1932

Abstract

In recent years, thin membrane protrusions such as cytonemes and tunneling nanotubes have emerged as a novel mechanism of intercellular communication. Protrusion-based cellular interactions allow for specific communication between participating cells and have a distinct spectrum of advantages compared to secretion- and diffusion-based intercellular communication. Identification of protrusion-based signaling in diverse systems suggests that this mechanism is a ubiquitous and prevailing means of communication employed by many cell types. Moreover, accumulating evidence indicates that protrusion-based intercellular communication is often involved in pathogenesis, including cancers and infections. Here we review our current understanding of protrusion-based intercellular communication.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100617-062932
2018-10-06
2024-12-03
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/34/1/annurev-cellbio-100617-062932.html?itemId=/content/journals/10.1146/annurev-cellbio-100617-062932&mimeType=html&fmt=ahah

Literature Cited

  1. Abounit S, Bousset L, Loria F, Zhu S, de Chaumont F et al. 2016.a Tunneling nanotubes spread fibrillar alpha-synuclein by intercellular trafficking of lysosomes. EMBO J 35:2120–38
    [Google Scholar]
  2. Abounit S, Wu JW, Duff K, Victoria GS, Zurzolo C 2016.b Tunneling nanotubes: a possible highway in the spreading of tau and other prion-like proteins in neurodegenerative diseases. Prion 10:344–51
    [Google Scholar]
  3. Abounit S, Zurzolo C 2012. Wiring through tunneling nanotubes—from electrical signals to organelle transfer. J. Cell Sci. 125:1089–98
    [Google Scholar]
  4. Ady J, Thayanithy V, Mojica K, Wong P, Carson J et al. 2016. Tunneling nanotubes: an alternate route for propagation of the bystander effect following oncolytic viral infection. Mol. Ther. Oncolyt. 3:16029
    [Google Scholar]
  5. Aggarwal A, Iemma TL, Shih I, Newsome TP, McAllery S et al. 2012. Mobilization of HIV spread by diaphanous 2 dependent filopodia in infected dendritic cells. PLOS Pathog 8:e1002762
    [Google Scholar]
  6. Al Heialy S, Zeroual M, Farahnak S, McGovern T, Risse PA et al. 2015. Nanotubes connect CD4+ T cells to airway smooth muscle cells: novel mechanism of T cell survival. J. Immunol. 194:5626–34
    [Google Scholar]
  7. Albrecht-Buehler G 1976. Filopodia of spreading 3T3 cells. Do they have a substrate-exploring function. ? J. Cell Biol. 69:275–86
    [Google Scholar]
  8. Alexandre C, Baena-Lopez A, Vincent JP 2014. Patterning and growth control by membrane-tethered Wingless. Nature 505:180–85
    [Google Scholar]
  9. Andresen V, Wang X, Ghimire S, Omsland M, Gjertsen BT, Gerdes HH 2013. Tunneling nanotube (TNT) formation is independent of p53 expression. Cell Death Differ 20:1124
    [Google Scholar]
  10. Antanaviciute I, Rysevaite K, Liutkevicius V, Marandykina A, Rimkute L et al. 2014. Long-distance communication between laryngeal carcinoma cells. PLOS ONE 9:e99196
    [Google Scholar]
  11. Arellano-Anaya ZE, Huor A, Leblanc P, Lehmann S, Provansal M et al. 2015. Prion strains are differentially released through the exosomal pathway. Cell. Mol. Life Sci. 72:1185–96
    [Google Scholar]
  12. Ariazi J, Benowitz A, De Biasi V, Den Boer ML, Cherqui S et al. 2017. Tunneling nanotubes and gap junctions: their role in long-range intercellular communication during development, health, and disease conditions. Front. Mol. Neurosci. 10:333
    [Google Scholar]
  13. Arkwright PD, Luchetti F, Tour J, Roberts C, Ayub R et al. 2010. Fas stimulation of T lymphocytes promotes rapid intercellular exchange of death signals via membrane nanotubes. Cell Res 20:72–88
    [Google Scholar]
  14. Bischoff M, Gradilla AC, Seijo I, Andrés G, Rodríguez-Navas C et al. 2013. Cytonemes are required for the establishment of a normal Hedgehog morphogen gradient in Drosophila epithelia. Nat. Cell Biol. 15:1269–81
    [Google Scholar]
  15. Bittins M, Wang X 2017. TNT-induced phagocytosis: Tunneling nanotubes mediate the transfer of pro-phagocytic signals from apoptotic to viable cells. J. Cell. Physiol. 232:2271–79
    [Google Scholar]
  16. Bodeen WJ, Marada S, Truong A, Ogden SK 2017. A fixation method to preserve cultured cell cytonemes facilitates mechanistic interrogation of morphogen transport. Development 144:3612–24
    [Google Scholar]
  17. Bukoreshtliev NV, Wang X, Hodneland E, Gurke S, Barroso JF, Gerdes HH 2009. Selective block of tunneling nanotube (TNT) formation inhibits intercellular organelle transfer between PC12 cells. FEBS Lett 583:1481–88
    [Google Scholar]
  18. Caneparo L, Pantazis P, Dempsey W, Fraser SE 2011. Intercellular bridges in vertebrate gastrulation. PLOS ONE 6:e20230
    [Google Scholar]
  19. Chauveau A, Aucher A, Eissmann P, Vivier E, Davis DM 2010. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. PNAS 107:5545–50
    [Google Scholar]
  20. Chen W, Huang H, Hatori R, Kornberg TB 2017. Essential basal cytonemes take up Hedgehog in the Drosophila wing imaginal disc. Development 144:3134–44
    [Google Scholar]
  21. Connor Y, Tekleab S, Nandakumar S, Walls C, Tekleab Y et al. 2015. Physical nanoscale conduit-mediated communication between tumour cells and the endothelium modulates endothelial phenotype. Nat. Commun. 6:8671
    [Google Scholar]
  22. Costanzo M, Abounit S, Marzo L, Danckaert A, Chamoun Z et al. 2013. Transfer of polyglutamine aggregates in neuronal cells occurs in tunneling nanotubes. J. Cell Sci. 126:3678–85
    [Google Scholar]
  23. Cudmore S, Cossart P, Griffiths G, Way M 1995. Actin-based motility of vaccinia virus. Nature 378:636–38
    [Google Scholar]
  24. Danilchik M, Williams M, Brown E 2013. Blastocoel-spanning filopodia in cleavage-stage Xenopus laevis: potential roles in morphogen distribution and detection. Dev. Biol. 382:70–81
    [Google Scholar]
  25. de Rooij B, Polak R, Stalpers F, Pieters R, den Boer ML 2017. Tunneling nanotubes facilitate autophagosome transfer in the leukemic niche. Leukemia 31:1651–54
    [Google Scholar]
  26. Delage E, Cervantes DC, Penard E, Schmitt C, Syan S et al. 2016. Differential identity of filopodia and tunneling nanotubes revealed by the opposite functions of actin regulatory complexes. Sci. Rep. 6:39632
    [Google Scholar]
  27. Dieriks BV, Park TI, Fourie C, Faull RL, Dragunow M, Curtis MA 2017. α-Synuclein transfer through tunneling nanotubes occurs in SH-SY5Y cells and primary brain pericytes from Parkinson's disease patients. Sci. Rep. 7:42984
    [Google Scholar]
  28. Eugenin EA, Gaskill PJ, Berman JW 2009. Tunneling nanotubes (TNT) are induced by HIV-infection of macrophages: a potential mechanism for intercellular HIV trafficking. Cell. Immunol. 254:142–48
    [Google Scholar]
  29. Fairchild CL, Barna M 2014. Specialized filopodia: at the ‘tip’ of morphogen transport and vertebrate tissue patterning. Curr. Opin. Genet. Dev. 27:67–73
    [Google Scholar]
  30. Favoreel HW, Van Minnebruggen G, Adriaensen D, Nauwynck HJ 2005. Cytoskeletal rearrangements and cell extensions induced by the US3 kinase of an alphaherpesvirus are associated with enhanced spread. PNAS 102:8990–95
    [Google Scholar]
  31. Galli LM, Burrus LW 2011. Differential palmit(e)oylation of Wnt1 on C93 and S224 residues has overlapping and distinct consequences. PLOS ONE 6:e26636
    [Google Scholar]
  32. Gardel ML, Schneider IC, Aratyn-Schaus Y, Waterman CM 2010. Mechanical integration of actin and adhesion dynamics in cell migration. Annu. Rev. Cell Dev. Biol. 26:315–33
    [Google Scholar]
  33. Gerdes HH 2009. Prions tunnel between cells. Nat. Cell Biol. 11:235–36
    [Google Scholar]
  34. Gerdes HH, Carvalho RN 2008. Intercellular transfer mediated by tunneling nanotubes. Curr. Opin. Cell Biol. 20:470–75
    [Google Scholar]
  35. Gibbins JR, Tilney LG, Porter KR 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. I. The distribution of microtubules. J. Cell Biol. 41:201–26
    [Google Scholar]
  36. Gill MB, Edgar R, May JS, Stevenson PG 2008. A gamma-herpesvirus glycoprotein complex manipulates actin to promote viral spread. PLOS ONE 3:e1808
    [Google Scholar]
  37. González-Méndez L, Seijo-Barandiarán I, Guerrero I 2017. Cytoneme-mediated cell-cell contacts for Hedgehog reception. eLife 6:e24045
    [Google Scholar]
  38. Gousset K, Schiff E, Langevin C, Marijanovic Z, Caputo A et al. 2009. Prions hijack tunnelling nanotubes for intercellular spread. Nat. Cell Biol. 11:328–36
    [Google Scholar]
  39. Gradilla AC, González E, Seijo I, Andrés G, Bischoff M et al. 2014. Exosomes as Hedgehog carriers in cytoneme-mediated transport and secretion. Nat. Commun. 5:5649
    [Google Scholar]
  40. Gradilla AC, Guerrero I 2013. Cytoneme-mediated cell-to-cell signaling during development. Cell Tissue Res 352:59–66
    [Google Scholar]
  41. Grover VK, Valadez JG, Bowman AB, Cooper MK 2011. Lipid modifications of Sonic hedgehog ligand dictate cellular reception and signal response. PLOS ONE 6:e21353
    [Google Scholar]
  42. Gustafson T 1963. Cellular mechanisms in the morphogenesis of the sea urchin embryo. Cell contacts within the ectoderm and between mesenchyme and ectoderm cells. Exp. Cell Res. 32:570–89
    [Google Scholar]
  43. Gustafson T, Wolpert L 1961. Studies on the cellular basis of morphogenesis in the sea urchin embryo: gastrulation in vegetalized larvae. Exp. Cell Res. 22:437–49
    [Google Scholar]
  44. Gustafson T, Wolpert L 1967. Cellular movement and contact in sea urchin morphogenesis. Biol. Rev. Camb. Philos. Soc. 42:442–98
    [Google Scholar]
  45. Hanna SJ, McCoy-Simandle K, Miskolci V, Guo P, Cammer M et al. 2017. The role of Rho-GTPases and actin polymerization during macrophage tunneling nanotube biogenesis. Sci. Rep. 7:8547
    [Google Scholar]
  46. Hardin J 1988. The role of secondary mesenchyme cells during sea urchin gastrulation studied by laser ablation. Development 103:317–24
    [Google Scholar]
  47. Hardin JD 1987. Archenteron elongation in the sea urchin embryo is a microtubule-independent process. Dev. Biol. 121:253–62
    [Google Scholar]
  48. Hase K, Kimura S, Takatsu H, Ohmae M, Kawano S et al. 2009. M-Sec promotes membrane nanotube formation by interacting with Ral and the exocyst complex. Nat. Cell Biol. 11:1427–32
    [Google Scholar]
  49. Hashimoto M, Bhuyan F, Hiyoshi M, Noyori O, Nasser H et al. 2016. Potential role of the formation of tunneling nanotubes in HIV-1 spread in macrophages. J. Immunol. 196:1832–41
    [Google Scholar]
  50. Hsiung F, Ramirez-Weber FA, Iwaki DD, Kornberg TB 2005. Dependence of Drosophila wing imaginal disc cytonemes on Decapentaplegic. Nature 437:560–63
    [Google Scholar]
  51. Huang H, Kornberg TB 2015. Myoblast cytonemes mediate Wg signaling from the wing imaginal disc and Delta-Notch signaling to the air sac primordium. eLife 4:e06114
    [Google Scholar]
  52. Huang H, Kornberg TB 2016. Cells must express components of the planar cell polarity system and extracellular matrix to support cytonemes. eLife 5:e18979
    [Google Scholar]
  53. Inaba M, Buszczak M, Yamashita YM 2015. Nanotubes mediate niche-stem-cell signalling in the Drosophila testis. Nature 523:329–32
    [Google Scholar]
  54. Islam MN, Das SR, Emin MT, Wei M, Sun L et al. 2012. Mitochondrial transfer from bone-marrow–derived stromal cells to pulmonary alveoli protects against acute lung injury. Nat. Med. 18:759–65
    [Google Scholar]
  55. Jackson MV, Morrison TJ, Doherty DF, McAuley DF, Matthay MA et al. 2016. Mitochondrial transfer via tunneling nanotubes is an important mechanism by which mesenchymal stem cells enhance macrophage phagocytosis in the in vitro and in vivo models of ARDS. Stem Cells 34:2210–23
    [Google Scholar]
  56. Jacquemet G, Hamidi H, Ivaska J 2015. Filopodia in cell adhesion, 3D migration and cancer cell invasion. Curr. Opin. Cell Biol. 36:23–31
    [Google Scholar]
  57. Jansens RJJ, Van den Broeck W, De Pelsmaeker S, Lamote JAS, Van Waesberghe C et al. 2017. Pseudorabies virus US3-induced tunneling nanotubes contain stabilized microtubules, interact with neighboring cells via cadherins, and allow intercellular molecular communication. J. Virol. 91:e00749–17
    [Google Scholar]
  58. Jolly C, Kashefi K, Hollinshead M, Sattentau QJ 2004. HIV-1 cell to cell transfer across an Env-induced, actin-dependent synapse. J. Exp. Med. 199:283–93
    [Google Scholar]
  59. Jouvenet N, Windsor M, Rietdorf J, Hawes P, Monaghan P et al. 2006. African swine fever virus induces filopodia-like projections at the plasma membrane. Cell. Microbiol. 8:1803–11
    [Google Scholar]
  60. Karp GC, Solursh M 1985. Dynamic activity of the filopodia of sea urchin embryonic cells and their role in directed migration of the primary mesenchyme in vitro. Dev. Biol. 112:276–83
    [Google Scholar]
  61. Kimura S, Hase K, Ohno H 2013. The molecular basis of induction and formation of tunneling nanotubes. Cell Tissue Res 352:67–76
    [Google Scholar]
  62. Kimura S, Yamashita M, Yamakami-Kimura M, Sato Y, Yamagata A et al. 2016. Distinct roles for the N- and C-terminal regions of M-Sec in plasma membrane deformation during tunneling nanotube formation. Sci. Rep. 6:33548
    [Google Scholar]
  63. Kolesnikova L, Bohil AB, Cheney RE, Becker S 2007. Budding of Marburgvirus is associated with filopodia. Cell. Microbiol. 9:939–51
    [Google Scholar]
  64. Kornberg TB, Roy S 2014. Cytonemes as specialized signaling filopodia. Development 141:729–36
    [Google Scholar]
  65. Kumar A, Kim JH, Ranjan P, Metcalfe MG, Cao W et al. 2017. Influenza virus exploits tunneling nanotubes for cell-to-cell spread. Sci. Rep. 7:40360
    [Google Scholar]
  66. Liu K, Ji K, Guo L, Wu W, Lu H, Shan P, Yan C 2014. Mesenchymal stem cells rescue injured endothelial cells in an in vitro ischemia-reperfusion model via tunneling nanotube like structure–mediated mitochondrial transfer. Microvasc. Res. 92:10–18
    [Google Scholar]
  67. Lock JT, Parker I, Smith IF 2016. Communication of Ca2+ signals via tunneling membrane nanotubes is mediated by transmission of inositol trisphosphate through gap junctions. Cell Calcium 60:266–72
    [Google Scholar]
  68. Lou E, Fujisawa S, Morozov A, Barlas A, Romin Y et al. 2012. Tunneling nanotubes provide a unique conduit for intercellular transfer of cellular contents in human malignant pleural mesothelioma. PLOS ONE 7:e33093
    [Google Scholar]
  69. Lu J, Zheng X, Li F, Yu Y, Chen Z et al. 2017. Tunneling nanotubes promote intercellular mitochondria transfer followed by increased invasiveness in bladder cancer cells. Oncotarget 8:15539–52
    [Google Scholar]
  70. Luchetti F, Canonico B, Arcangeletti M, Guescini M, Cesarini E et al. 2012. Fas signalling promotes intercellular communication in T cells. PLOS ONE 7:e35766
    [Google Scholar]
  71. Luz M, Spannl-Müller S, Özhan G, Kagermeier-Schenk B, Rhinn M et al. 2014. Dynamic association with donor cell filopodia and lipid-modification are essential features of Wnt8a during patterning of the zebrafish neuroectoderm. PLOS ONE 9:e84922
    [Google Scholar]
  72. Mann RK, Beachy PA 2004. Novel lipid modifications of secreted protein signals. Annu. Rev. Biochem. 73:891–923
    [Google Scholar]
  73. Marlein CR, Zaitseva L, Piddock RE, Robinson SD, Edwards DR et al. 2017. NADPH oxidase-2 derived superoxide drives mitochondrial transfer from bone marrow stromal cells to leukemic blasts. Blood 130:1649–60
    [Google Scholar]
  74. McDonald D, Wu L, Bohks SM, KewalRamani VN, Unutmaz D, Hope TJ 2003. Recruitment of HIV and its receptors to dendritic cell–T cell junctions. Science 300:1295–97
    [Google Scholar]
  75. Miller J, Fraser SE, McClay D 1995. Dynamics of thin filopodia during sea urchin gastrulation. Development 121:2501–11
    [Google Scholar]
  76. Miura GI, Treisman JE 2006. Lipid modification of secreted signaling proteins. Cell Cycle 5:1184–88
    [Google Scholar]
  77. Moschoi R, Imbert V, Nebout M, Chiche J, Mary D et al. 2016. Protective mitochondrial transfer from bone marrow stromal cells to acute myeloid leukemic cells during chemotherapy. Blood 128:253–64
    [Google Scholar]
  78. Muller P, Rogers KW, Yu SR, Brand M, Schier AF 2013. Morphogen transport. Development 140:1621–38
    [Google Scholar]
  79. Naphade S, Sharma J, Gaide Chevronnay HP, Shook MA, Yeagy BA et al. 2015. Lysosomal cross-correction by hematopoietic stem cell–derived macrophages via tunneling nanotubes. Stem Cells 33:301–9
    [Google Scholar]
  80. Önfelt B, Nedvetzki S, Benninger RK, Purbhoo MA, Sowinski S et al. 2006. Structurally distinct membrane nanotubes between human macrophages support long-distance vesicular traffic or surfing of bacteria. J. Immunol. 177:8476–83
    [Google Scholar]
  81. Osswald M, Jung E, Sahm F, Solecki G, Venkataramani V et al. 2015. Brain tumour cells interconnect to a functional and resistant network. Nature 528:93–98
    [Google Scholar]
  82. Pasquier J, Guerrouahen BS, Al Thawadi H, Ghiabi P, Maleki M et al. 2013. Preferential transfer of mitochondria from endothelial to cancer cells through tunneling nanotubes modulates chemoresistance. J. Transl. Med. 11:94
    [Google Scholar]
  83. Patheja P, Sahu K 2017. Macrophage conditioned medium induced cellular network formation in MCF-7 cells through enhanced tunneling nanotube formation and tunneling nanotube mediated release of viable cytoplasmic fragments. Exp. Cell Res. 355:182–93
    [Google Scholar]
  84. Pepinsky RB, Zeng C, Wen D, Rayhorn P, Baker DP et al. 1998. Identification of a palmitic acid–modified form of human Sonic hedgehog. J. Biol. Chem. 273:14037–45
    [Google Scholar]
  85. Peralta B, Gil-Carton D, Castaño-Diez D, Bertin A, Boulogne C et al. 2013. Mechanism of membranous tunnelling nanotube formation in viral genome delivery. PLOS Biol 11:e1001667
    [Google Scholar]
  86. Polak R, de Rooij B, Pieters R, den Boer ML 2015. B-cell precursor acute lymphoblastic leukemia cells use tunneling nanotubes to orchestrate their microenvironment. Blood 126:2404–14
    [Google Scholar]
  87. Ramírez-Weber FA, Casso DJ, Aza-Blanc P, Tabata T, Kornberg TB 2000. Hedgehog signal transduction in the posterior compartment of the Drosophila wing imaginal disc. Mol. Cell 6:479–85
    [Google Scholar]
  88. Ramírez-Weber FA, Kornberg TB 1999. Cytonemes: cellular processes that project to the principal signaling center in Drosophila imaginal discs. Cell 97:599–607
    [Google Scholar]
  89. Resh MD 2006. Palmitoylation of ligands, receptors, and intracellular signaling molecules. Sci. STKE 2006:re14
    [Google Scholar]
  90. Roberts KL, Manicassamy B, Lamb RA 2015. Influenza A virus uses intercellular connections to spread to neighboring cells. J. Virol. 89:1537–49
    [Google Scholar]
  91. Rogers KW, Schier AF 2011. Morphogen gradients: from generation to interpretation. Annu. Rev. Cell Dev. Biol. 27:377–407
    [Google Scholar]
  92. Rojas-Ríos P, Guerrero I, González-Reyes A 2012. Cytoneme-mediated delivery of hedgehog regulates the expression of bone morphogenetic proteins to maintain germline stem cells in Drosophila. . PLOS Biol 10:e1001298
    [Google Scholar]
  93. Roy S, Hsiung F, Kornberg TB 2011. Specificity of Drosophila cytonemes for distinct signaling pathways. Science 332:354–58
    [Google Scholar]
  94. Roy S, Huang H, Liu S, Kornberg TB 2014. Cytoneme-mediated contact-dependent transport of the Drosophila decapentaplegic signaling protein. Science 343:1244624
    [Google Scholar]
  95. Roy S, Kornberg TB 2015. Paracrine signaling mediated at cell-cell contacts. BioEssays 37:25–33
    [Google Scholar]
  96. Rustom A 2016. The missing link: Does tunnelling nanotube-based supercellularity provide a new understanding of chronic and lifestyle diseases. ? Open Biol 6:160057
    [Google Scholar]
  97. Rustom A, Saffrich R, Markovic I, Walther P, Gerdes HH 2004. Nanotubular highways for intercellular organelle transport. Science 303:1007–10
    [Google Scholar]
  98. Sáenz-de-Santa-María I, Bernardo-Castiñeira C, Enciso E, García-Moreno I, Chiara JL et al. 2017. Control of long-distance cell-to-cell communication and autophagosome transfer in squamous cell carcinoma via tunneling nanotubes. Oncotarget 8:20939–60
    [Google Scholar]
  99. Sagar, Pröls F, Wiegreffe C, Scaal M 2015. Communication between distant epithelial cells by filopodia-like protrusions during embryonic development. Development 142:665–71
    [Google Scholar]
  100. Sanders TA, Llagostera E, Barna M 2013. Specialized filopodia direct long-range transport of SHH during vertebrate tissue patterning. Nature 497:628–32
    [Google Scholar]
  101. Sato M, Kornberg TB 2002. FGF is an essential mitogen and chemoattractant for the air sacs of the Drosophila tracheal system. Dev. Cell 3:195–207
    [Google Scholar]
  102. Schneider A, Simons M 2013. Exosomes: vesicular carriers for intercellular communication in neurodegenerative disorders. Cell Tissue Res 352:33–47
    [Google Scholar]
  103. Segal D, Dhanyasi N, Schejter ED, Shilo BZ 2016. Adhesion and fusion of muscle cells are promoted by filopodia. Dev. Cell 38:291–304
    [Google Scholar]
  104. Sherer NM, Lehmann MJ, Jimenez-Soto LF, Horensavitz C, Pypaert M, Mothes W 2007. Retroviruses can establish filopodial bridges for efficient cell-to-cell transmission. Nat. Cell Biol. 9:310–15
    [Google Scholar]
  105. Shrivastava A, Prasad A, Kuzontkoski PM, Yu J, Groopman JE 2015. Slit2N inhibits transmission of HIV-1 from dendritic cells to T-cells by modulating novel cytoskeletal elements. Sci. Rep. 5:16833
    [Google Scholar]
  106. Sigler L, Congly H 1990. Toenail infection caused by Onychocola canadensis gen. et sp. nov. J. Med. Vet. Mycol. 28:405–17
    [Google Scholar]
  107. Sisakhtnezhad S, Khosravi L 2015. Emerging physiological and pathological implications of tunneling nanotubes formation between cells. Eur. J. Cell Biol. 94:429–43
    [Google Scholar]
  108. Sowinski S, Jolly C, Berninghausen O, Purbhoo MA, Chauveau A et al. 2008. Membrane nanotubes physically connect T cells over long distances presenting a novel route for HIV-1 transmission. Nat. Cell Biol. 10:211–19
    [Google Scholar]
  109. Stanganello E, Hagemann AI, Mattes B, Sinner C, Meyen D et al. 2015. Filopodia-based Wnt transport during vertebrate tissue patterning. Nat. Commun. 6:5846
    [Google Scholar]
  110. Stanganello E, Scholpp S 2016. Role of cytonemes in Wnt transport. J. Cell Sci. 129:665–72
    [Google Scholar]
  111. Sun X, Wang Y, Zhang J, Tu J, Wang XJ et al. 2012. Tunneling-nanotube direction determination in neurons and astrocytes. Cell Death Dis 3:e438
    [Google Scholar]
  112. Tardivel M, Begard S, Bousset L, Dujardin S, Coens A et al. 2016. Tunneling nanotube (TNT)-mediated neuron-to neuron transfer of pathological Tau protein assemblies. Acta Neuropathol. Commun. 4:117
    [Google Scholar]
  113. Thayanithy V, Dickson EL, Steer C, Subramanian S, Lou E 2014. Tumor-stromal cross talk: direct cell-to-cell transfer of oncogenic microRNAs via tunneling nanotubes. Transl. Res. 164:359–65
    [Google Scholar]
  114. Tilney LG, Gibbins JR 1969. Microtubules in the formation and development of the primary mesenchyme in Arbacia punctulata. II. An experimental analysis of their role in development and maintenance of cell shape. J. Cell Biol. 41:227–50
    [Google Scholar]
  115. Tilney LG, Portnoy DA 1989. Actin filaments and the growth, movement, and spread of the intracellular bacterial parasite, Listeria monocytogenes. J. Cell Biol. 109:1597–608
    [Google Scholar]
  116. Trelstad RL, Hay ED, Revel JD 1967. Cell contact during early morphogenesis in the chick embryo. Dev. Biol. 16:78–106
    [Google Scholar]
  117. Vallabhaneni KC, Haller H, Dumler I 2012. Vascular smooth muscle cells initiate proliferation of mesenchymal stem cells by mitochondrial transfer via tunneling nanotubes. Stem Cells Dev 21:173104–13
    [Google Scholar]
  118. Van Prooyen N, Gold H, Andresen V, Schwartz O, Jones K et al. 2010. Human T-cell leukemia virus type 1 p8 protein increases cellular conduits and virus transmission. PNAS 107:20738–43
    [Google Scholar]
  119. Victoria GS, Arkhipenko A, Zhu S, Syan S, Zurzolo C 2016. Astrocyte-to-neuron intercellular prion transfer is mediated by cell-cell contact. Sci. Rep. 6:20762
    [Google Scholar]
  120. Vignais ML, Caicedo A, Brondello JM, Jorgensen C 2017. Cell connections by tunneling nanotubes: effects of mitochondrial trafficking on target cell metabolism, homeostasis, and response to therapy. Stem Cells Int 2017:6917941
    [Google Scholar]
  121. Wang X, Bukoreshtliev NV, Gerdes HH 2012. Developing neurons form transient nanotubes facilitating electrical coupling and calcium signaling with distant astrocytes. PLOS ONE 7:e47429
    [Google Scholar]
  122. Wang X, Gerdes HH 2012. Long-distance electrical coupling via tunneling nanotubes. Biochim. Biophys. Acta 1818:2082–86
    [Google Scholar]
  123. Wang X, Gerdes HH 2015. Transfer of mitochondria via tunneling nanotubes rescues apoptotic PC12 cells. Cell Death Differ 22:1181–91
    [Google Scholar]
  124. Wang X, Veruki ML, Bukoreshtliev NV, Hartveit E, Gerdes HH 2010. Animal cells connected by nanotubes can be electrically coupled through interposed gap-junction channels. PNAS 107:17194–99
    [Google Scholar]
  125. Wang Y, Cui J, Sun X, Zhang Y 2011. Tunneling-nanotube development in astrocytes depends on p53 activation. Cell Death Differ 18:732–42
    [Google Scholar]
  126. Watkins SC, Salter RD 2005. Functional connectivity between immune cells mediated by tunneling nanotubules. Immunity 23:309–18
    [Google Scholar]
  127. Wittig D, Wang X, Walter C, Gerdes HH, Funk RH, Roehlecke C 2012. Multi-level communication of human retinal pigment epithelial cells via tunneling nanotubes. PLOS ONE 7:e33195
    [Google Scholar]
  128. Wolpert L 2016. Positional information and pattern formation. Curr. Top. Dev. Biol. 117:597–608
    [Google Scholar]
  129. Xu W, Santini PA, Sullivan JS, He B, Shan M et al. 2009. HIV-1 evades virus-specific IgG2 and IgA responses by targeting systemic and intestinal B cells via long-range intercellular conduits. Nat. Immunol. 10:1008–17
    [Google Scholar]
  130. Zhu D, Tan KS, Zhang X, Sun AY, Sun GY, Lee JC 2005. Hydrogen peroxide alters membrane and cytoskeleton properties and increases intercellular connections in astrocytes. J. Cell Sci. 118:3695–703
    [Google Scholar]
  131. Zhu S, Victoria GS, Marzo L, Ghosh R, Zurzolo C 2015. Prion aggregates transfer through tunneling nanotubes in endocytic vesicles. Prion 9:125–35
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100617-062932
Loading
/content/journals/10.1146/annurev-cellbio-100617-062932
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error