1932

Abstract

Posttranscriptional mechanisms provide powerful means to expand the coding power of genomes. In nervous systems, alternative splicing has emerged as a fundamental mechanism not only for the diversification of protein isoforms but also for the spatiotemporal control of transcripts. Thus, alternative splicing programs play instructive roles in the development of neuronal cell type–specific properties, neuronal growth, self-recognition, synapse specification, and neuronal network function. Here we discuss the most recent genome-wide efforts on mapping RNA codes and RNA-binding proteins for neuronal alternative splicing regulation. We illustrate how alternative splicing shapes key steps of neuronal development, neuronal maturation, and synaptic properties. Finally, we highlight efforts to dissect the spatiotemporal dynamics of alternative splicing and their potential contribution to neuronal plasticity and the mature nervous system.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062826
2018-10-06
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062826.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062826&mimeType=html&fmt=ahah

Literature Cited

  1. Allen SE, Darnell RB, Lipscombe D 2010. The neuronal splicing factor Nova controls alternative splicing in N-type and P-type CaV2 calcium channels. Channels 4:483–89
    [Google Scholar]
  2. An P, Grabowski PJ 2007. Exon silencing by UAGG motifs in response to neuronal excitation. PLOS Biol 5:e36
    [Google Scholar]
  3. Aoto J, Martinelli DC, Malenka RC, Tabuchi K, Südhof TC 2013. Presynaptic neurexin-3 alternative splicing trans-synaptically controls postsynaptic AMPA receptor trafficking. Cell 154:75–88
    [Google Scholar]
  4. Barbosa-Morais NL, Irimia M, Pan Q, Blencowe BJ 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science 338:1587–94
    [Google Scholar]
  5. Beffert U, Weeber EJ, Durudas A, Qiu S, Masiulis I et al. 2005. Modulation of synaptic plasticity and memory by Reelin involves differential splicing of the lipoprotein receptor Apoer2. Neuron 47:567–79
    [Google Scholar]
  6. Boucard AA, Chubykin AA, Comoletti D, Taylor P, Sudhof TC 2005. A splice code for trans-synaptic cell adhesion mediated by binding of neuroligin 1 to α- and β-neurexins. Neuron 48:229–36
    [Google Scholar]
  7. Boutz PL, Bhutkar A, Sharp PA 2014. Detained introns are a novel, widespread class of post-transcriptionally spliced introns. Genes Dev 29:63–80
    [Google Scholar]
  8. Brakeman PR, Lanahan AA, O'Brien R, Roche K, Barnes CA et al. 1997. Homer: a protein that selectively binds metabotropic glutamate receptors. Nature 386:284–88
    [Google Scholar]
  9. Braunschweig U, Barbosa-Morais NL, Pan Q, Nachman EN, Alipanahi B et al. 2014. Widespread intron retention in mammals functionally tunes transcriptomes. Genome Res 24:1774–86
    [Google Scholar]
  10. Castello A, Fischer B, Frese CK, Horos R, Alleaume AM et al. 2016. Comprehensive identification of RNA-binding domains in human cells. Mol. Cell 63:696–710
    [Google Scholar]
  11. Chaudhuri D, Chang SY, DeMaria CD, Alvania RS, Soong TW, Yue DT 2004. Alternative splicing as a molecular switch for Ca2+/calmodulin-dependent facilitation of P/Q-type Ca2+ channels. J. Neurosci. 24:6334–42
    [Google Scholar]
  12. Chen BE, Kondo M, Garnier A, Watson FL, Puettmann-Holgado R et al. 2006. The molecular diversity of Dscam is functionally required for neuronal wiring specificity in Drosophila. . Cell 125:607–20
    [Google Scholar]
  13. Chih B, Gollan L, Scheiffele P 2006. Alternative splicing controls selective trans-synaptic interactions of the neuroligin-neurexin complex. Neuron 51:171–78
    [Google Scholar]
  14. Cohen LD, Zuchman R, Sorokina O, Muller A, Dieterich DC et al. 2013. Metabolic turnover of synaptic proteins: kinetics, interdependencies and implications for synaptic maintenance. PLOS ONE 8:e63191
    [Google Scholar]
  15. Crowner D, Madden K, Goeke S, Giniger E 2002. Lola regulates midline crossing of CNS axons in Drosophila. . Development 129:1317–25
    [Google Scholar]
  16. Darnell RB 2013. RNA protein interaction in neurons. Annu. Rev. Neurosci. 36:243–70
    [Google Scholar]
  17. Darzacq X, Shav-Tal Y, de Turris V, Brody Y, Shenoy SM et al. 2007. In vivo dynamics of RNA polymerase II transcription. Nat. Struct. Mol. Biol. 14:796–806
    [Google Scholar]
  18. de Almeida SF, Carmo-Fonseca M 2014. Reciprocal regulatory links between cotranscriptional splicing and chromatin. Semin. Cell Dev. Biol. 32:2–10
    [Google Scholar]
  19. de la Mata M, Kornblihtt AR 2006. RNA polymerase II C-terminal domain mediates regulation of alternative splicing by SRp20. Nat. Struct. Mol. Biol. 13:973–80
    [Google Scholar]
  20. Di Fruscio M, Chen T, Richard S 1999. Characterization of Sam68-like mammalian proteins SLM-1 and SLM-2: SLM-1 is a Src substrate during mitosis. PNAS 96:2710–15
    [Google Scholar]
  21. Dickson BJ, Zou Y 2010. Navigating intermediate targets: the nervous system midline. Cold Spring Harb. Perspect. Biol. 2:a002055
    [Google Scholar]
  22. Dillman AA, Hauser DN, Gibbs JR, Nalls MA, McCoy MK et al. 2013. mRNA expression, splicing and editing in the embryonic and adult mouse cerebral cortex. Nat. Neurosci. 16:499–506
    [Google Scholar]
  23. Ebert DH, Greenberg ME 2013. Activity-dependent neuronal signalling and autism spectrum disorder. Nature 493:327–37
    [Google Scholar]
  24. Ehrmann I, Dalgliesh C, Liu Y, Danilenko M, Crosier M et al. 2013. The tissue-specific RNA binding protein T-STAR controls regional splicing patterns of neurexin pre-mRNAs in the brain. PLOS Genet 9:e1003474
    [Google Scholar]
  25. Eom T, Zhang C, Wang H, Lay K, Fak J et al. 2013. NOVA-dependent regulation of cryptic NMD exons controls synaptic protein levels after seizure. eLife 2:e00178
    [Google Scholar]
  26. Evans TA, Bashaw GJ 2010. Axon guidance at the midline: of mice and flies. Curr. Opin. Neurobiol. 20:79–85
    [Google Scholar]
  27. Feldman DE, Brecht M 2005. Map plasticity in somatosensory cortex. Science 310:810–15
    [Google Scholar]
  28. Feng Y, Chen M, Manley JL 2008. Phosphorylation switches the general splicing repressor SRp38 to a sequence-specific activator. Nat. Struct. Mol. Biol. 15:1040–48
    [Google Scholar]
  29. Finkel RS, Chiriboga CA, Vajsar J, Day JW, Montes J et al. 2016. Treatment of infantile-onset spinal muscular atrophy with nusinersen: a phase 2, open-label, dose-escalation study. Lancet 388:3017–26
    [Google Scholar]
  30. Fong N, Kim H, Zhou Y, Ji X, Qiu J et al. 2014. Pre-mRNA splicing is facilitated by an optimal RNA polymerase II elongation rate. Genes Dev 28:2663–76
    [Google Scholar]
  31. Fuccillo MV, Foldy C, Gokce O, Rothwell PE, Sun GL et al. 2015. Single-cell mRNA profiling reveals cell-type-specific expression of neurexin isoforms. Neuron 87:326–40
    [Google Scholar]
  32. Gabel HW, Kinde B, Stroud H, Gilbert CS, Harmin DA et al. 2015. Disruption of DNA-methylation-dependent long gene repression in Rett syndrome. Nature 522:89–93
    [Google Scholar]
  33. Gehman LT, Meera P, Stoilov P, Shiue L, O'Brien JE et al. 2012. The splicing regulator Rbfox2 is required for both cerebellar development and mature motor function. Genes Dev 26:445–60
    [Google Scholar]
  34. Gehman LT, Stoilov P, Maguire J, Damianov A, Lin CH et al. 2011. The splicing regulator Rbfox1 (A2BP1) controls neuronal excitation in the mammalian brain. Nat. Genet. 43:706–11
    [Google Scholar]
  35. Gerstberger S, Hafner M, Tuschl T 2014. A census of human RNA-binding proteins. Nat. Rev. Genet. 15:829–45
    [Google Scholar]
  36. Gill J, Park Y, McGinnis JP, Perez-Sanchez C, Blanchette M, Si K 2017. Regulated intron removal integrates motivational state and experience. Cell 169:836–48.e815
    [Google Scholar]
  37. Goeke S, Greene EA, Grant PK, Gates MA, Crowner D et al. 2003. Alternative splicing of lola generates 19 transcription factors controlling axon guidance in Drosophila. Nat. . Neurosci 6:917–24
    [Google Scholar]
  38. Graf ER, Zhang X, Jin SX, Linhoff MW, Craig AM 2004. Neurexins induce differentiation of GABA and glutamate postsynaptic specializations via neuroligins. Cell 119:1013–26
    [Google Scholar]
  39. Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ 2007. Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449:223–27
    [Google Scholar]
  40. Hobert O 2016. Terminal selectors of neuronal identity. Curr. Top. Dev. Biol. 116:455–75
    [Google Scholar]
  41. Howe KJ, Kane CM, Ares M Jr. 2003. Perturbation of transcription elongation influences the fidelity of internal exon inclusion in Saccharomyces cerevisiae. . RNA 9:993–1006
    [Google Scholar]
  42. Hrvatin S, Hochbaum DR, Nagy MA, Cicconet M, Robertson K et al. 2018. Single-cell analysis of experience-dependent transcriptomic states in the mouse visual cortex. Nat. Neurosci. 21:120–29
    [Google Scholar]
  43. Hua Y, Sahashi K, Rigo F, Hung G, Horev G et al. 2011. Peripheral SMN restoration is essential for long-term rescue of a severe spinal muscular atrophy mouse model. Nature 478:123–26
    [Google Scholar]
  44. Hughes ME, Bortnick R, Tsubouchi A, Baumer P, Kondo M et al. 2007. Homophilic Dscam interactions control complex dendrite morphogenesis. Neuron 54:417–27
    [Google Scholar]
  45. Hwang HW, Saito Y, Park CY, Blachere NE, Tajima Y et al. 2017. cTag-PAPERCLIP reveals alternative polyadenylation promotes cell-type specific protein diversity and shifts Araf isoforms with microglia activation. Neuron 95:1334–49.e1335
    [Google Scholar]
  46. Iijima T, Iijima Y, Witte H, Scheiffele P 2014. Neuronal cell type–specific alternative splicing is regulated by the KH domain protein SLM1. J. Cell Biol. 204:331–42
    [Google Scholar]
  47. Iijima T, Wu K, Witte H, Hanno-Iijima Y, Glatter T et al. 2011. SAM68 regulates neuronal activity-dependent alternative splicing of neurexin-1. Cell 147:1601–14
    [Google Scholar]
  48. Ip JY, Schmidt D, Pan Q, Ramani AK, Fraser AG et al. 2011. Global impact of RNA polymerase II elongation inhibition on alternative splicing regulation. Genome Res 21:390–401
    [Google Scholar]
  49. Irimia M, Weatheritt RJ, Ellis JD, Parikshak NN, Gonatopoulos-Pournatzis T et al. 2014. A highly conserved program of neuronal microexons is misregulated in autistic brains. Cell 159:1511–23
    [Google Scholar]
  50. Kato A, Ozawa F, Saitoh Y, Fukazawa Y, Sugiyama H, Inokuchi K 1998. Novel members of the Vesl/Homer family of PDZ proteins that bind metabotropic glutamate receptors. J. Biol. Chem. 273:23969–75
    [Google Scholar]
  51. Kepecs A, Fishell G 2014. Interneuron cell types are fit to function. Nature 505:318–26
    [Google Scholar]
  52. Kim MS, Pinto SM, Getnet D, Nirujogi RS, Manda SS et al. 2014. A draft map of the human proteome. Nature 509:575–81
    [Google Scholar]
  53. Kornblihtt AR 2015. Transcriptional control of alternative splicing along time: Ideas change, experiments remain. RNA 21:670–72
    [Google Scholar]
  54. Kruttner S, Traunmuller L, Dag U, Jandrasits K, Stepien B et al. 2015. Synaptic Orb2A bridges memory acquisition and late memory consolidation in Drosophila. . Cell Rep 11:1953–65
    [Google Scholar]
  55. Lah GJ, Li JS, Millard SS 2014. Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron 83:1376–88
    [Google Scholar]
  56. Lee JA, Xing Y, Nguyen D, Xie J, Lee CJ, Black DL 2007. Depolarization and CaM kinase IV modulate NMDA receptor splicing through two essential RNA elements. PLOS Biol 5:e40
    [Google Scholar]
  57. Leggere JC, Saito Y, Darnell RB, Tessier-Lavigne M, Junge HJ, Chen Z 2016. NOVA regulates Dcc alternative splicing during neuronal migration and axon guidance in the spinal cord. eLife 5:e14624
    [Google Scholar]
  58. Li Y, Zhang P, Choi TY, Park SK, Park H et al. 2015.a Splicing-dependent trans-synaptic SALM3-LAR-RPTP interactions regulate excitatory synapse development and locomotion. Cell Rep 12:1618–30
    [Google Scholar]
  59. Li YI, Sanchez-Pulido L, Haerty W, Ponting CP 2015.b RBFOX and PTBP1 proteins regulate the alternative splicing of micro-exons in human brain transcripts. Genome Res 25:1–13
    [Google Scholar]
  60. Licatalosi DD, Yano M, Fak JJ, Mele A, Grabinski SE et al. 2012. Ptbp2 represses adult-specific splicing to regulate the generation of neuronal precursors in the embryonic brain. Genes Dev 26:1626–42
    [Google Scholar]
  61. Lipscombe D, Allen SE, Toro CP 2013. Control of neuronal voltage-gated calcium ion channels from RNA to protein. Trends Neurosci 36:598–609
    [Google Scholar]
  62. Liu G, Razanau A, Hai Y, Yu J, Sohail M et al. 2012. A conserved serine of heterogeneous nuclear ribonucleoprotein L (hnRNP L) mediates depolarization-regulated alternative splicing of potassium channels. J. Biol. Chem. 287:22709–16
    [Google Scholar]
  63. Llorian M, Schwartz S, Clark TA, Hollander D, Tan LY et al. 2010. Position-dependent alternative splicing activity revealed by global profiling of alternative splicing events regulated by PTB. Nat. Struct. Mol. Biol. 17:1114–23
    [Google Scholar]
  64. Lodato S, Shetty AS, Arlotta P 2015. Cerebral cortex assembly: generating and reprogramming projection neuron diversity. Trends Neurosci 38:117–25
    [Google Scholar]
  65. Margolis DJ, Lutcke H, Helmchen F 2014. Microcircuit dynamics of map plasticity in barrel cortex. Curr. Opin. Neurobiol. 24:76–81
    [Google Scholar]
  66. Matsuda K, Budisantoso T, Mitakidis N, Sugaya Y, Miura E et al. 2016. Transsynaptic modulation of kainate receptor functions by C1q-like proteins. Neuron 90:752–67
    [Google Scholar]
  67. Matter N, Herrlich P, Konig H 2002. Signal-dependent regulation of splicing via phosphorylation of Sam68. Nature 420:691–95
    [Google Scholar]
  68. Mauger O, Lemoine F, Scheiffele P 2016. Targeted intron retention and excision for rapid gene regulation in response to neuronal activity. Neuron 92:1266–78
    [Google Scholar]
  69. Mauger O, Scheiffele P 2017. Beyond proteome diversity: alternative splicing as a regulator of neuronal transcript dynamics. Curr. Opin. Neurobiol. 45:162–68
    [Google Scholar]
  70. Mayer C, Hafemeister C, Bandler RC, Machold R, Brito RB et al. 2018. Developmental diversification of cortical inhibitory interneurons. Nature 555:457–62
    [Google Scholar]
  71. McMahon AC, Rahman R, Jin H, Shen JL, Fieldsend A et al. 2016. TRIBE: hijacking an RNA-editing enzyme to identify cell-specific targets of RNA-binding proteins. Cell 165:742–53
    [Google Scholar]
  72. Merkin J, Russell C, Chen P, Burge CB 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:1593–99
    [Google Scholar]
  73. Mi D, Li Z, Lim L, Li M, Moissidis M et al. 2018. Early emergence of cortical interneuron diversity in the mouse embryo. Science 360:81–85
    [Google Scholar]
  74. Miura SK, Martins A, Zhang KX, Graveley BR, Zipursky SL 2013. Probabilistic splicing of Dscam1 establishes identity at the level of single neurons. Cell 155:1166–77
    [Google Scholar]
  75. Mockenhaupt S, Makeyev EV 2015. Non-coding functions of alternative pre-mRNA splicing in development. Semin. Cell Dev. Biol. 48:32–39
    [Google Scholar]
  76. Naryshkin NA, Weetall M, Dakka A, Narasimhan J, Zhao X et al. 2014. SMN2 splicing modifiers improve motor function and longevity in mice with spinal muscular atrophy. Science 345:688–93
    [Google Scholar]
  77. Nguyen TM, Schreiner D, Xiao L, Traunmuller L, Bornmann C, Scheiffele P 2016. An alternative splicing switch shapes neurexin repertoires in principal neurons versus interneurons in the mouse hippocampus. eLife 5:e22757
    [Google Scholar]
  78. Nilsen TW, Graveley BR 2010. Expansion of the eukaryotic proteome by alternative splicing. Nature 463:457–63
    [Google Scholar]
  79. Ninomiya K, Kataoka N, Hagiwara M 2011. Stress-responsive maturation of Clk1/4 pre-mRNAs promotes phosphorylation of SR splicing factor. J. Cell Biol. 195:27–40
    [Google Scholar]
  80. Nonaka M, Fujii H, Kim R, Kawashima T, Okuno H, Bito H 2014. Untangling the two-way signalling route from synapses to the nucleus, and from the nucleus back to the synapses. Philos. Trans. R. Soc. B 369:20130150
    [Google Scholar]
  81. Norris AD, Gao S, Norris ML, Ray D, Ramani AK et al. 2014. A pair of RNA-binding proteins controls networks of splicing events contributing to specialization of neural cell types. Mol. Cell 54:946–59
    [Google Scholar]
  82. O'Brien T, Lis JT 1993. Rapid changes in Drosophila transcription after an instantaneous heat shock. Mol. Cell. Biol. 13:3456–63
    [Google Scholar]
  83. Pan Q, Shai O, Lee LJ, Frey BJ, Blencowe BJ 2008. Deep surveying of alternative splicing complexity in the human transcriptome by high-throughput sequencing. Nat. Genet. 40:1413–15
    [Google Scholar]
  84. Parikshak NN, Swarup V, Belgard TG, Irimia M, Ramaswami G et al. 2016. Genome-wide changes in lncRNA, splicing, and regional gene expression patterns in autism. Nature 540:423–27
    [Google Scholar]
  85. Paul A, Crow M, Raudales R, He M, Gillis J, Huang ZJ 2017. Transcriptional architecture of synaptic communication delineates GABAergic neuron identity. Cell 171:522–39.e520
    [Google Scholar]
  86. Quesnel-Vallieres M, Dargaei Z, Irimia M, Gonatopoulos-Pournatzis T, Ip JY et al. 2016. Misregulation of an activity-dependent splicing network as a common mechanism underlying autism spectrum disorders. Mol. Cell 64:1023–34
    [Google Scholar]
  87. Raj B, Irimia M, Braunschweig U, Sterne-Weiler T, O'Hanlon D et al. 2014. A global regulatory mechanism for activating an exon network required for neurogenesis. Mol. Cell 56:90–103
    [Google Scholar]
  88. Ray D, Kazan H, Chan ET, Peña Castillo L, Chaudhry S et al. 2009. Rapid and systematic analysis of the RNA recognition specificities of RNA-binding proteins. Nat. Biotechnol. 27:667–70
    [Google Scholar]
  89. Ray D, Kazan H, Cook KB, Weirauch MT, Najafabadi HS et al. 2013. A compendium of RNA-binding motifs for decoding gene regulation. Nature 499:172–77
    [Google Scholar]
  90. Rideau AP, Gooding C, Simpson PJ, Monie TP, Lorenz M et al. 2006. A peptide motif in Raver1 mediates splicing repression by interaction with the PTB RRM2 domain. Nat. Struct. Mol. Biol. 13:839–48
    [Google Scholar]
  91. Roberts GC, Gooding C, Mak HY, Proudfoot NJ, Smith CW 1998. Co-transcriptional commitment to alternative splice site selection. Nucleic Acids Res 26:5568–72
    [Google Scholar]
  92. Rozic-Kotliroff G, Zisapel N 2007. Ca2+-dependent splicing of neurexin IIα. Biochem. Biophys. Res. Commun. 352:226–30
    [Google Scholar]
  93. Rubenstein JL, Merzenich MM 2003. Model of autism: increased ratio of excitation/inhibition in key neural systems. Genes Brain Behav 2:255–67
    [Google Scholar]
  94. Sala C, Futai K, Yamamoto K, Worley PF, Hayashi Y, Sheng M 2003. Inhibition of dendritic spine morphogenesis and synaptic transmission by activity-inducible protein Homer1a. J. Neurosci. 23:6327–37
    [Google Scholar]
  95. Sanz E, Yang L, Su T, Morris DR, McKnight GS, Amieux PS 2009. Cell-type-specific isolation of ribosome-associated mRNA from complex tissues. PNAS 106:13939–44
    [Google Scholar]
  96. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J et al. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:671–84
    [Google Scholar]
  97. Schreiner D, Nguyen T-M, Russo G, Hebr S, Patrignani A et al. 2014. Targeted combinatorial alternative splicing generates brain region–specific repertoires of neurexins. Neuron 84:386–98
    [Google Scholar]
  98. Schreiner D, Simicevic J, Ahrné E, Schmidt A, Scheiffele P 2015. Quantitative isoform-profiling of highly diversified recognition molecules. eLife 4:e07794
    [Google Scholar]
  99. Shalek AK, Satija R, Adiconis X, Gertner RS, Gaublomme JT et al. 2013. Single-cell transcriptomics reveals bimodality in expression and splicing in immune cells. Nature 498:236–40
    [Google Scholar]
  100. Shekhar K, Lapan SW, Whitney IE, Tran NM, Macosko EZ et al. 2016. Comprehensive classification of retinal bipolar neurons by single-cell transcriptomics. Cell 166:1308–23.e1330
    [Google Scholar]
  101. Singh J, Padgett RA 2009. Rates of in situ transcription and splicing in large human genes. Nat. Struct. Mol. Biol. 16:1128–33
    [Google Scholar]
  102. Soba P, Zhu S, Emoto K, Younger S, Yang SJ et al. 2007. Drosophila sensory neurons require Dscam for dendritic self-avoidance and proper dendritic field organization. Neuron 54:403–16
    [Google Scholar]
  103. Song Y, Botvinnik OB, Lovci MT, Kakaradov B, Liu P et al. 2017. Single-cell alternative splicing analysis with expedition reveals splicing dynamics during neuron differentiation. Mol. Cell 67:148–61.e145
    [Google Scholar]
  104. Soong TW, DeMaria CD, Alvania RS, Zweifel LS, Liang MC et al. 2002. Systematic identification of splice variants in human P/Q-type channel α12.1 subunits: implications for current density and Ca2+-dependent inactivation. J. Neurosci. 22:10142–52
    [Google Scholar]
  105. Spiegel I, Mardinly AR, Gabel HW, Bazinet JE, Couch CH et al. 2014. Npas4 regulates excitatory-inhibitory balance within neural circuits through cell-type-specific gene programs. Cell 157:1216–29
    [Google Scholar]
  106. Stellwagen D, Shatz CJ 2002. An instructive role for retinal waves in the development of retinogeniculate connectivity. Neuron 33:357–67
    [Google Scholar]
  107. Stoss O, Novoyatleva T, Gencheva M, Olbrich M, Benderska N, Stamm S 2004. p59fyn-mediated phosphorylation regulates the activity of the tissue-specific splicing factor rSLM-1. Mol. Cell. Neurosci. 27:8–21
    [Google Scholar]
  108. Sugita S, Saito F, Tang J, Satz J, Campbell K, Sudhof TC 2001. A stoichiometric complex of neurexins and dystroglycan in brain. J. Cell Biol. 154:435–45
    [Google Scholar]
  109. Sun W, You X, Gogol-Doring A, He H, Kise Y et al. 2013. Ultra-deep profiling of alternatively spliced Drosophila Dscam isoforms by circularization-assisted multi-segment sequencing. EMBO J 32:2029–38
    [Google Scholar]
  110. Sur M, Rubenstein JL 2005. Patterning and plasticity of the cerebral cortex. Science 310:805–10
    [Google Scholar]
  111. Takahashi H, Craig AM 2013. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci 36:522–34
    [Google Scholar]
  112. Tapial J, Ha KCH, Sterne-Weiler T, Gohr A, Braunschweig U et al. 2017. An atlas of alternative splicing profiles and functional associations reveals new regulatory programs and genes that simultaneously express multiple major isoforms. Genome Res 27:1759–68
    [Google Scholar]
  113. Tasic B, Menon V, Nguyen TN, Kim TK, Jarsky T et al. 2016. Adult mouse cortical cell taxonomy revealed by single cell transcriptomics. Nat. Neurosci. 19:335–46
    [Google Scholar]
  114. Thalhammer A, Contestabile A, Ermolyuk YS, Ng T, Volynski KE et al. 2017. Alternative splicing of P/Q-type Ca2+ channels shapes presynaptic plasticity. Cell Rep 20:333–43
    [Google Scholar]
  115. Traunmüller L, Bornmann C, Scheiffele P 2014. Alternative splicing coupled nonsense-mediated decay generates neuronal cell type–specific expression of SLM proteins. J. Neurosci. 34:16755–61
    [Google Scholar]
  116. Traunmüller L, Gomez AM, Nguyen T-M, Scheiffele P 2016. Control of neuronal synapse specification by a highly dedicated alternative splicing program. Science 352:982–86
    [Google Scholar]
  117. Tress ML, Abascal F, Valencia A 2017. Alternative splicing may not be the key to proteome complexity. Trends Biochem. Sci. 42:98–110
    [Google Scholar]
  118. Treutlein B, Gokce O, Quake SR, Südhof TC 2014. Cartography of neurexin alternative splicing mapped by single-molecule long-read mRNA sequencing. PNAS 111:E1291–99
    [Google Scholar]
  119. Uemura T, Lee SJ, Yasumura M, Takeuchi T, Yoshida T et al. 2010. Trans-synaptic interaction of GluRδ2 and Neurexin through Cbln1 mediates synapse formation in the cerebellum. Cell 141:1068–79
    [Google Scholar]
  120. Ule J, Stefani G, Mele A, Ruggiu M, Wang X et al. 2006. An RNA map predicting Nova-dependent splicing regulation. Nature 444:580–86
    [Google Scholar]
  121. Van Nostrand EL, Pratt GA, Shishkin AA, Gelboin-Burkhart C, Fang MY et al. 2016. Robust transcriptome-wide discovery of RNA-binding protein binding sites with enhanced CLIP (eCLIP). Nat. Methods 13:508–14
    [Google Scholar]
  122. Venables JP, Vernet C, Chew SL, Elliott DJ, Cowmeadow RB et al. 1999. T-STAR/ETOILE: a novel relative of SAM68 that interacts with an RNA-binding protein implicated in spermatogenesis. Hum. Mol. Genet. 8:959–69
    [Google Scholar]
  123. Wang ET, Sandberg R, Luo S, Khrebtukova I, Zhang L et al. 2008. Alternative isoform regulation in human tissue transcriptomes. Nature 456:470–76
    [Google Scholar]
  124. Wang Z, Burge CB 2008. Splicing regulation: from a parts list of regulatory elements to an integrated splicing code. RNA 14:802–13
    [Google Scholar]
  125. Weatheritt RJ, Sterne-Weiler T, Blencowe BJ 2016. The ribosome-engaged landscape of alternative splicing. Nat. Struct. Mol. Biol. 23:1117–23
    [Google Scholar]
  126. West AE, Griffith EC, Greenberg ME 2002. Regulation of transcription factors by neuronal activity. Nat. Rev. Neurosci. 3:921–31
    [Google Scholar]
  127. Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL 2007. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130:1134–45
    [Google Scholar]
  128. Xie J 2008. Control of alternative pre-mRNA splicing by Ca++ signals. Biochim. Biophys. Acta 1779:438–52
    [Google Scholar]
  129. Xie J, Black DL 2001. A CaMK IV responsive RNA element mediates depolarization-induced alternative splicing of ion channels. Nature 410:936–39
    [Google Scholar]
  130. Xiong HY, Alipanahi B, Lee LJ, Bretschneider H, Merico D et al. 2015. The human splicing code reveals new insights into the genetic determinants of disease. Science 347:1254806
    [Google Scholar]
  131. Xue Y, Zhou Y, Wu T, Zhu T, Ji X et al. 2009. Genome-wide analysis of PTB-RNA interactions reveals a strategy used by the general splicing repressor to modulate exon inclusion or skipping. Mol. Cell 36:996–1006
    [Google Scholar]
  132. Yan Q, Weyn-Vanhentenryck SM, Wu J, Sloan SA, Zhang Y et al. 2015. Systematic discovery of regulated and conserved alternative exons in the mammalian brain reveals NMD modulating chromatin regulators. PNAS 112:3445–50
    [Google Scholar]
  133. Yap K, Xiao Y, Friedman BA, Je HS, Makeyev EV 2016. Polarizing the neuron through sustained co-expression of alternatively spliced isoforms. Cell Rep 15:1316–28
    [Google Scholar]
  134. Yoshida T, Yasumura M, Uemura T, Lee SJ, Ra M et al. 2011. IL-1 receptor accessory protein-like 1 associated with mental retardation and autism mediates synapse formation by trans-synaptic interaction with protein tyrosine phosphatase δ. J. Neurosci. 31:13485–99
    [Google Scholar]
  135. Zeisel A, Muñoz-Manchado AB, Codeluppi S, Lonnerberg P, La Manno G et al. 2015. Cell types in the mouse cortex and hippocampus revealed by single-cell RNA-seq. Science 347:1138–42
    [Google Scholar]
  136. Zhan XL, Clemens JC, Neves G, Hattori D, Flanagan JJ et al. 2004. Analysis of Dscam diversity in regulating axon guidance in Drosophila mushroom bodies. Neuron 43:673–86
    [Google Scholar]
  137. Zhang C, Frias MA, Mele A, Ruggiu M, Eom T et al. 2010. Integrative modeling defines the Nova splicing-regulatory network and its combinatorial controls. Science 329:439–43
    [Google Scholar]
  138. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:11929–47
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062826
Loading
/content/journals/10.1146/annurev-cellbio-100617-062826
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error