Correct and timely lineage decisions are critical for normal embryonic development and homeostasis of adult tissues. Therefore, the search for fundamental principles that underlie lineage decision-making lies at the heart of developmental biology. Here, we review attempts to understand lineage decision-making as the interplay of single-cell heterogeneity and gene regulation. Fluctuations at the single-cell level are an important driving force behind cell-state transitions and the creation of cell-type diversity. Gene regulatory networks amplify such fluctuations and define stable cell types. They also mediate the influence of signaling inputs on the lineage decision. In this review, we focus on insights gleaned from in vitro differentiation of embryonic stem cells. We discuss emerging concepts, with an emphasis on transcriptional regulation, dynamical aspects of differentiation, and functional single-cell heterogeneity. We also highlight some novel tools to study lineage decision-making in vitro.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abranches E, Guedes AMV, Moravec M, Maamar H, Svoboda P. et al. 2014. Stochastic NANOG fluctuations allow mouse embryonic stem cells to explore pluripotency. Development 141:142770–79 [Google Scholar]
  2. Alon U. 2007. Network motifs: theory and experimental approaches. Nat. Rev. Genet. 8:6450–61 [Google Scholar]
  3. Alvarez-Dominguez JR, Hu W, Yuan B, Shi J, Park SS. et al. 2014. Global discovery of erythroid long noncoding RNAs reveals novel regulators of red cell maturation. Blood 123:4570–81 [Google Scholar]
  4. Ankam S, Teo BK, Kukumberg M, Yim EK. 2013. High throughput screening to investigate the interaction of stem cells with their extracellular microenvironment. Organogenesis 9:3128–42 [Google Scholar]
  5. Balázsi G, van Oudenaarden A, Collins JJ. 2011. Cellular decision making and biological noise: from microbes to mammals. Cell 144:6910–25 [Google Scholar]
  6. Barabási A-L, Albert R. 1999. Emergence of scaling in random networks. Science 286:5439509–12 [Google Scholar]
  7. Barabási A-L, Oltvai ZN. 2004. Network biology: understanding the cell's functional organization. Nat. Rev. Genet. 5:2101–13 [Google Scholar]
  8. Beddington RS, Robertson EJ. 1989. An assessment of the developmental potential of embryonic stem cells in the midgestation mouse embryo. Development 105:4733–37 [Google Scholar]
  9. Bendall SC, Davis KL, Amir E-AD, Tadmor MD, Simonds EF. et al. 2014. Single-cell trajectory detection uncovers progression and regulatory coordination in human B cell development. Cell 157:3714–25 [Google Scholar]
  10. Bendall SC, Simonds EF, Qiu P, Amir E-AD, Krutzik PO. et al. 2011. Single-cell mass cytometry of differential immune and drug responses across a human hematopoietic continuum. Science 332:6030687–96 [Google Scholar]
  11. Bernstein BE, Mikkelsen TS, Xie X, Kamal M, Huebert DJ. et al. 2006. A bivalent chromatin structure marks key developmental genes in embryonic stem cells. Cell 125:2315–26 [Google Scholar]
  12. Betschinger J, Nichols J, Dietmann S, Corrin PD, Paddison PJ, Smith A. 2013. Exit from pluripotency is gated by intracellular redistribution of the bHLH transcription factor Tfe3. Cell 153:2335–47 [Google Scholar]
  13. Bheda P, Schneider R. 2014. Epigenetics reloaded: the single-cell revolution. Trends Cell Biol. 24:11712–23 [Google Scholar]
  14. Bodaker M, Meshorer E, Mitrani E, Louzoun Y. 2014. Genes related to differentiation are correlated with the gene regulatory network structure. Bioinformatics 30:3406–13 [Google Scholar]
  15. Boroviak T, Loos R, Bertone P, Smith A, Nichols J. 2014. The ability of inner-cell-mass cells to self-renew as embryonic stem cells is acquired following epiblast specification. Nat. Cell Biol. 16:6516–28 [Google Scholar]
  16. Boyer LA, Lee TI, Cole MF, Johnstone SE, Levine SS. et al. 2005. Core transcriptional regulatory circuitry in human embryonic stem cells. Cell 122:6947–56 [Google Scholar]
  17. Boyer LA, Plath K, Zeitlinger J, Brambrink T, Medeiros LA. et al. 2006. Polycomb complexes repress developmental regulators in murine embryonic stem cells. Nature 441:7091349–53 [Google Scholar]
  18. Brons IGM, Smithers LE, Trotter MWB, Rugg-Gunn P, Sun B. et al. 2007. Derivation of pluripotent epiblast stem cells from mammalian embryos. Nature 448:7150191–95 [Google Scholar]
  19. Buecker C, Srinivasan R, Wu Z, Calo E, Acampora D. et al. 2014. Reorganization of enhancer patterns in transition from naive to primed pluripotency. Cell Stem Cell 14:6838–53 [Google Scholar]
  20. Buettner F, Natarajan KN, Casale FP, Proserpio V, Scialdone A. et al. 2015. Computational analysis of cell-to-cell heterogeneity in single-cell RNA-sequencing data reveals hidden subpopulations of cells. Nat. Biotechnol. 33:2155–60 [Google Scholar]
  21. Cahan P, Li H, Morris SA, Lummertz da Rocha E, Daley GQ, Collins JJ. 2014. CellNet: network biology applied to stem cell engineering. Cell 158:4903–15 [Google Scholar]
  22. Calo E, Wysocka J. 2013. Modification of enhancer chromatin: what, how, and why?. Mol. Cell 49:5825–37 [Google Scholar]
  23. Canham MA, Sharov AA, Ko MSH, Brickman JM. 2010. Functional heterogeneity of embryonic stem cells revealed through translational amplification of an early endodermal transcript. PLOS Biol. 8:5e1000379 [Google Scholar]
  24. Capo-Chichi CD, Rula ME, Smedberg JL, Vanderveer L, Parmacek MS. et al. 2005. Perception of differentiation cues by GATA factors in primitive endoderm lineage determination of mouse embryonic stem cells. Dev. Biol. 286:2574–86 [Google Scholar]
  25. Cavalli G, Misteli T. 2013. Functional implications of genome topology. Nat. Struct. Mol. Biol. 20:3290–99 [Google Scholar]
  26. Chambers I, Silva J, Colby D, Nichols J, Nijmeijer B. et al. 2007. Nanog safeguards pluripotency and mediates germline development. Nature 450:71731230–34 [Google Scholar]
  27. Chan Y-S, Göke J, Ng J-H, Lu X, Gonzales KAU. et al. 2013. Induction of a human pluripotent state with distinct regulatory circuitry that resembles preimplantation epiblast. Cell Stem Cell 13:6663–75 [Google Scholar]
  28. Chang HH, Hemberg M, Barahona M, Ingber DE, Huang S. 2008. Transcriptome-wide noise controls lineage choice in mammalian progenitor cells. Nature 453:7194544–47 [Google Scholar]
  29. Chen H, Guo J, Mishra SK, Robson P, Niranjan M, Zheng J. 2014. Single-cell transcriptional analysis to uncover regulatory circuits driving cell fate decisions in early mouse development. Bioinformatics 31:71060–66 [Google Scholar]
  30. Chen J-Y, Lin J-R, Cimprich KA, Meyer T. 2012. A two-dimensional ERK-AKT signaling code for an NGF-triggered cell-fate decision. Mol. Cell 45:2196–209 [Google Scholar]
  31. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015. Spatially resolved, highly multiplexed RNA profiling in single cells. Science 348:6233aaa6090 [Google Scholar]
  32. Chen T, Dent SYR. 2013. Chromatin modifiers and remodellers: regulators of cellular differentiation. Nat. Rev. Genet. 15:293–106 [Google Scholar]
  33. Chen X, Xu H, Yuan P, Fang F, Huss M. et al. 2008. Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell 133:61106–17 [Google Scholar]
  34. Cohen DE, Melton D. 2011. Turning straw into gold: directing cell fate for regenerative medicine. Nat. Rev. Genet. 12:4243–52 [Google Scholar]
  35. Coronado D, Godet M, Bourillot P-Y, Tapponnier Y, Bernat A. et al. 2013. A short G1 phase is an intrinsic determinant of naïve embryonic stem cell pluripotency. Stem Cell Res. 10:1118–31 [Google Scholar]
  36. Crosetto N, Bienko M, van Oudenaarden A. 2015. Spatially resolved transcriptomics and beyond. Nat. Rev. Genet. 16:157–66 [Google Scholar]
  37. Dan J, Li M, Yang J, Li J, Okuka M. et al. 2013. Roles for Tbx3 in regulation of two-cell state and telomere elongation in mouse ES cells. Sci. Rep. 3:3492 [Google Scholar]
  38. Deng Q, Ramsköld D, Reinius B, Sandberg R. 2014. Single-cell RNA-seq reveals dynamic, random monoallelic gene expression in mammalian cells. Science 343:6167193–96 [Google Scholar]
  39. Dunn SJ, Martello G, Yordanov B, Emmott S, Smith AG. 2014. Defining an essential transcription factor program for naive pluripotency. Science 344:61881156–60 [Google Scholar]
  40. Ebert MS, Sharp PA. 2012. Roles for microRNAs in conferring robustness to biological processes. Cell 149:3515–24 [Google Scholar]
  41. Eckersley-Maslin MA, Spector DL. 2014. Random monoallelic expression: regulating gene expression one allele at a time. Trends Genet. 30:6237–44 [Google Scholar]
  42. Eiraku M, Takata N, Ishibashi H, Kawada M, Sakakura E. et al. 2011. Self-organizing optic-cup morphogenesis in three-dimensional culture. Nature 472:734151–56 [Google Scholar]
  43. Elowitz MB. 2002. Stochastic gene expression in a single cell. Science 297:55841183–86 [Google Scholar]
  44. Engberg N, Kahn M, Petersen DR, Hansson M, Serup P. 2010. Retinoic acid synthesis promotes development of neural progenitors from mouse embryonic stem cells by suppressing endogenous, Wnt-dependent nodal signaling. Stem Cells 28:91498–509 [Google Scholar]
  45. Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89 [Google Scholar]
  46. Enver T, Pera M, Peterson C, Andrews PW. 2009. Stem cell states, fates, and the rules of attraction. Cell Stem Cell 4:5387–97 [Google Scholar]
  47. Etzrodt M, Endele M, Schroeder T. 2014. Quantitative single-cell approaches to stem cell research. Stem Cell 15:5546–58 [Google Scholar]
  48. Faddah DA, Wang H, Cheng AW, Katz Y, Buganim Y, Jaenisch R. 2013. Single-cell analysis reveals that expression of Nanog is biallelic and equally variable as that of other pluripotency factors in mouse ESCs. Cell Stem Cell 13:123–29 [Google Scholar]
  49. Fang M, Xie H, Dougan SK, Ploegh H, van Oudenaarden A. 2013. Stochastic cytokine expression induces mixed T helper cell states. PLOS Biol. 11:7e1001618 [Google Scholar]
  50. Fatica A, Bozzoni I. 2014. Long non-coding RNAs: new players in cell differentiation and development. Nat. Rev. Genet. 15:17–21 [Google Scholar]
  51. Feldman N, Gerson A, Fang J, Li E, Zhang Y. et al. 2006. G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early embryogenesis. Nat. Cell Biol. 8:2188–94 [Google Scholar]
  52. Ficz G, Hore TA, Santos F, Lee HJ, Dean W. et al. 2013. FGF signaling inhibition in ESCs drives rapid genome-wide demethylation to the epigenetic ground state of pluripotency. Cell Stem Cell 13:3351–59 [Google Scholar]
  53. Filipczyk A, Gkatzis K, Fu J, Hoppe PS, Lickert H. et al. 2013. Biallelic expression of Nanog protein in mouse embryonic stem cells. Cell Stem Cell 13:112–13 [Google Scholar]
  54. Flaim CJ, Teng D, Chien S, Bhatia SN. 2008. Combinatorial signaling microenvironments for studying stem cell fate. Stem Cells Dev. 17:129–39 [Google Scholar]
  55. Forster R, Chiba K, Schaeffer L, Regalado SG, Lai CS. et al. 2014. Human intestinal tissue with adult stem cell properties derived from pluripotent stem cells. Stem Cell Rep. 2:6838–52 [Google Scholar]
  56. Furusawa C, Kaneko K. 2012. A dynamical-systems view of stem cell biology. Science 338:6104215–17 [Google Scholar]
  57. Gafni O, Weinberger L, Mansour AA, Manor YS, Chomsky E. et al. 2013. Derivation of novel human ground state naive pluripotent stem cells. Nature 504:7479282–86 [Google Scholar]
  58. Gifford CA, Ziller MJ, Gu H, Trapnell C, Donaghey J. et al. 2013. Transcriptional and epigenetic dynamics during specification of human embryonic stem cells. Cell 153:51149–63 [Google Scholar]
  59. Golding I, Paulsson J, Zawilski SM, Cox EC. 2005. Real-time kinetics of gene activity in individual bacteria. Cell 123:61025–36 [Google Scholar]
  60. Gorkin DU, Leung D, Ren B. 2014. The 3D genome in transcriptional regulation and pluripotency. Cell Stem Cell 14:6762–75 [Google Scholar]
  61. Grün D, Kester L, van Oudenaarden A. 2014. Validation of noise models for single-cell transcriptomics. Nat. Methods 11:6637–40 [Google Scholar]
  62. Grün D, Lyubimova A, Kester L, Wiebrands K, Basak O. et al. 2015. Single-cell messenger RNA sequencing reveals rare intestinal cell types. Nature 525:251–55 [Google Scholar]
  63. Guallar D, Perez-Palacios R, Climent M, Martinez-Abadia I, Larraga A. et al. 2012. Expression of endogenous retroviruses is negatively regulated by the pluripotency marker Rex1/Zfp42. Nucleic Acids Res. 40:188993–9007 [Google Scholar]
  64. Guo H, Ingolia NT, Weissman JS, Bartel DP. 2010. Mammalian microRNAs predominantly act to decrease target mRNA levels. Nature 466:7308835–40 [Google Scholar]
  65. Guttman M, Donaghey J, Carey BW, Garber M, Grenier JK. et al. 2011. lincRNAs act in the circuitry controlling pluripotency and differentiation. Nature 447:7364295–300 [Google Scholar]
  66. Habibi E, Brinkman AB, Arand J, Kroeze LI, Kerstens HHD. et al. 2013. Whole-genome bisulfite sequencing of two distinct interconvertible DNA methylomes of mouse embryonic stem cells. Cell Stem Cell 13:3360–69 [Google Scholar]
  67. Hamazaki T, Oka M, Yamanaka S, Terada N. 2004. Aggregation of embryonic stem cells induces Nanog repression and primitive endoderm differentiation. J. Cell Sci. 117:Pt 235681–86 [Google Scholar]
  68. Hamilton WB, Brickman JM. 2014. Erk signaling suppresses embryonic stem cell self-renewal to specify endoderm. Cell Rep. 9:62056–70 [Google Scholar]
  69. Hansen CH, van Oudenaarden A. 2013. Allele-specific detection of single mRNA molecules in situ. Nat. Methods 10:9869–71 [Google Scholar]
  70. Hayashi K, Chuva de Sousa Lopes SM, Tang F, Surani MA. 2008. Dynamic equilibrium and heterogeneity of mouse pluripotent stem cells with distinct functional and epigenetic states. Cell Stem Cell 3:4391–401 [Google Scholar]
  71. Hnisz D, Abraham BJ, Lee TI, Lau A, Saint-André V. et al. 2013. Super-enhancers in the control of cell identity and disease. Cell 155:4934–47 [Google Scholar]
  72. Hong S-H, Rampalli S, Lee JB, McNicol J, Collins T. et al. 2011. Cell fate potential of human pluripotent stem cells is encoded by histone modifications. Cell Stem Cell 9:124–36 [Google Scholar]
  73. Hoppe PS, Coutu DL, Schroeder T. 2014. Single-cell technologies sharpen up mammalian stem cell research. Nat. Cell Biol. 16:10919–27 [Google Scholar]
  74. Hough SR, Thornton M, Mason E, Mar JC, Wells CA, Pera MF. 2014. Single-cell gene expression profiles define self-renewing, pluripotent, and lineage primed states of human pluripotent stem cells. Stem Cell Rep. 2:6881–95 [Google Scholar]
  75. Huang S, Eichler G, Bar-Yam Y, Ingber DE. 2005. Cell fates as high-dimensional attractor states of a complex gene regulatory network. Phys. Rev. Lett. 94:12128701 [Google Scholar]
  76. Huang S, Guo Y, May G, Enver T. 2007. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. Dev. Biol. 305:2695–713 [Google Scholar]
  77. Huang S, Kauffman SA. 2012. Complex gene regulatory networks—from structure to biological observables: cell fate determination. Computational Complexity RA Meyers 527–60 New York: Springer [Google Scholar]
  78. Huh D, Paulsson J. 2011. Random partitioning of molecules at cell division. PNAS 108:3615004–9 [Google Scholar]
  79. Imayoshi I, Isomura A, Harima Y, Kawaguchi K, Kori H. et al. 2013. Oscillatory control of factors determining multipotency and fate in mouse neural progenitors. Science 342:61631203–8 [Google Scholar]
  80. Ivanova N, Dobrin R, Lu R, Kotenko I, Levorse J. et al. 2006. Dissecting self-renewal in stem cells with RNA interference. Nature 442:7102533–38 [Google Scholar]
  81. Jackson SA, Schiesser J, Stanley EG, Elefanty AG. 2010. Differentiating embryonic stem cells pass through ‘temporal windows’ that mark responsiveness to exogenous and paracrine mesendoderm inducing signals. PLOS ONE 5:5e10706 [Google Scholar]
  82. Jaenisch R, Young R. 2008. Stem cells, the molecular circuitry of pluripotency and nuclear reprogramming. Cell 132:4567–82 [Google Scholar]
  83. Jaitin DA, Kenigsberg E, Keren-Shaul H, Elefant N, Paul F. et al. 2014. Massively parallel single-cell RNA-seq for marker-free decomposition of tissues into cell types. Science 343:6172776–79 [Google Scholar]
  84. Junker JP, van Oudenaarden A. 2012. When noisy neighbors are a blessing: Analysis of gene expression noise identifies coregulated genes. Mol. Cell 45:4437–38 [Google Scholar]
  85. Junker JP, van Oudenaarden A. 2014. Every cell is special: Genome-wide studies add a new dimension to single-cell biology. Cell 157:18–11 [Google Scholar]
  86. Kalkan T, Smith A. 2014. Mapping the route from naive pluripotency to lineage specification. Philos. Trans. R. Soc. B 369:165720130540 [Google Scholar]
  87. Kalmar T, Lim C, Hayward P, Muñoz-Descalzo S, Nichols J. et al. 2009. Regulated fluctuations in Nanog expression mediate cell fate decisions in embryonic stem cells. PLOS Biol. 7:7e1000149 [Google Scholar]
  88. Kim J, Chu J, Shen X, Wang J, Orkin SH. 2008. An extended transcriptional network for pluripotency of embryonic stem cells. Cell 132:61049–61 [Google Scholar]
  89. Kim M, Habiba A, Doherty JM, Mills JC, Mercer RW, Huettner JE. 2009. Regulation of mouse embryonic stem cell neural differentiation by retinoic acid. Dev. Biol. 328:2456–71 [Google Scholar]
  90. Kim T-K, Hemberg M, Gray JM, Costa AM, Bear DM. et al. 2010. Widespread transcription at neuronal activity-regulated enhancers. Nature 465:7295182–87 [Google Scholar]
  91. Klattenhoff CA, Scheuermann JC, Surface LE, Bradley RK, Fields PA. et al. 2013. Braveheart, a long noncoding RNA required for cardiovascular lineage commitment. Cell 152:3570–83 [Google Scholar]
  92. Klein AM, Mazutis L, Akartuna I, Tallapragada N, Veres A. et al. 2015. Droplet barcoding for single-cell transcriptomics applied to embryonic stem cells. Cell 161:51187–1201 [Google Scholar]
  93. Klemm S, Semrau S, Wiebrands K, Mooijman D, Faddah DA. et al. 2014. Transcriptional profiling of cells sorted by RNA abundance. Nat. Methods 11:5549–51 [Google Scholar]
  94. Kobayashi T, Mizuno H, Imayoshi I, Furusawa C, Shirahige K, Kageyama R. 2009. The cyclic gene Hes1 contributes to diverse differentiation responses of embryonic stem cells. Gene Dev. 23:161870–75 [Google Scholar]
  95. Koike-Yusa H, Li Y, Tan E-P, Velasco-Herrera MDC, Yusa K. 2013. Genome-wide recessive genetic screening in mammalian cells with a lentiviral CRISPR-guide RNA library. Nat. Biotechnol. 32:3267–73 [Google Scholar]
  96. Kumar RM, Cahan P, Shalek AK, Satija R, DaleyKeyser AJ. et al. 2014. Deconstructing transcriptional heterogeneity in pluripotent stem cells. Nature 516:752956–61 [Google Scholar]
  97. Kunath T, Saba-El-Leil MK, Almousailleakh M, Wray J, Meloche S, Smith A. 2007. FGF stimulation of the Erk1/2 signalling cascade triggers transition of pluripotent embryonic stem cells from self-renewal to lineage commitment. Development 134:162895–902 [Google Scholar]
  98. Lancaster MA, Renner M, Martin C-A, Wenzel D, Bicknell LS. et al. 2013. Cerebral organoids model human brain development and microcephaly. Nature 501:7467373–79 [Google Scholar]
  99. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL. et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:61771360–63 [Google Scholar]
  100. Lee TI, Young RA. 2013. Transcriptional regulation and its misregulation in disease. Cell 152:61237–51 [Google Scholar]
  101. Leeb M, Dietmann S, Paramor M, Niwa H, Smith A. 2014. Genetic exploration of the exit from self-renewal using haploid embryonic stem cells. Cell Stem Cell 14:3385–93 [Google Scholar]
  102. Leitch HG, McEwen KR, Turp A, Encheva V, Carroll T. et al. 2013. Naive pluripotency is associated with global DNA hypomethylation. Nat. Struct. Mol. Biol. 20:3311–16 [Google Scholar]
  103. Li VC, Kirschner MW. 2014. Molecular ties between the cell cycle and differentiation in embryonic stem cells. PNAS 111:269503–8 [Google Scholar]
  104. Loh KM, Ang LT, Zhang J, Kumar V, Ang J. et al. 2014. Efficient endoderm induction from human pluripotent stem cells by logically directing signals controlling lineage bifurcations. Cell Stem Cell 14:2237–52 [Google Scholar]
  105. Loh KM, Lim B. 2011. A precarious balance: pluripotency factors as lineage specifiers. Cell Stem Cell 8:4363–69 [Google Scholar]
  106. Loh Y-H, Wu Q, Chew J-L, Vega VB, Zhang W. et al. 2006. The Oct4 and Nanog transcription network regulates pluripotency in mouse embryonic stem cells. Nat. Genet. 38:4431–40 [Google Scholar]
  107. Lu R, Markowetz F, Unwin RD, Leek JT, Airoldi EM. et al. 2009. Systems-level dynamic analyses of fate change in murine embryonic stem cells. Nature 462:7271358–62 [Google Scholar]
  108. MacArthur BD, Lemischka IR. 2013. Statistical mechanics of pluripotency. Cell 154:3484–89 [Google Scholar]
  109. MacArthur BD, Ma'ayan A, Lemischka IR. 2009. Systems biology of stem cell fate and cellular reprogramming. Nat. Rev. Mol. Cell Biol. 10:10672–81 [Google Scholar]
  110. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM. et al. 2012. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:740557–63 [Google Scholar]
  111. Macosko EZ, Basu A, Satija R, Nemesh J, Shekhar K. et al. 2015. Highly parallel genome-wide expression profiling of individual cells using nanoliter droplets. Cell 161:51202–14 [Google Scholar]
  112. Magnani L, Eeckhoute J, Lupien M. 2011. Pioneer factors: directing transcriptional regulators within the chromatin environment. Trends Genet. 27:11465–74 [Google Scholar]
  113. Mahony S, Mazzoni EO, McCuine S, Young RA, Wichterle H, Gifford DK. 2011. Ligand-dependent dynamics of retinoic acid receptor binding during early neurogenesis. Genome Biol. 12:1R2 [Google Scholar]
  114. Marco E, Karp RL, Guo G, Robson P, Hart AH. et al. 2014. Bifurcation analysis of single-cell gene expression data reveals epigenetic landscape. PNAS 111:52E5643–50 [Google Scholar]
  115. Marson A, Levine SS, Cole MF, Frampton GM, Brambrink T. et al. 2008. Connecting microRNA genes to the core transcriptional regulatory circuitry of embryonic stem cells. Cell 134:3521–33 [Google Scholar]
  116. Martinez Arias A, Brickman JM. 2011. Gene expression heterogeneities in embryonic stem cell populations: origin and function. Curr. Opin. Cell Biol. 23:6650–56 [Google Scholar]
  117. Meinhardt A, Eberle D, Tazaki A, Ranga A, Niesche M. et al. 2014. 3D reconstitution of the patterned neural tube from embryonic stem cells. Stem Cell Rep. 3:6987–99 [Google Scholar]
  118. Melton C, Judson RL, Blelloch R. 2010. Opposing microRNA families regulate self-renewal in mouse embryonic stem cells. Nature 463:7281621–26 [Google Scholar]
  119. Mendoza-Parra MA, Walia M, Sankar M, Gronemeyer H. 2011. Dissecting the retinoid-induced differentiation of F9 embryonal stem cells by integrative genomics. Mol. Syst. Biol. 7:538 [Google Scholar]
  120. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E. et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:7153553–60 [Google Scholar]
  121. Milo R. 2002. Network motifs: simple building blocks of complex networks. Science 298:5594824–27 [Google Scholar]
  122. Miyanari Y, Torres-Padilla M-E. 2012. Control of ground-state pluripotency by allelic regulation of Nanog. Nature 483:7390470–73 [Google Scholar]
  123. Morgani SM, Brickman JM. 2014. The molecular underpinnings of totipotency. Philos. Trans. R. Soc. B 369:165720130549 [Google Scholar]
  124. Morgani SM, Canham MA, Nichols J, Sharov AA, Migueles RP. et al. 2013. Totipotent embryonic stem cells arise in ground-state culture conditions. Cell Rep. 3:61945–57 [Google Scholar]
  125. Morris KV, Mattick JS. 2014. The rise of regulatory RNA. Nat. Rev. Genet. 15:6423–37 [Google Scholar]
  126. Morris SA, Cahan P, Li H, Zhao AM, San Roman AK. et al. 2014. Dissecting engineered cell types and enhancing cell fate conversion via CellNet. Cell 158:4889–902 [Google Scholar]
  127. Mullen AC, Orlando DA, Newman JJ, Lovén J, Kumar RM. et al. 2011. Master transcription factors determine cell-type-specific responses to TGF-β signaling. Cell 147:3565–76 [Google Scholar]
  128. Mummery CL, van Rooijen MA, van den Brink SE, de Laat SW. 1987. Cell cycle analysis during retinoic acid induced differentiation of a human embryonal carcinoma-derived cell line. Cell Differ. 20:2–3153–60 [Google Scholar]
  129. Munsky B, Neuert G, van Oudenaarden A. 2012. Using gene expression noise to understand gene regulation. Science 336:6078183–87 [Google Scholar]
  130. Murry CE, Keller G. 2008. Differentiation of embryonic stem cells to clinically relevant populations: lessons from embryonic development. Cell Stem Cell 132:4661–80 [Google Scholar]
  131. Nazareth EJP, Ostblom JEE, Lücker PB, Shukla S, Alvarez MM. et al. 2013. High-throughput fingerprinting of human pluripotent stem cell fate responses and lineage bias. Nat. Methods 10:121225–31 [Google Scholar]
  132. Nichols J, Smith A. 2009. Naive and primed pluripotent states. Stem Cell 4:6487–92 [Google Scholar]
  133. Niwa H, Ogawa K, Shimosato D, Adachi K. 2009. A parallel circuit of LIF signalling pathways maintains pluripotency of mouse ES cells. Nature 460:7251118–22 [Google Scholar]
  134. Paszek P, Ryan S, Ashall L, Sillitoe K, Harper CV. et al. 2010. Population robustness arising from cellular heterogeneity. PNAS 107:2511644–49 [Google Scholar]
  135. Pauklin S, Vallier L. 2013. The cell-cycle state of stem cells determines cell fate propensity. Cell 155:1135–47 [Google Scholar]
  136. Pedraza JM. 2005. Noise propagation in gene networks. Science 307:57171965–69 [Google Scholar]
  137. Pera MF, Tam PPL. 2010. Extrinsic regulation of pluripotent stem cells. Nature 465:7299713–20 [Google Scholar]
  138. Pikarsky E, Sharir H, Ben-Shushan E, Bergman Y. 1994. Retinoic acid represses Oct-3/4 gene expression through several retinoic acid–responsive elements located in the promoter-enhancer region. Mol. Cell. Biol. 14:21026–38 [Google Scholar]
  139. Pina C, Fugazza C, Tipping AJ, Brown J, Soneji S. et al. 2012. Inferring rules of lineage commitment in haematopoiesis. Nat. Cell Biol. 14:3287–94 [Google Scholar]
  140. Pollen AA, Nowakowski TJ, Shuga J, Wang X, Leyrat AA. et al. 2014. Low-coverage single-cell mRNA sequencing reveals cellular heterogeneity and activated signaling pathways in developing cerebral cortex. Nat. Biotechnol. 32:101053–58 [Google Scholar]
  141. Qiao W, Wang W, Laurenti E, Turinsky AL, Wodak SJ. et al. 2014. Intercellular network structure and regulatory motifs in the human hematopoietic system. Mol. Syst. Biol. 10:7741 [Google Scholar]
  142. Qiu P, Simonds EF, Bendall SC, Gibbs KD Jr, Bruggner RV. et al. 2011. Extracting a cellular hierarchy from high-dimensional cytometry data with SPADE. Nat. Biotechnol. 29:10886–91 [Google Scholar]
  143. Quinodoz S, Guttman M. 2014. Long noncoding RNAs: an emerging link between gene regulation and nuclear organization. Trends Cell Biol. 24:11651–63 [Google Scholar]
  144. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. 2006. Stochastic mRNA synthesis in mammalian cells. PLOS Biol. 4:10e309 [Google Scholar]
  145. Raj A, van Oudenaarden A. 2008. Nature, nurture, or chance: stochastic gene expression and its consequences. Cell 135:2216–26 [Google Scholar]
  146. Rhinn M, Dolle P. 2012. Retinoic acid signalling during development. Development 139:5843–58 [Google Scholar]
  147. Saliba A-E, Westermann AJ, Gorski SA, Vogel J. 2014. Single-cell RNA-seq: advances and future challenges. Nucleic Acids Res. 42:148845–60 [Google Scholar]
  148. Sampath P, Pritchard D, Pabon L, Reinecke H, Schwartz S. et al. 2008. A hierarchical network controls protein translation during murine embryonic stem cell self-renewal and differentiation. Cell Stem Cell 2:5448–60 [Google Scholar]
  149. Sato T, Vries RG, Snippert HJ, van de Wetering M, Barker N. et al. 2009. Single Lgr5 stem cells build crypt-villus structures in vitro without a mesenchymal niche. Nature 459:7244262–65 [Google Scholar]
  150. Schmiedel JM, Klemm SL, Zheng Y, Sahay A, Bluethgen N. et al. 2015. MicroRNA control of protein expression noise. Science 348:6230128–32 [Google Scholar]
  151. Schübeler D. 2015. Function and information content of DNA methylation. Nature 517:7534321–26 [Google Scholar]
  152. Shapiro E, Biezuner T, Linnarsson S. 2013. Single-cell sequencing–based technologies will revolutionize whole-organism science. Nat. Rev. Genet. 14:9618–30 [Google Scholar]
  153. Shipony Z, Mukamel Z, Cohen NM, Landan G, Chomsky E. et al. 2014. Dynamic and static maintenance of epigenetic memory in pluripotent and somatic cells. Nature 513:7516115–19 [Google Scholar]
  154. Singer ZS, Yong J, Tischler J, Hackett JA, Altinok A. et al. 2014. Dynamic heterogeneity and DNA methylation in embryonic stem cells. Mol. Cell 55:2319–31 [Google Scholar]
  155. Singh AM, Chappell J, Trost R, Lin L, Wang T. et al. 2013. Cell-cycle control of developmentally regulated transcription factors accounts for heterogeneity in human pluripotent cells. Stem Cell Rep. 1:6532–44 [Google Scholar]
  156. Singh AM, Hamazaki T, Hankowski KE, Terada N. 2007. A heterogeneous expression pattern for Nanog in embryonic stem cells. Stem Cells 25:102534–42 [Google Scholar]
  157. Sinkkonen L, Hugenschmidt T, Berninger P, Gaidatzis D, Mohn F. et al. 2008. MicroRNAs control de novo DNA methylation through regulation of transcriptional repressors in mouse embryonic stem cells. Nat. Struct. Mol. Biol. 15:3259–67 [Google Scholar]
  158. Smith A. 2013. Nanog heterogeneity: tilting at windmills?. Cell Stem Cell 13:16–7 [Google Scholar]
  159. Smith ZD, Meissner A. 2013. DNA methylation: roles in mammalian development. Nat. Rev. Genet. 14:3204–20 [Google Scholar]
  160. Snijder B, Pelkmans L. 2011. Origins of regulated cell-to-cell variability. Nat. Rev. Mol. Cell Biol. 12:2119–25 [Google Scholar]
  161. Snijder B, Sacher R, Rämö P, Damm E-M, Liberali P, Pelkmans L. 2009. Population context determines cell-to-cell variability in endocytosis and virus infection. Nature 461:7263520–23 [Google Scholar]
  162. Spence JR, Mayhew CN, Rankin SA, Kuhar MF, Vallance JE. et al. 2011. Directed differentiation of human pluripotent stem cells into intestinal tissue in vitro. Nature 470:7332105–9 [Google Scholar]
  163. Stavridis MP, Collins BJ, Storey KG. 2010. Retinoic acid orchestrates fibroblast growth factor signalling to drive embryonic stem cell differentiation. Development 137:6881–90 [Google Scholar]
  164. Stewart-Ornstein J, Weissman JS, El-Samad H. 2012. Cellular noise regulons underlie fluctuations in Saccharomyces cerevisiae. Mol. Cell 45:4483–93 [Google Scholar]
  165. Surface LE, Thornton SR, Boyer LA. 2010. Polycomb group proteins set the stage for early lineage commitment. Cell Stem Cell 7:3288–98 [Google Scholar]
  166. Suzuki N, Furusawa C, Kaneko K. 2011. Oscillatory protein expression dynamics endows stem cells with robust differentiation potential. PLOS ONE 6:11e27232 [Google Scholar]
  167. Tasoglu S, Demirci U. 2013. Bioprinting for stem cell research. Trends Biotechnol. 31:110–19 [Google Scholar]
  168. ten Berge D, Koole W, Fuerer C, Fish M, Eroglu E, Nusse R. 2008. Wnt signaling mediates self-organization and axis formation in embryoid bodies. Cell Stem Cell 3:5508–18 [Google Scholar]
  169. ten Berge D, Kurek D, Blauwkamp T, Koole W, Maas A. et al. 2011. Embryonic stem cells require Wnt proteins to prevent differentiation to epiblast stem cells. Nat. Cell Biol. 13:91070–75 [Google Scholar]
  170. Tesar PJ, Chenoweth JG, Brook FA, Davies TJ, Evans EP. et al. 2007. New cell lines from mouse epiblast share defining features with human embryonic stem cells. Nature 448:7150196–99 [Google Scholar]
  171. Theunissen TW, Powell BE, Wang H, Mitalipova M, Faddah DA. et al. 2014. Systematic identification of culture conditions for induction and maintenance of naive human pluripotency. Cell Stem Cell 15:4471–87 [Google Scholar]
  172. Thomson M, Liu SJ, Zou L-N, Smith Z, Meissner A, Ramanathan S. 2011. Pluripotency factors in embryonic stem cells regulate differentiation into germ layers. Cell 145:6875–89 [Google Scholar]
  173. To TL, Maheshri N. 2010. Noise can induce bimodality in positive transcriptional feedback loops without bistability. Science 327:59691142–45 [Google Scholar]
  174. Torres-Padilla M-E, Chambers I. 2014. Transcription factor heterogeneity in pluripotent stem cells: a stochastic advantage. Development 141:112173–81 [Google Scholar]
  175. Toyooka Y, Shimosato D, Murakami K, Takahashi K, Niwa H. 2008. Identification and characterization of subpopulations in undifferentiated ES cell culture. Development 135:5909–18 [Google Scholar]
  176. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S. et al. 2014. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. Nat. Biotechnol. 32:4381–86 [Google Scholar]
  177. Treutlein B, Brownfield DG, Wu AR, Neff NF, Mantalas GL. et al. 2014. Reconstructing lineage hierarchies of the distal lung epithelium using single-cell RNA-seq. Nature 509:7500371–75 [Google Scholar]
  178. Trott J, Martinez Arias A. 2013. Single cell lineage analysis of mouse embryonic stem cells at the exit from pluripotency. Biol. Open 2:101049–56 [Google Scholar]
  179. Tsang JS, Ebert MS, van Oudenaarden A. 2010. Genome-wide dissection of microRNA functions and cotargeting networks using gene set signatures. Mol. Cell 38:1140–53 [Google Scholar]
  180. Tsankov AM, Gu H, Akopian V, Ziller MJ, Donaghey J. et al. 2015. Transcription factor binding dynamics during human ES cell differentiation. Nature 518:7539344–49 [Google Scholar]
  181. Turner DA, Trott J, Hayward P, Rue P, Martinez Arias A. 2014. An interplay between extracellular signalling and the dynamics of the exit from pluripotency drives cell fate decisions in mouse ES cells. Biol. Open 3:7614–26 [Google Scholar]
  182. Vallier L, Touboul T, Chng Z, Brimpari M, Hannan N. et al. 2009. Early cell fate decisions of human embryonic stem cells and mouse epiblast stem cells are controlled by the same signalling pathways. PLOS ONE 4:6e6082 [Google Scholar]
  183. van den Brink SC, Baillie-Johnson P, Balayo T, Hadjantonakis A-K, Nowotschin S. et al. 2014. Symmetry breaking, germ layer specification and axial organisation in aggregates of mouse embryonic stem cells. Development 141:224231–42 [Google Scholar]
  184. Waddington CH. 2014 (1957). The Strategy of the Genes London: Routledge [Google Scholar]
  185. Wang J, Xie G, Singh M, Ghanbarian AT, Raskó T. et al. 2014. Primate-specific endogenous retrovirus–driven transcription defines naive-like stem cells. Nature 516:7531405–9 [Google Scholar]
  186. Wang J, Xu L, Wang E, Huang S. 2010. The potential landscape of genetic circuits imposes the arrow of time in stem cell differentiation. Biophys. J. 99:129–39 [Google Scholar]
  187. Wang Y, Medvid R, Melton C, Jaenisch R, Blelloch R. 2007. DGCR8 is essential for microRNA biogenesis and silencing of embryonic stem cell self-renewal. Nat. Genet. 39:3380–85 [Google Scholar]
  188. Wang Z, Oron E, Nelson B, Razis S, Ivanova N. 2012. Distinct lineage specification roles for NANOG, OCT4, and SOX2 in human embryonic stem cells. Cell Stem Cell 10:4440–54 [Google Scholar]
  189. Ware CB, Nelson AM, Mecham B, Hesson J, Zhou W. et al. 2014. Derivation of naive human embryonic stem cells. PNAS 111:124484–89 [Google Scholar]
  190. Warmflash A, Sorre B, Etoc F, Siggia ED, Brivanlou AH. 2014. A method to recapitulate early embryonic spatial patterning in human embryonic stem cells. Nat. Methods 11:8847–54 [Google Scholar]
  191. Warren L, Manos PD, Ahfeldt T, Loh Y-H, Li H. et al. 2010. Highly efficient reprogramming to pluripotency and directed differentiation of human cells with synthetic modified mRNA. Cell Stem Cell 7:5618–30 [Google Scholar]
  192. Whitfield ML, Sherlock G, Saldanha AJ, Murray JI, Ball CA. et al. 2002. Identification of genes periodically expressed in the human cell cycle and their expression in tumors. Mol. Biol. Cell 13:61977–2000 [Google Scholar]
  193. Whyte WA, Orlando DA, Hnisz D, Abraham BJ, Lin CY. et al. 2013. Master transcription factors and mediator establish super-enhancers at key cell identity genes. Cell 153:2307–19 [Google Scholar]
  194. Williams LA, Davis-Dusenbery BN, Eggan KC. 2012. SnapShot: directed differentiation of pluripotent stem cells. Cell 149:51174 [Google Scholar]
  195. Wray J, Kalkan T, Smith AG. 2010. The ground state of pluripotency. Biochem. Soc. Trans. 38:41027–32 [Google Scholar]
  196. Wu AR, Neff NF, Kalisky T, Dalerba P, Treutlein B. et al. 2014. Quantitative assessment of single-cell RNA-sequencing methods. Nat. Methods 11:141–46 [Google Scholar]
  197. Xie W, Schultz MD, Lister R, Hou Z, Rajagopal N. et al. 2013. Epigenomic analysis of multilineage differentiation of human embryonic stem cells. Cell 153:51134–48 [Google Scholar]
  198. Yang S-H, Kalkan T, Morissroe C, Marks H, Stunnenberg H. et al. 2014. Otx2 and Oct4 drive early enhancer activation during embryonic stem cell transition from naive pluripotency. Cell Rep. 7:61968–81 [Google Scholar]
  199. Yang S-H, Kalkan T, Morrisroe C, Smith A, Sharrocks AD. 2012. A genome-wide RNAi screen reveals MAP kinase phosphatases as key ERK pathway regulators during embryonic stem cell differentiation. PLOS Genet. 8:12e1003112 [Google Scholar]
  200. Ye S, Liu D, Ying Q-L. 2014. Signaling pathways in induced naïve pluripotency. Curr. Opin. Genet. Dev. 28:10–15 [Google Scholar]
  201. Ying Q-L, Wray J, Nichols J, Batlle-Morera L, Doble B. et al. 2008. The ground state of embryonic stem cell self-renewal. Nature 453:7194519–23 [Google Scholar]
  202. Young RA. 2011. Control of the embryonic stem cell state. Cell 144:6940–54 [Google Scholar]
  203. Zaret KS, Carroll JS. 2011. Pioneer transcription factors: establishing competence for gene expression. Genes Dev. 25:212227–41 [Google Scholar]
  204. Zhang B, Wolynes PG. 2014. Stem cell differentiation as a many-body problem. PNAS 111:2810185–90 [Google Scholar]
  205. Ziller MJ, Edri R, Yaffe Y, Donaghey J, Pop R. et al. 2015. Dissecting neural differentiation regulatory networks through epigenetic footprinting. Nature 518:7539355–59 [Google Scholar]
  206. Zopf CJ, Quinn K, Zeidman J, Maheshri N. 2013. Cell-cycle dependence of transcription dominates noise in gene expression. PLOS Comput. Biol. 9:7e1003161 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error