]
  66. Henke MO, Renner A, Huber RM, Seeds MC, Rubin BK 2004. MUC5AC and MUC5B mucins are decreased in cystic fibrosis airway secretions. Am. J. Respir. Cell Mol. Biol. 31:186–91
    [Google Scholar]
  67. Hill DB, Vasquez PA, Mellnik J, McKinley SA, Vose A et al. 2014. A biophysical basis for mucus solids concentration as a candidate biomarker for airways disease. PLOS ONE 9:2e87681
    [Google Scholar]
  68. Huckaby JT, Lai SK 2018. PEGylation for enhancing nanoparticle diffusion in mucus. Adv. Drug Deliv. Rev. 124:125–39
    [Google Scholar]
  69. Jaishankar A 2014. The linear and nonlinear rheology of multiscale complex fluids Thesis, Dept. Mech. Eng., MIT
  70. Jaishankar A, McKinley GH 2014. A fractional K-BKZ constitutive formulation for describing the nonlinear rheology of multiscale complex fluids. J. Rheol. 58:61751–88
    [Google Scholar]
  71. Jantscher-Krenn E, Lauwaet T, Bliss LA, Reed SL, Gillin FD, Bode L 2012. Human milk oligosaccharides reduce Entamoeba histolytica attachment and cytotoxicity in vitro. Br. J. Nutr. 108:101839–46
    [Google Scholar]
  72. Jin C, Kenny DT, Skoog EC, Padra M, Adamczyk B et al. 2017. Structural diversity of human gastric mucin glycans. Mol. Cell. Proteom. 16:5743–58
    [Google Scholar]
  73. Johansson MEV, Larsson JMH, Hansson GC 2011. The two mucus layers of colon are organized by the MUC2 mucin, whereas the outer layer is a legislator of host-microbial interactions. PNAS 108:4659–65
    [Google Scholar]
  74. Johansson MEV, Phillipson M, Petersson J, Velcich A, Holm L, Hansson GC 2008. The inner of the two Muc2 mucin-dependent mucus layers in colon is devoid of bacteria. PNAS 105:3915064–69
    [Google Scholar]
  75. John M, Röhrig H, Schmidt J, Walden R, Schell J 1997. Cell signalling by oligosaccharides. Trends Plant Sci 2:3111–15
    [Google Scholar]
  76. Kastner M, Karner A, Zhu R, Huang Q, Zhang D et al. 2017. Relevance of host cell surface glycan structure for cell specificity of influenza A virus. bioRxiv; https://doi.org/10.1101/203349
    [Crossref]
  77. Kavanaugh NL, Zhang AQ, Nobile CJ, Johnson AD, Ribbeck K 2014. Mucins suppress virulence traits of Candida albicans. . MBio 5:6e01911–14
    [Google Scholar]
  78. Kerschner JE, Hong W, Khampang P, Johnston N 2014. Differential response of gel-forming mucins to pathogenic middle ear bacteria. Int. J. Pediatr. Otorhinolaryngol. 78:81368–73
    [Google Scholar]
  79. Kesimer M, Makhov AM, Griffith JD, Verdugo P, Sheehan JK 2010. Unpacking a gel-forming mucin: a view of MUC5B organization after granular release. Am. J. Physiol. Lung Cell. Mol. Physiol. 298:1L15–22
    [Google Scholar]
  80. Khutoryanskaya O, Potgieter M, Khutoryanskiy VV 2010. Multilayered hydrogel coatings covalently-linked to glass surfaces showing a potential to mimic mucosal tissues. Soft Matter 6:551–57
    [Google Scholar]
  81. Khutoryanskiy VV 2018. Beyond PEGylation: alternative surface-modification of nanoparticles with mucus-inert biomaterials. Adv. Drug Deliv. Rev. 124:140–49
    [Google Scholar]
  82. Kirch J, Schneider A, Abou B, Hopf A, Schaefer UF et al. 2012. Optical tweezers reveal relationship between microstructure and nanoparticle penetration of pulmonary mucus. PNAS 109:4518355–60
    [Google Scholar]
  83. Kobata A 1992. Structures and functions of the sugar chains of glycoproteins. Eur. J. Biochem. 209:2483–501
    [Google Scholar]
  84. Kramer JR, Onoa B, Bustamante C, Bertozzi CR 2015. Chemically tunable mucin chimeras assembled on living cells. PNAS 112:4112574–79
    [Google Scholar]
  85. Kroes I, Lepp PW, Relman DA 1999. Bacterial diversity within the human subgingival crevice. PNAS 96:2514547–52
    [Google Scholar]
  86. Lai SK, Wang Y-Y, Wirtz D, Hanes J 2009.a Micro- and macrorheology of mucus. Adv. Drug Deliv. Rev. 61:286–100
    [Google Scholar]
  87. Lai SK, Wang YY, Hanes J 2009.b Mucus-penetrating nanoparticles for drug and gene delivery to mucosal tissues. Adv. Drug Deliv. Rev. 61:2158–71
    [Google Scholar]
  88. Larhed AW, Artursson P, Gråsjö J, Björk E 1997. Diffusion of drugs in native and purified gastrointestinal mucus. J. Pharm. Sci. 86:6660–65
    [Google Scholar]
  89. Larsen TH, Furst EM 2008. Microrheology of the liquid-solid transition during gelation. Phys. Rev. Lett. 100:14146001
    [Google Scholar]
  90. Le Bouguénec C, Schouler C 2011. Sugar metabolism, an additional virulence factor in enterobacteria. Int. J. Med. Microbiol. 301:11–6
    [Google Scholar]
  91. Levine MJ, Herzberg MC, Levine MS, Ellison SA, Stinson MW et al. 1978. Specificity of salivary-bacterial interactions: role of terminal sialic acid residues in the interaction of salivary glycoproteins with Streptococcus sanguis and Streptococcus mutans. Infect. . Immun 19:1107–15
    [Google Scholar]
  92. Li J-D, Dohrman AF, Gallup M, Miyata S, Gum JR et al. 1997. Transcriptional activation of mucin by Pseudomonas aeruginosa lipopolysaccharide in the pathogenesis of cystic fibrosis lung disease. PNAS 94:3967–72
    [Google Scholar]
  93. Li LD, Crouzier T, Sarkar A, Dunphy L, Han J, Ribbeck K 2013. Spatial configuration and composition of charge modulates transport into a mucin hydrogel barrier. Biophys. J. 105:61357–65
    [Google Scholar]
  94. Lichtenberger LM 1995. The hydrophobic barrier properties of gastrointestinal mucus. Annu. Rev. Physiol. 57:565–83
    [Google Scholar]
  95. Lieleg O, Lieleg C, Bloom J, Buck CB, Ribbeck K 2012. Mucin biopolymers as broad-spectrum antiviral agents. Biomacromolecules 13:61724–32
    [Google Scholar]
  96. Lieleg O, Vladescu I, Ribbeck K 2010. Characterization of particle translocation through mucin hydrogels. Biophys. J. 98:91782–89
    [Google Scholar]
  97. Lindén S, Mahdavi J, Semino-Mora C, Olsen C, Carlstedt I et al. 2008. Role of ABO secretor status in mucosal innate immunity and H. pylori infection. PLOS Pathog 4:10006–0013
    [Google Scholar]
  98. Lindén SK, Sheng YH, Every AL, Miles KM, Skoog EC et al. 2009. MUC1 limits Helicobacter pylori infection both by steric hindrance and by acting as a releasable decoy. PLOS Pathog 5:10e1000617
    [Google Scholar]
  99. Linden SK, Sutton P, Karlsson NG, Korolik V, McGuckin MA 2008. Mucins in the mucosal barrier to infection. Mucosal Immunol 1:3183–97
    [Google Scholar]
  100. Lira-Junior R, Figueredo CM 2016. Periodontal and inflammatory bowel diseases: Is there evidence of complex pathogenic interactions. ? World J. Gastroenterol. 22:357963–72
    [Google Scholar]
  101. Lock J, Carlson TL, Carrier RL 2018. Mucus models to evaluate the diffusion of drugs and particles. Adv. Drug Deliv. Rev. 124:34–49
    [Google Scholar]
  102. Lopez CA, Skaar EP 2018. The impact of dietary transition metals on host-bacterial interactions. Cell Host Microbe 23:6737–48
    [Google Scholar]
  103. Lu HP, Lai YC, Huang SW, Chen HC, Hsieh CH, Yu HT 2014. Spatial heterogeneity of gut microbiota reveals multiple bacterial communities with distinct characteristics. Sci. Rep. 4:6185
    [Google Scholar]
  104. Macfarlane GT, Steed H, Macfarlane S 2008. Bacterial metabolism and health-related effects of galacto-oligosaccharides and other prebiotics. J. Appl. Microbiol. 104:2305–44
    [Google Scholar]
  105. Mahalingam A, Jay JI, Langheinrich K, Shukair S, McRaven MD et al. 2011. Inhibition of the transport of HIV in vitro using a pH-responsive synthetic mucin-like polymer system. Biomaterials 32:338343–55
    [Google Scholar]
  106. Mahdavi J, Sondén B, Hurtig M, Olfat FO, Forsberg L et al. 2002. Helicobacter pylori SabA adhesin in persistent infection and chronic inflammation. Science 297:5581573–78
    [Google Scholar]
  107. Malago JJ 2015. Contribution of microbiota to the intestinal physicochemical barrier. Benef. Microbes 6:3295–311
    [Google Scholar]
  108. Maleki A, Lafitte G, Kjøniksen A-L, Thuresson K, Nyström B 2008. Effect of pH on the association behavior in aqueous solutions of pig gastric mucin. Carbohydr. Res. 343:2328–40
    [Google Scholar]
  109. Mascher T, Helmann JD, Unden G 2006. Stimulus perception in bacterial signal-transducing histidine kinases. Microbiol. Mol. Biol. Rev. 70:4910–38
    [Google Scholar]
  110. Mason TG, Weitz DA 1995. Optical measurements of frequency-dependent linear viscoelastic moduli of complex fluids. Phys. Rev. Lett. 74:71250–53
    [Google Scholar]
  111. McGuckin MA, Lindén SK, Sutton P, Florin TH 2011. Mucin dynamics and enteric pathogens. Nat. Rev. Microbiol. 9:4265–78
    [Google Scholar]
  112. McKinley GH, Sridhar T 2002. Filament-stretching rheometry of complex fluids. Annu. Rev. Fluid Mech. 34:375–415
    [Google Scholar]
  113. McNamara N, Khong A, McKemy D, Caterina M, Boyer J et al. 2001. ATP transduces signals from ASGM1, a glycolipid that functions as a bacterial receptor. PNAS 98:169086–91
    [Google Scholar]
  114. Menzel C, Bernkop-Schnürch A 2018. Enzyme decorated drug carriers: targeted swords to cleave and overcome the mucus barrier. Adv. Drug Deliv. Rev. 124:164–74
    [Google Scholar]
  115. Metzler R, Jeon J-H, Cherstvy AG, Barkai E 2014. Anomalous diffusion models and their properties: non-stationarity, non-ergodicity, and ageing at the centenary of single particle tracking. Phys. Chem. Chem. Phys. 16:4424128–64
    [Google Scholar]
  116. Metzler R, Klafter J 2000. The random walk's guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339:11–77
    [Google Scholar]
  117. Murgia X, Loretz B, Hartwig O, Hittinger M, Lehr CM 2018. The role of mucus on drug transport and its potential to affect therapeutic outcomes. Adv. Drug Deliv. Rev. 124:82–97
    [Google Scholar]
  118. Murgia X, Pawelzyk P, Schaefer UF, Wagner C, Willenbacher N, Lehr C-M 2016. Size-limited penetration of nanoparticles into porcine respiratory mucus after aerosol deposition. Biomacromolecules 17:41536–42
    [Google Scholar]
  119. Newby JM, Seim I, Lysy M, Ling Y, Huckaby J et al. 2017. Technological strategies to estimate and control diffusive passage times through the mucus barrier in mucosal drug delivery. Adv. Drug Deliv. Rev. 124:64–81
    [Google Scholar]
  120. Nilsson HE, Ambort D, Bäckström M, Thomsson E, Koeck PJB et al. 2014. Intestinal MUC2 mucin supramolecular topology by packing and release resting on D3 domain assembly. J. Mol. Biol. 426:142567–79
    [Google Scholar]
  121. Nordgård CT, Draget KI 2015. Dynamic responses in small intestinal mucus: relevance for the maintenance of an intact barrier. Eur. J. Pharm. Biopharm. 95:144–50
    [Google Scholar]
  122. Parsek MR, Singh PK 2003. Bacterial biofilms: an emerging link to disease pathogenesis. Annu. Rev. Microbiol. 57:1677–701
    [Google Scholar]
  123. Philippe A-M, Cipelletti L, Larobina D 2017. Mucus as an arrested phase separation gel. Macromolecules 50:208221–30
    [Google Scholar]
  124. Png CW, Lindén SK, Gilshenan KS, Zoetendal EG, McSweeney CS et al. 2010. Mucolytic bacteria with increased prevalence in IBD mucosa augment in vitro utilization of mucin by other bacteria. Am. J. Gastroenterol. 105:2420–28
    [Google Scholar]
  125. Postma PW, Lengeler JW, Jacobson GR 1993. Phosphoenolpyruvate: carbohydrate phosphotransferase systems of bacteria. Microbiol. Rev. 57:3543–94
    [Google Scholar]
  126. Preetha A, Banerjee R 2005. Comparison of artificial saliva substitutes. Trends Biomater. Artif. Organs 18:2178–86
    [Google Scholar]
  127. Preidis GA, Versalovic J 2009. Targeting the human microbiome with antibiotics, probiotics, and prebiotics: Gastroenterology enters the metagenomics era. Gastroenterology 136:62015–31
    [Google Scholar]
  128. Pudlo NA, Urs K, Kumar SS, German JB, Mills DA, Martens EC 2015. Symbiotic human gut bacteria with variable metabolic priorities for host mucosal glycans. MBio 6:6e01282–15
    [Google Scholar]
  129. Raynal BDE, Hardingham TE, Sheehan JK, Thornton DJ 2003. Calcium-dependent protein interactions in MUC5B provide reversible cross-links in salivary mucus. J. Biol. Chem. 278:3128703–10
    [Google Scholar]
  130. Raynal BDE, Hardingham TE, Thornton DJ, Sheehan JK 2002. Concentrated solutions of salivary MUC5B mucin do not replicate the gel-forming properties of saliva. Biochem. J. 362:Pt 2289–96
    [Google Scholar]
  131. Rohmer L, Hocquet D, Miller SI 2011. Are pathogenic bacteria just looking for food? Metabolism and microbial pathogenesis. Trends Microbiol 19:7341–48
    [Google Scholar]
  132. Roy MG, Livraghi-Butrico A, Fletcher AA, Melissa M, Evans SE et al. 2014. MUC5B is required for airway defense. Nature 505:7483412–16
    [Google Scholar]
  133. Ruiz-Palacios GM, Cervantes LE, Ramos P, Chavez-Munguia B, Newburg DS 2003. Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J. Biol. Chem. 278:1614112–20
    [Google Scholar]
  134. Schipper RG, Silletti E, Vingerhoeds MH 2007. Saliva as research material: biochemical, physicochemical and practical aspects. Arch. Oral Biol. 52:121114–35
    [Google Scholar]
  135. Schulz BL, Sloane AJ, Robinson LJ, Prasad SS, Lindner RA et al. 2007. Glycosylation of sputum mucins is altered in cystic fibrosis patients. Glycobiology 17:7698–712
    [Google Scholar]
  136. Schuster BS, Allan DB, Kays JC, Hanes J, Leheny RL 2017. Photoactivatable fluorescent probes reveal heterogeneous nanoparticle permeation through biological gels at multiple scales. J. Control. Release 260:124–33
    [Google Scholar]
  137. Schuster BS, Suk JS, Woodworth GF, Hanes J 2013. Nanoparticle diffusion in respiratory mucus from humans without lung disease. Biomaterials 34:133439–46
    [Google Scholar]
  138. Sellers LA, Allen A, Morris E, Ross Murphy S 1983. Rheological studies on pig gastrointestinal mucous secretions. Biochem. Soc. Trans. 11:6763–64
    [Google Scholar]
  139. Sellers LA, Allen A, Morris ER, Ross-Murphy SB 1988. Mucus glycoprotein gels. Role of glycoprotein polymeric structure and carbohydrate side-chains in gel-formation. Carbohydr. Res. 178:193–110
    [Google Scholar]
  140. Serisier DJ, Carroll MP, Shute JK, Young SA 2009. Macrorheology of cystic fibrosis, chronic obstructive pulmonary disease & normal sputum. Respir. Res. 10:63
    [Google Scholar]
  141. Simon PM, Goode PL, Mobasseri A, Zopf D 1997. Inhibition of Helicobacter pylori binding to gastrointestinal epithelial cells by sialic acid–containing oligosaccharides. Infect. Immun. 65:2750–57
    [Google Scholar]
  142. Singh PK, Schaefer AL, Parsek MR, Moninger TO, Welsh MJ, Greenberg EP 2000. Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:6805762–64
    [Google Scholar]
  143. Siqueira JF, Rôças IN 2017. The oral microbiota in health and disease: an overview of molecular findings. Oral Biology: Molecular Techniques and Applications GJ Seymour, MP Cullinan, NCK Heng 127–38 New York: Springer
    [Google Scholar]
  144. Smith-Dupont KB, Wagner CE, Witten J, Conroy K, Rudoltz H et al. 2017. Probing the potential of mucus permeability to signify preterm birth risk. Sci. Rep. 7:110302
    [Google Scholar]
  145. Sonnenburg JL, Xu J, Leip DD, Chen C-H, Westover BP et al. 2005. Glycan foraging in vivo by an intestine-adapted bacterial symbiont. Science 307:57171955–59
    [Google Scholar]
  146. Squires TM, Mason TG 2010. Fluid mechanics of microrheology. Annu. Rev. Fluid Mech. 42:413–38
    [Google Scholar]
  147. Stephens DN, McNamara NA 2015. Altered mucin and glycoprotein expression in dry eye disease. Optom. Vis. Sci. 92:9931–38
    [Google Scholar]
  148. Stokes JR, Davies GA 2007. Viscoelasticity of human whole saliva collected after acid and mechanical stimulation. Biorheology 44:3141–60
    [Google Scholar]
  149. Stulke J, Hillen W 1999. Carbon catabolite repression in bacteria. Curr. Opin. Microbiol. 2:2195–201
    [Google Scholar]
  150. Suk JS, Lai SK, Wang Y-Y, Ensign LM, Zeitlin PL et al. 2009. The penetration of fresh undiluted sputum expectorated by cystic fibrosis patients by non-adhesive polymer nanoparticles. Biomaterials 30:132591–97
    [Google Scholar]
  151. Suk JS, Xu Q, Kim N, Hanes J, Ensign LM 2016. PEGylation as a strategy for improving nanoparticle-based drug and gene delivery. Adv. Drug Deliv. Rev. 99:28–51
    [Google Scholar]
  152. Swidsinski A, Weber J, Loening-Baucke V, Hale LP, Lochs H 2005. Spatial organization and composition of the mucosal flora in patients with inflammatory bowel disease. J. Clin. Microbiol. 43:73380–89
    [Google Scholar]
  153. Tabatabaei S, Jahromi HT, Webster MF, Williams PR, Holder AJ et al. 2015. A CABER computational-experimental rheological study on human sputum. J. Nonnewton. Fluid Mech. 222:272–87
    [Google Scholar]
  154. Taherali F, Varum F, Basit AW 2018. A slippery slope: on the origin, role and physiology of mucus. Adv. Drug Deliv. Rev. 124:16–33
    [Google Scholar]
  155. Tailford LE, Crost EH, Kavanaugh D, Juge N 2015. Mucin glycan foraging in the human gut microbiome. Front. Genet. 6:81
    [Google Scholar]
  156. Tam PY, Verdugo P 1981. Control of mucus hydration as a Donnan equilibrium process. Nature 292:340–42
    [Google Scholar]
  157. Taylor C, Allen A, Dettmar PW, Pearson JP 2003. The gel matrix of gastric mucus is maintained by a complex interplay of transient and nontransient associations. Biomacromolecules 4:4922–27
    [Google Scholar]
  158. Taylor C, Draget KI, Pearson JP, Smidsrød O 2005. Mucous systems show a novel mechanical response to applied deformation. Biomacromolecules 6:31524–30
    [Google Scholar]
  159. Thornton DJ, Rousseau K, McGuckin MA 2008. Structure and function of the polymeric mucins in airways mucus. Annu. Rev. Physiol. 70:459–86
    [Google Scholar]
  160. van der Hoeven JS, van den Kieboom CWA, Camp PJM 1990. Utilization of mucin by oral Streptococcus species. Antonie Van Leeuwenhoek 57:3165–72
    [Google Scholar]
  161. Varki A 1993. Biological roles of oligosaccharides: All of the theories are correct. Glycobiology 3:297–130
    [Google Scholar]
  162. Varki A 2006. Nothing in glycobiology makes sense, except in the light of evolution. Cell 126:5841–45
    [Google Scholar]
  163. Verma D, Garg PK, Dubey AK 2018. Insights into the human oral microbiome. Arch. Microbiol. 200:4525–40
    [Google Scholar]
  164. Vijay A, Inui T, Dodds M, Proctor G, Carpenter G 2015. Factors that influence the extensional rheological property of saliva. PLOS ONE 10:8e0135792
    [Google Scholar]
  165. Vukosavljevic B, Murgia X, Schwarzkopf K, Schaefer UF, Lehr C-M, Windbergs M 2017. Tracing molecular and structural changes upon mucolysis with N-acetyl cysteine in human airway mucus. Int. J. Pharm. 533:2373–76
    [Google Scholar]
  166. Wagner CE, McKinley GH 2017. Age-dependent capillary thinning dynamics of physically-associated salivary mucin networks. J. Rheol. 61:61309–26
    [Google Scholar]
  167. Wagner CE, Turner BS, Rubinstein M, McKinley GH, Ribbeck K 2017. A rheological study of the association and dynamics of MUC5AC gels. Biomacromolecules 18:113654–64
    [Google Scholar]
  168. Wang Y-Y, Lai SK, Ensign L, Zhong W, Cone R, Hanes J 2013. The microstructure and bulk rheology of human cervicovaginal mucus are remarkably resistant to changes in pH. Biomacromolecules 14:124429–35
    [Google Scholar]
  169. Weigand WJ, Messmore A, Tu J, Morales-Sanz A, Blair DL et al. 2017. Active microrheology determines scale-dependent material properties of Chaetopterus mucus. PLOS ONE 12:5e0176732
    [Google Scholar]
  170. Wickström C, Svensäter G 2008. Salivary gel-forming mucin MUC5B—a nutrient for dental plaque bacteria. Oral Microbiol. Immunol. 23:3177–82
    [Google Scholar]
  171. Witten J, Ribbeck K 2017. The particle in the spider's web: transport through biological hydrogels. Nanoscale 9:248080–95
    [Google Scholar]
  172. Witten J, Samad T, Ribbeck K 2018. Selective permeability of mucus barriers. Curr. Opin. Biotechnol. 52:124–33
    [Google Scholar]
  173. Wolf DP, Sokoloski JE, Litt M 1980. Composition and function of human cervical mucus. Biochim. Biophys. Acta 630:545–58
    [Google Scholar]
  174. Wu L, Shan W, Zhang Z, Huang Y 2018. Engineering nanomaterials to overcome the mucosal barrier by modulating surface properties. Adv. Drug Deliv. Rev. 124:150–63
    [Google Scholar]
  175. Yu Y, Lasanajak Y, Song X, Hu L, Ramani S et al. 2014. Human milk contains novel glycans that are potential decoy receptors for neonatal rotaviruses. Mol. Cell. Proteom. 13:112944–60
    [Google Scholar]
  176. Yu Y, Mishra S, Song X, Lasanajak Y, Bradley KC et al. 2012. Functional glycomic analysis of human milk glycans reveals the presence of virus receptors and embryonic stem cell biomarkers. J. Biol. Chem. 287:5344784–99
    [Google Scholar]
  177. Yu Z-T, Chen C, Newburg DS 2013. Utilization of major fucosylated and sialylated human milk oligosaccharides by isolated human gut microbes. Glycobiology 23:111281–92
    [Google Scholar]
  178. Yuan S, Hollinger M, Lachowicz-Scroggins ME, Kerr SC, Dunican EM et al. 2015. Oxidation increases mucin polymer cross-links to stiffen airway mucus gels. Sci. Transl. Med. 7:276276ra27
    [Google Scholar]
  179. Zahm JM, Puchelle E, Duvivier C, Didelon J 1986. Spinability of respiratory mucous. Validation of a new apparatus: the Filancemeter. Bull. Eur. Physiopathol. Respir. 22:6609–13
    [Google Scholar]
  180. Zussman E, Yarin AL, Nagler RM 2007. Age- and flow-dependency of salivary viscoelasticity. J. Dent. Res. 86:3281–85
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062818
Loading
/content/journals/10.1146/annurev-cellbio-100617-062818
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error