The sense of smell collects vital information about the environment by detecting a multitude of chemical odorants. Breadth and sensitivity are provided by a huge number of chemosensory receptor proteins, including more than 1,400 olfactory receptors (ORs). Organizing the sensory information generated by these receptors so that it can be processed and evaluated by the central nervous system is a major challenge. This challenge is overcome by monogenic and monoallelic expression of OR genes. The single OR expressed by each olfactory sensory neuron determines the neuron's odor sensitivity and the axonal connections it will make to downstream neurons in the olfactory bulb. The expression of a single OR per neuron is accomplished by coupling a slow chromatin-mediated activation process to a fast negative-feedback signal that prevents activation of additional ORs. Singular OR activation is likely orchestrated by a network of interchromosomal enhancer interactions and large-scale changes in nuclear architecture.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alsing AK, Sneppen K. 2013. Differentiation of developing olfactory neurons analysed in terms of coupled epigenetic landscapes. Nucleic Acids Res. 41:94755–64 [Google Scholar]
  2. Armelin-Correa LM, Gutiyama LM, Brandt DYC, Malnic B. 2014. Nuclear compartmentalization of odorant receptor genes. PNAS 111:72782–87 [Google Scholar]
  3. Aycı F, Aydınlı M, Bozdemir ÖA, Tutaş M. 2005. Gas chromatographic investigation of rose concrete, absolute and solid residue. Flavour Fragr. J. 20:5481–86 [Google Scholar]
  4. Aznar M, López R, Cacho JF, Ferreira V. 2001. Identification and quantification of impact odorants of aged red wines from Rioja. GC-olfactometry, quantitative GC-MS, and odor evaluation of HPLC fractions. J. Agric. Food Chem. 49:62924–29 [Google Scholar]
  5. Bader A, Bautze V, Haid D, Breer H, Strotmann J. 2010. Gene switching and odor induced activity shape expression of the OR37 family of olfactory receptor genes. Eur. J. Neurosci. 32:111813–24 [Google Scholar]
  6. Barnea G, O'Donnell S, Mancia F, Sun X, Nemes A. et al. 2004. Odorant receptors on axon termini in the brain. Science 304:56761468 [Google Scholar]
  7. Bozza T, Feinstein P, Zheng C, Mombaerts P. 2002. Odorant receptor expression defines functional units in the mouse olfactory system. J. Neurosci. 22:83033–43 [Google Scholar]
  8. Bozza T, Vassalli A, Fuss S, Zhang J-J, Weiland B. et al. 2009. Mapping of class I and class II odorant receptors to glomerular domains by two distinct types of olfactory sensory neurons in the mouse. Neuron 61:2220–33 [Google Scholar]
  9. Buck L, Axel R. 1991. A novel multigene family may encode odorant receptors: a molecular basis for odor recognition. Cell 65:1175–87 [Google Scholar]
  10. Bufe B, Schumann T, Kappl R, Bogeski I, Kummerow C. et al. 2015. Recognition of bacterial signal peptides by mammalian formyl peptide receptors: A new mechanism for sensing pathogens. J. Biol. Chem. 290:127369–87 [Google Scholar]
  11. Bufe B, Schumann T, Zufall F. 2012. Formyl peptide receptors from immune and vomeronasal system exhibit distinct agonist properties. J. Biol. Chem. 287:4033644–55 [Google Scholar]
  12. Bushdid C, Magnasco MO, Vosshall LB, Keller A. 2014. Humans can discriminate more than 1 trillion olfactory stimuli. Science 343:61771370–72 [Google Scholar]
  13. Cheng LE, Reed RR. 2007. Zfp423/OAZ participates in a developmental switch during olfactory neurogenesis. Neuron 54:4547–57 [Google Scholar]
  14. Chess A, Simon I, Cedar H, Axel R. 1994. Allelic inactivation regulates olfactory receptor gene expression. Cell 78:5823–34 [Google Scholar]
  15. Clowney EJ, LeGros MA, Mosley CP, Clowney FG, Markenskoff-Papadimitriou EC. et al. 2012. Nuclear aggregation of olfactory receptor genes governs their monogenic expression. Cell 151:4724–37 [Google Scholar]
  16. Clowney EJ, Magklara A, Colquitt BM, Pathak N, Lane RP, Lomvardas S. 2011. High-throughput mapping of the promoters of the mouse olfactory receptor genes reveals a new type of mammalian promoter and provides insight into olfactory receptor gene regulation. Genome Res. 21:81249–59 [Google Scholar]
  17. Dalton RP, Lyons DB, Lomvardas S. 2013. Co-opting the unfolded protein response to elicit olfactory receptor feedback. Cell 155:2321–32 [Google Scholar]
  18. Del Punta K, Leinders-Zufall T, Rodriguez I, Jukam D, Wysocki CJ. et al. 2002. Deficient pheromone responses in mice lacking a cluster of vomeronasal receptor genes. Nature 419:690270–74 [Google Scholar]
  19. Dewan A, Pacifico R, Zhan R, Rinberg D, Bozza T. 2013. Non-redundant coding of aversive odours in the main olfactory pathway. Nature 497:7450486–89 [Google Scholar]
  20. Dixon JR, Selvaraj S, Yue F, Kim A, Li Y. et al. 2012. Topological domains in mammalian genomes identified by analysis of chromatin interactions. Nature 485:7398376–80 [Google Scholar]
  21. Dulac C, Axel R. 1995. A novel family of genes encoding putative pheromone receptors in mammals. Cell 83:2195–206 [Google Scholar]
  22. Ebrahimi FAW, Edmondson J, Rothstein R, Chess A. 2000. YAC transgene-mediated olfactory receptor gene choice. Dev. Dyn. 217:225–31 [Google Scholar]
  23. Feinstein P, Bozza T, Rodriguez I, Vassalli A, Mombaerts P. 2004. Axon guidance of mouse olfactory sensory neurons by odorant receptors and the beta2 adrenergic receptor. Cell 117:6833–46 [Google Scholar]
  24. Feinstein P, Mombaerts P. 2004. A contextual model for axonal sorting into glomeruli in the mouse olfactory system. Cell 117:6817–31 [Google Scholar]
  25. Ferreira T, Wilson SR, Choi YG, Risso D, Dudoit S. et al. 2014. Silencing of odorant receptor genes by G protein βγ signaling ensures the expression of one odorant receptor per olfactory sensory neuron. Neuron 81:4847–59 [Google Scholar]
  26. Ferrero DM, Lemon JK, Fluegge D, Pashkovski SL, Korzan WJ. et al. 2011. Detection and avoidance of a carnivore odor by prey. PNAS 108:2711235–40 [Google Scholar]
  27. Fleischmann A, Abdus-Saboor I, Sayed A, Shykind B. 2013. Functional interrogation of an odorant receptor locus reveals multiple axes of transcriptional regulation. PLOS Biol. 11:5e1001568 [Google Scholar]
  28. Fleischmann A, Shykind BM, Sosulski DL, Franks KM, Glinka ME. et al. 2008. Mice with a “monoclonal nose”: perturbations in an olfactory map impair odor discrimination. Neuron 60:61068–81 [Google Scholar]
  29. Fuss SH, Omura M, Mombaerts P. 2007. Local and cis effects of the H element on expression of odorant receptor genes in mouse. Cell 130:2373–84 [Google Scholar]
  30. Gokoffski KK, Kawauchi S, Wu H-H, Santos R, Hollenbeck PLW. et al. 2010. Feedback regulation of neurogenesis in the mammalian olfactory epithelium: new insights from genetics and systems biology. Neurobiology of Olfaction A Menini 241–66 Boca Raton, FL: CRC [Google Scholar]
  31. Grosmaitre X, Fuss SH, Lee AC, Adipietro KA, Matsunami H. et al. 2009. SR1, a mouse odorant receptor with an unusually broad response profile. J. Neurosci. 29:4614545–52 [Google Scholar]
  32. Grosmaitre X, Vassalli A, Mombaerts P, Shepherd GM, Ma M. 2006. Odorant responses of olfactory sensory neurons expressing the odorant receptor MOR23: a patch clamp analysis in gene-targeted mice. PNAS 103:61970–75 [Google Scholar]
  33. Haddad R, Khan R, Takahashi YK, Mori K, Harel D, Sobel N. 2008. A metric for odorant comparison. Nat. Methods 5:5425–29 [Google Scholar]
  34. Halpern M. 1987. The organization and function of the vomeronasal system. Annu. Rev. Neurosci. 10:325–62 [Google Scholar]
  35. Herrada G, Dulac C. 1997. A novel family of putative pheromone receptors in mammals with a topographically organized and sexually dimorphic distribution. Cell 90:4763–73 [Google Scholar]
  36. Hirota J, Mombaerts P. 2004. The LIM-homeodomain protein Lhx2 is required for complete development of mouse olfactory sensory neurons. PNAS 101:238751–55 [Google Scholar]
  37. Hirota J, Omura M, Mombaerts P. 2007. Differential impact of Lhx2 deficiency on expression of class I and class II odorant receptor genes in mouse. Mol. Cell Neurosci. 34:4679–88 [Google Scholar]
  38. Hussain A, Saraiva LR, Ferrero DM, Ahuja G, Krishna VS. et al. 2013. High-affinity olfactory receptor for the death-associated odor cadaverine. PNAS 110:4819579–84 [Google Scholar]
  39. Imai T, Suzuki M, Sakano H. 2006. Odorant receptor-derived cAMP signals direct axonal targeting. Science 314:5799657–61 [Google Scholar]
  40. Ishii T, Mombaerts P. 2011. Coordinated coexpression of two vomeronasal receptor V2R genes per neuron in the mouse. Mol. Cell Neurosci. 46:2397–408 [Google Scholar]
  41. Khan M, Vaes E, Mombaerts P. 2011. Regulation of the probability of mouse odorant receptor gene choice. Cell 147:4907–21 [Google Scholar]
  42. Kimchi T, Xu J, Dulac C. 2007. A functional circuit underlying male sexual behaviour in the female mouse brain. Nature 448:1009–14 [Google Scholar]
  43. Kolterud A, Alenius M, Carlsson L, Bohm S. 2004. The Lim homeobox gene Lhx2 is required for olfactory sensory neuron identity. Development 131:215319–26 [Google Scholar]
  44. Kondo K, Suzukawa K, Sakamoto T, Watanabe K, Kanaya K. et al. 2010. Age-related changes in cell dynamics of the postnatal mouse olfactory neuroepithelium: cell proliferation, neuronal differentiation, and cell death. J. Comp. Neurol. 518:111962–75 [Google Scholar]
  45. Lewcock JW, Reed RR. 2004. A feedback mechanism regulates monoallelic odorant receptor expression. PNAS 101:41069–74 [Google Scholar]
  46. Liberles SD, Buck LB. 2006. A second class of chemosensory receptors in the olfactory epithelium. Nature 442:7103645–50 [Google Scholar]
  47. Liberles SD, Horowitz LF, Kuang D, Contos JJ, Wilson KL. et al. 2009. Formyl peptide receptors are candidate chemosensory receptors in the vomeronasal organ. PNAS 106:9842–47 [Google Scholar]
  48. Lin H, Grosschedl R. 1995. Failure of B-cell differentiation in mice lacking the transcription factor EBF. Nature 376:6537263–67 [Google Scholar]
  49. Lomvardas S, Barnea G, Pisapia DJ, Mendelsohn M, Kirkland J, Axel R. 2006. Interchromosomal interactions and olfactory receptor choice. Cell 126:2403–13 [Google Scholar]
  50. Lyons DB, Allen WE, Goh T, Tsai L, Barnea G, Lomvardas S. 2013. An epigenetic trap stabilizes singular olfactory receptor expression. Cell 154:2325–36 [Google Scholar]
  51. Lyons DB, Magklara A, Goh T, Sampath SC, Schaefer A. et al. 2014. Heterochromatin-mediated gene silencing facilitates the diversification of olfactory neurons. Cell Rep. 9:3884–92 [Google Scholar]
  52. Ma L, Wu Y, Qiu Q, Scheerer H, Moran A, Yu CR. 2014. A developmental switch of axon targeting in the continuously regenerating mouse olfactory system. Science 344:194–97 [Google Scholar]
  53. Magklara A, Yen A, Colquitt BM, Clowney EJ, Allen W. et al. 2011. An epigenetic signature for monoallelic olfactory receptor expression. Cell 145:4555–70 [Google Scholar]
  54. Malnic B, Hirono J, Sato T, Buck LB. 1999. Combinatorial receptor codes for odors. Cell 96:5713–23 [Google Scholar]
  55. Markenscoff-Papadimitriou E, Allen WE, Colquitt BM, Goh T, Murphy KK. et al. 2014. Enhancer interaction networks as a means for singular olfactory receptor expression. Cell 159:3543–57 [Google Scholar]
  56. Matsunami H, Buck LB. 1997. A multigene family encoding a diverse array of putative pheromone receptors in mammals. Cell 90:4775–84 [Google Scholar]
  57. McClintock TS, Adipietro K, Titlow WB, Breheny P, Walz A. et al. 2014. In vivo identification of eugenol-responsive and muscone-responsive mouse odorant receptors. J. Neurosci. 34:4715669–78 [Google Scholar]
  58. McIntyre JC, Bose SC, Stromberg AJ, McClintock TS. 2008. Emx2 stimulates odorant receptor gene expression. Chem. Senses 33:9825–37 [Google Scholar]
  59. Michaloski JS, Galante PAF, Malnic B. 2006. Identification of potential regulatory motifs in odorant receptor genes by analysis of promoter sequences. Genome Res. 16:91091–98 [Google Scholar]
  60. Michaloski JS, Galante PAF, Nagai MH, Armelin-Correa L, Chien M-S. et al. 2011. Common promoter elements in odorant and vomeronasal receptor genes. PLOS ONE 6:12e29065 [Google Scholar]
  61. Miyamichi K, Serizawa S, Kimura HM, Sakano H. 2005. Continuous and overlapping expression domains of odorant receptor genes in the olfactory epithelium determine the dorsal/ventral positioning of glomeruli in the olfactory bulb. J. Neurosci. 25:143586–92 [Google Scholar]
  62. Mombaerts P, Wang F, Dulac C, Chao SK, Nemes A. et al. 1996. Visualizing an olfactory sensory map. Cell 87:4675–86 [Google Scholar]
  63. Mori K, Sakano H. 2011. How is the olfactory map formed and interpreted in the mammalian brain?. Annu. Rev. Neurosci. 34:1467–99 [Google Scholar]
  64. Mori T, Sakai M, Matsuoka I, Kurihara K. 2000. Analysis of promoter activity of 5′-upstream regions of zebrafish olfactory receptor genes. Biol. Pharm. Bull. 23:2165–73 [Google Scholar]
  65. Nakashima A, Takeuchi H, Imai T, Saito H, Kiyonari H. et al. 2013. Agonist-independent GPCR activity regulates anterior-posterior targeting of olfactory sensory neurons. Cell 154:61314–25 [Google Scholar]
  66. Nara K, Saraiva LR, Ye X, Buck LB. 2011. A large-scale analysis of odor coding in the olfactory epithelium. J. Neurosci. 31:259179–91 [Google Scholar]
  67. Ngai J, Dowling MM, Buck L, Axel R, Chess A. 1993. The family of genes encoding odorant receptors in the channel catfish. Cell 72:5657–66 [Google Scholar]
  68. Nguyen MQ, Zhou Z, Marks CA, Ryba NJP, Belluscio L. 2007. Prominent roles for odorant receptor coding sequences in allelic exclusion. Cell 131:51009–17 [Google Scholar]
  69. Niimura Y, Matsui A, Touhara K. 2014. Extreme expansion of the olfactory receptor gene repertoire in African elephants and evolutionary dynamics of orthologous gene groups in 13 placental mammals. Genome Res. 24:1485–96 [Google Scholar]
  70. Nishizumi H, Kumasaka K, Inoue N, Nakashima A, Sakano H. 2007. Deletion of the core-H region in mice abolishes the expression of three proximal odorant receptor genes in cis. PNAS 104:5020067–72 [Google Scholar]
  71. Omura M, Grosmaitre X, Ma M, Mombaerts P. 2014. The β2-adrenergic receptor as a surrogate odorant receptor in mouse olfactory sensory neurons. Mol. Cell Neurosci. 58:1–10 [Google Scholar]
  72. Pacifico R, Dewan A, Cawley D, Guo C, Bozza T. 2012. An olfactory subsystem that mediates high-sensitivity detection of volatile amines. Cell Rep. 2:176–88 [Google Scholar]
  73. Plessy C, Pascarella G, Bertin N, Akalin A, Carrieri C. et al. 2012. Promoter architecture of mouse olfactory receptor genes. Genome Res. 22:3486–97 [Google Scholar]
  74. Pyrski M, Xu Z, Walters E, Gilbert DJ, Jenkins NA. et al. 2001. The OMP-lacZ transgene mimics the unusual expression pattern of OR-Z6, a new odorant receptor gene on mouse chromosome 6: Implication for locus-dependent gene expression. J. Neurosci. 21:134637–48 [Google Scholar]
  75. Ressler KJ, Sullivan SL, Buck LB. 1993. A zonal organization of odorant receptor gene expression in the olfactory epithelium. Cell 73:3597–609 [Google Scholar]
  76. Ressler KJ, Sullivan SL, Buck LB. 1994. Information coding in the olfactory system: evidence for a stereotyped and highly organized epitope map in the olfactory bulb. Cell 79:71245–55 [Google Scholar]
  77. Rivière S, Challet L, Fluegge D, Spehr M, Rodriguez I. 2009. Formyl peptide receptor-like proteins are a novel family of vomeronasal chemosensors. Nature 459:7246574–77 [Google Scholar]
  78. Rodriguez I, Del Punta K, Rothman A, Ishii T, Mombaerts P. 2002. Multiple new and isolated families within the mouse superfamily of V1r vomeronasal receptors. Nat. Neurosci. 5:2134–40 [Google Scholar]
  79. Ron D, Walter P. 2007. Signal integration in the endoplasmic reticulum unfolded protein response. Nat. Rev. Mol. Cell Biol. 8:7519–29 [Google Scholar]
  80. Rothman A, Feinstein P, Hirota J, Mombaerts P. 2005. The promoter of the mouse odorant receptor gene M71. Mol. Cell Neurosci. 28:3535–46 [Google Scholar]
  81. Ryba NJ, Tirindelli R. 1997. A new multigene family of putative pheromone receptors. Neuron 19:2371–79 [Google Scholar]
  82. Saito H, Chi Q, Zhuang H, Matsunami H, Mainland JD. 2009. Odor coding by a Mammalian receptor repertoire. Sci. Signal. 2:60ra9 [Google Scholar]
  83. Santoro SW, Dulac C. 2012. The activity-dependent histone variant H2BE modulates the life span of olfactory neurons. eLife 1:e00070 [Google Scholar]
  84. Serizawa S, Ishii T, Nakatani H, Tsuboi A, Nagawa F. et al. 2000. Mutually exclusive expression of odorant receptor transgenes. Nat. Neurosci. 3:7687–93 [Google Scholar]
  85. Serizawa S, Miyamichi K, Nakatani H, Suzuki M, Saito M. et al. 2003. Negative feedback regulation ensures the one receptor-one olfactory neuron rule in mouse. Science 302:56532088–94 [Google Scholar]
  86. Shykind BM, Rohani SC, O'Donnell S, Nemes A, Mendelsohn M. et al. 2004. Gene switching and the stability of odorant receptor gene choice. Cell 117:6801–15 [Google Scholar]
  87. Sosulski DL, Bloom ML, Cutforth T, Axel R, Datta SR. 2011. Distinct representations of olfactory information in different cortical centres. Nature 472:7342213–16 [Google Scholar]
  88. Stowers L, Holy TE, Meister M, Dulac C, Koentges G. 2002. Loss of sex discrimination and male-male aggression in mice deficient for TRP2. Science 295:55591493–500 [Google Scholar]
  89. Strotmann J, Bader A, Luche H, Fehling HJ, Breer H. 2009. The patch-like pattern of OR37 receptors is formed by turning off gene expression in non-appropriate areas. Mol. Cell Neurosci. 41:4474–85 [Google Scholar]
  90. Strotmann J, Levai O, Fleischer J, Schwarzenbacher K, Breer H. 2004. Olfactory receptor proteins in axonal processes of chemosensory neurons. J. Neurosci. 24:357754–61 [Google Scholar]
  91. Strotmann J, Wanner I, Krieger J, Raming K, Breer H. 1992. Expression of odorant receptors in spatially restricted subsets of chemosensory neurones. NeuroReport 3:121053–56 [Google Scholar]
  92. Takeuchi H, Inokuchi K, Aoki M, Suto F, Tsuboi A. et al. 2010. Sequential arrival and graded secretion of Sema3F by olfactory neuron axons specify map topography at the bulb. Cell 141:61056–67 [Google Scholar]
  93. Tan L, Zong C, Xie XS. 2013. Rare event of histone demethylation can initiate singular gene expression of olfactory receptors. PNAS 110:5221148–52 [Google Scholar]
  94. Thanos D, Maniatis T. 1995. Virus induction of human IFNβ gene expression requires the assembly of an enhanceosome. Cell 83:71091–100 [Google Scholar]
  95. Tian H, Ma M. 2008. Activity plays a role in eliminating olfactory sensory neurons expressing multiple odorant receptors in the mouse septal organ. Mol. Cell Neurosci. 38:4484–88 [Google Scholar]
  96. Tsai L, Barnea G. 2014. A critical period defined by axon-targeting mechanisms in the murine olfactory bulb. Science 344:6180197–200 [Google Scholar]
  97. Tsai RY, Reed RR. 1997. Cloning and functional characterization of Roaz, a zinc finger protein that interacts with O/E-1 to regulate gene expression: implications for olfactory neuronal development. J. Neurosci. 17:114159–69 [Google Scholar]
  98. Vassalli A, Feinstein P, Mombaerts P. 2011. Homeodomain binding motifs modulate the probability of odorant receptor gene choice in transgenic mice. Mol. Cell Neurosci. 46:2381–96 [Google Scholar]
  99. Vassalli A, Rothman A, Feinstein P, Zapotocky M, Mombaerts P. 2002. Minigenes impart odorant receptor-specific axon guidance in the olfactory bulb. Neuron 35:4681–96 [Google Scholar]
  100. Vassar R, Chao SK, Sitcheran R, Nuñez JM, Vosshall LB, Axel R. 1994. Topographic organization of sensory projections to the olfactory bulb. Cell 79:6981–91 [Google Scholar]
  101. Vassar R, Ngai J, Axel R. 1993. Spatial segregation of odorant receptor expression in the mammalian olfactory epithelium. Cell 74:2309–18 [Google Scholar]
  102. Wang F, Nemes A, Mendelsohn M, Axel R. 1998. Odorant receptors govern the formation of a precise topographic map. Cell 93:147–60 [Google Scholar]
  103. Wang MM, Reed RR. 1993. Molecular cloning of the olfactory neuronal transcription factor Olf-1 by genetic selection in yeast. Nature 364:6433121–26 [Google Scholar]
  104. Wang SS, Betz AG, Reed RR. 2002. Cloning of a novel Olf-1/EBF-like gene, O/E-4, by degenerate oligo-based direct selection. Mol. Cell Neurosci. 20:3404–14 [Google Scholar]
  105. Wang SS, Lewcock JW, Feinstein P, Mombaerts P, Reed RR. 2004. Genetic disruptions of O/E2 and O/E3 genes reveal involvement in olfactory receptor neuron projection. Development 131:61377–88 [Google Scholar]
  106. Wang SS, Tsai RY, Reed RR. 1997. The characterization of the Olf-1/EBF-like HLH transcription factor family: implications in olfactory gene regulation and neuronal development. J. Neurosci. 17:114149–58 [Google Scholar]
  107. Wang S-Z, Ou J, Zhu LJ, Green MR. 2012. Transcription factor ATF5 is required for terminal differentiation and survival of olfactory sensory neurons. PNAS 109:4518589–94 [Google Scholar]
  108. Watatani Y, Ichikawa K, Nakanishi N, Fujimoto M, Takeda H. et al. 2008. Stress-induced translation of ATF5 mRNA is regulated by the 5′-untranslated region. J. Biol. Chem. 283:52543–53 [Google Scholar]
  109. Wissmann M, Yin N, Müller JM, Greschik H, Fodor BD. et al. 2007. Cooperative demethylation by JMJD2C and LSD1 promotes androgen receptor-dependent gene expression. Nat. Cell Biol. 9:3347–53 [Google Scholar]
  110. Ye Q, Callebaut I, Pezhman A, Courvalin JC, Worman HJ. 1997. Domain-specific interactions of human HP1-type chromodomain proteins and inner nuclear membrane protein LBR. J. Biol. Chem. 272:2314983–89 [Google Scholar]
  111. Ye Q, Worman HJ. 1996. Interaction between an integral protein of the nuclear envelope inner membrane and human chromodomain proteins homologous to Drosophila HP1. J. Biol. Chem. 271:14653–56 [Google Scholar]
  112. Young JM, Luche RM, Trask BJ. 2011. Rigorous and thorough bioinformatic analyses of olfactory receptor promoters confirm enrichment of O/E and homeodomain binding sites but reveal no new common motifs. BMC Genomics 12:561 [Google Scholar]
  113. Zhang J, Pacifico R, Cawley D, Feinstein P, Bozza T. 2013. Ultrasensitive detection of amines by a trace amine-associated receptor. J. Neurosci. 33:73228–39 [Google Scholar]
  114. Zhang Y-Q, Breer H, Strotmann J. 2007. Promotor elements governing the clustered expression pattern of odorant receptor genes. Mol. Cell Neurosci. 36:195–107 [Google Scholar]
  115. Zhou Z, Belluscio L. 2012. Coding odorant concentration through activation timing between the medial and lateral olfactory bulb. Cell Rep. 2:51143–50 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error