1932

Abstract

Ion channels have emerged as regulators of developmental processes. In model organisms and in people with mutations in ion channels, disruption of ion channel function can affect cell proliferation, cell migration, and craniofacial and limb patterning. Alterations of ion channel function affect morphogenesis in fish, frogs, mammals, and flies, demonstrating that ion channels have conserved roles in developmental processes. One model suggests that ion channels affect proliferation and migration through changes in cell volume. However, ion channels have not explicitly been placed in canonical developmental signaling cascades until recently. This review gives examples of ion channels that influence developmental processes, offers a potential underlying molecular mechanism involving bone morphogenetic protein (BMP) signaling, and finally explores exciting possibilities for manipulating ion channels to influence cell fate for regenerative medicine and to impact disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100814-125338
2015-11-13
2024-06-15
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/31/1/annurev-cellbio-100814-125338.html?itemId=/content/journals/10.1146/annurev-cellbio-100814-125338&mimeType=html&fmt=ahah

Literature Cited

  1. Abdul M, Hoosein N. 2002a. Voltage-gated potassium ion channels in colon cancer. Oncol. Rep. 9:961–64 [Google Scholar]
  2. Abdul M, Hoosein N. 2002b. Voltage-gated sodium ion channels in prostate cancer: expression and activity. Anticancer Res. 22:1727–30 [Google Scholar]
  3. Artym VV, Petty HR. 2002. Molecular proximity of Kv1.3 voltage-gated potassium channels and β1-integrins on the plasma membrane of melanoma cells: effects of cell adherence and channel blockers. J. Gen. Physiol. 120:29–37 [Google Scholar]
  4. Baines RA. 2004. Synaptic strengthening mediated by bone morphogenetic protein–dependent retrograde signaling in the Drosophila CNS. J. Neurosci. 24:6904–11 [Google Scholar]
  5. Berke B, Wittnam J, Mcneill E, van Vactor DL, Keshishian H. 2013. Retrograde BMP signaling at the synapse: a permissive signal for synapse maturation and activity-dependent plasticity. J. Neurosci. 33:17937–50 [Google Scholar]
  6. Bernier LP, Ase AR, Seguela P. 2013. Post-translational regulation of P2X receptor channels: modulation by phospholipids. Front. Cell Neurosci. 7:226 [Google Scholar]
  7. Bharathi V, Pallavi SK, Bajpai R, Emerald BS, Shashidhara LS. 2004. Genetic characterization of the Drosophila homologue of coronin. J. Cell Sci. 117:1911–22 [Google Scholar]
  8. Blackiston DJ, Mclaughlin KA, Levin M. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3527–36 [Google Scholar]
  9. Boonstra J, Mummery CL, Tertoolen LG, van der Saag PT, de Laat SW. 1981. Cation transport and growth regulation in neuroblastoma cells. Modulations of K+ transport and electrical membrane properties during the cell cycle. J. Cell Physiol. 107:75–83 [Google Scholar]
  10. Brackenbury WJ, Yuan Y, O'Malley HA, Parent JM, Isom LL. 2013. Abnormal neuronal patterning occurs during early postnatal brain development of Scn1b-null mice and precedes hyperexcitability. PNAS 110:1089–94 [Google Scholar]
  11. Burkus JK, Transfeldt EE, Kitchel SH, Watkins RG, Balderston RA. 2002. Clinical and radiographic outcomes of anterior lumbar interbody fusion using recombinant human bone morphogenetic protein-2. Spine 27:2396–408 [Google Scholar]
  12. Campbell TM, Main MJ, Fitzgerald EM. 2013. Functional expression of the voltage-gated Na+-channel Nav1.7 is necessary for EGF-mediated invasion in human non–small cell lung cancer cells. J. Cell Sci. 126:4939–49 [Google Scholar]
  13. Chang KW, Yuan TC, Fang KP, Yang FS, Liu CJ. et al. 2003. The increase of voltage-gated potassium channel Kv3.4 mRNA expression in oral squamous cell carcinoma. J. Oral Pathol. Med. 32:606–11 [Google Scholar]
  14. Chantome A, Potier-Cartereau M, Clarysse L, Fromont G, Marionneau-Lambot S. et al. 2013. Pivotal role of the lipid Raft SK3-Orai1 complex in human cancer cell migration and bone metastases. Cancer Res. 73:4852–61 [Google Scholar]
  15. Chenard KE, Teven CM, He TC, Reid RR. 2012. Bone morphogenetic proteins in craniofacial surgery: current techniques, clinical experiences, and the future of personalized stem cell therapy. J. Biomed. Biotechnol. 2012:601549 [Google Scholar]
  16. Chioni AM, Brackenbury WJ, Calhoun JD, Isom LL, Djamgoz MB. 2009. A novel adhesion molecule in human breast cancer cells: voltage-gated Na+ channel β1 subunit. Int. J. Biochem. Cell Biol. 41:1216–27 [Google Scholar]
  17. Chittajallu R, Chen Y, Wang H, Yuan X, Ghiani CA. et al. 2002. Regulation of Kv1 subunit expression in oligodendrocyte progenitor cells and their role in G1/S phase progression of the cell cycle. PNAS 99:2350–55 [Google Scholar]
  18. D'Alessandro G, Catalano M, Sciaccaluga M, Chece G, Cipriani R. et al. 2013. KCa3.1 channels are involved in the infiltrative behavior of glioblastoma in vivo. Cell Death Dis. 4:e773 [Google Scholar]
  19. Dahal GR, Rawson J, Gassaway B, Kwok B, Tong Y. et al. 2012. An inwardly rectifying K+ channel is required for patterning. Development 139:3653–64 [Google Scholar]
  20. Duque A, Gazula VR, Kaczmarek LK. 2013. Expression of Kv1.3 potassium channels regulates density of cortical interneurons. Dev. Neurobiol. 73:841–55 [Google Scholar]
  21. Epstein NE. 2014. Basic science and spine literature document bone morphogenetic protein increases cancer risk. Surg. Neurol. Int. 5:S552–60 [Google Scholar]
  22. Feldman GL, Weaver DD, Lovrien EW. 1977. The fetal trimethadione syndrome: report of an additional family and further delineation of this syndrome. Am. J. Dis. Child. 131:1389–92 [Google Scholar]
  23. Flenniken AM, Osborne LR, Anderson N, Ciliberti N, Fleming C. et al. 2005. A Gja1 missense mutation in a mouse model of oculodentodigital dysplasia. Development 132:4375–86 [Google Scholar]
  24. Fordyce CB, Jagasia R, Zhu X, Schlichter LC. 2005. Microglia Kv1.3 channels contribute to their ability to kill neurons. J. Neurosci. 25:7139–49 [Google Scholar]
  25. Fraser SP, Grimes JA, Djamgoz MB. 2000. Effects of voltage-gated ion channel modulators on rat prostatic cancer cell proliferation: comparison of strongly and weakly metastatic cell lines. Prostate 44:61–76 [Google Scholar]
  26. Friedlaender GE, Perry CR, Cole JD, Cook SD, Cierny G. et al. 2001. Osteogenic protein-1 (bone morphogenetic protein-7) in the treatment of tibial nonunions. J. Bone Joint Surg. Am. 83:Suppl. 1S151–58 [Google Scholar]
  27. Fritz H, Muller D, Hess R. 1976. Comparative study of the teratogenicity of phenobarbitone, diphenylhydantoin and carbamazepine in mice. Toxicology 6:323–30 [Google Scholar]
  28. Ghiani CA, Yuan X, Eisen AM, Knutson PL, Depinho RA. et al. 1999. Voltage-activated K+ channels and membrane depolarization regulate accumulation of the cyclin-dependent kinase inhibitors p27Kip1 and p21CIP1 in glial progenitor cells. J. Neurosci. 19:5380–92 [Google Scholar]
  29. Govender S, Csimma C, Genant HK, Valentin-Opran A, Amit Y. et al. 2002. Recombinant human bone morphogenetic protein-2 for treatment of open tibial fractures: a prospective, controlled, randomized study of four hundred and fifty patients. J. Bone Joint Surg. Am. 84:2123–34 [Google Scholar]
  30. Gritti M, Wurth R, Angelini M, Barbieri F, Peretti M. et al. 2014. Metformin repositioning as antitumoral agent: selective antiproliferative effects in human glioblastoma stem cells, via inhibition of CLIC1-mediated ion current. Oncotarget 5:11252–68 [Google Scholar]
  31. Hansen SB, Tao X, Mackinnon R. 2011. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–98 [Google Scholar]
  32. Hwang TC, Kirk KL. 2013. The CFTR ion channel: gating, regulation, and anion permeation. Cold Spring Harb. Perspect. Med. 3:a009498 [Google Scholar]
  33. Isom LL, de Jongh KS, Catterall WA. 1994. Auxiliary subunits of voltage-gated ion channels. Neuron 12:1183–94 [Google Scholar]
  34. Isom LL, de Jongh KS, Patton DE, Reber BF, Offord J. et al. 1992. Primary structure and functional expression of the β1 subunit of the rat brain sodium channel. Science 256:839–42 [Google Scholar]
  35. Isom LL, Ragsdale DS, de Jongh KS, Westenbroek RE, Reber BF. et al. 1995. Structure and function of the β2 subunit of brain sodium channels, a transmembrane glycoprotein with a CAM motif. Cell 83:433–42 [Google Scholar]
  36. Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL. et al. 2006. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLOS Genet. 2:e197 [Google Scholar]
  37. Joao SM, Arana-Chavez VE. 2003. Expression of connexin 43 and ZO-1 in differentiating ameloblasts and odontoblasts from rat molar tooth germs. Histochem. Cell Biol. 119:21–26 [Google Scholar]
  38. Khaitan D, Sankpal UT, Weksler B, Meister EA, Romero IA. et al. 2009. Role of KCNMA1 gene in breast cancer invasion and metastasis to brain. BMC Cancer 9:258 [Google Scholar]
  39. Khanna R, Myers MP, Laine M, Papazian DM. 2001. Glycosylation increases potassium channel stability and surface expression in mammalian cells. J. Biol. Chem. 276:34028–34 [Google Scholar]
  40. Kim TK, Hemberg M, Gray JM, Costa AM, Bear DM. et al. 2010. Widespread transcription at neuronal activity–regulated enhancers. Nature 465:182–87 [Google Scholar]
  41. Kjaer KW, Hansen L, Eiberg H, Leicht P, Opitz JM, Tommerup N. 2004. Novel Connexin 43 (GJA1) mutation causes oculo-dento-digital dysplasia with curly hair. Am. J. Med. Genet. A 127A:152–57 [Google Scholar]
  42. Kraft R, Krause P, Jung S, Basrai D, Liebmann L. et al. 2003. BK channel openers inhibit migration of human glioma cells. Pflugers Arch. 446:248–55 [Google Scholar]
  43. Levin M. 2012. Molecular bioelectricity in developmental biology: New tools and recent discoveries. BioEssays 34:205–17 [Google Scholar]
  44. Levite M, Cahalon L, Peretz A, Hershkoviz R, Sobko A. et al. 2000. Extracellular K+ and opening of voltage-gated potassium channels activate T cell integrin function: physical and functional association between Kv1.3 channels and β1 integrins. J. Exp. Med. 191:1167–76 [Google Scholar]
  45. MacFarlane SN, Sontheimer H. 2000. Changes in ion channel expression accompany cell cycle progression of spinal cord astrocytes. Glia 30:39–48 [Google Scholar]
  46. McFerrin MB, Sontheimer H. 2006. A role for ion channels in glioma cell invasion. Neuron Glia Biol. 2:39–49 [Google Scholar]
  47. Menendez ST, Rodrigo JP, Allonca E, Garcia-Carracedo D, Alvarez-Alija G. et al. 2010. Expression and clinical significance of the Kv3.4 potassium channel subunit in the development and progression of head and neck squamous cell carcinomas. J. Pathol. 221:402–10 [Google Scholar]
  48. Mines D, Tennis P, Curkendall SM, Li DK, Peterson C. et al. 2014. Topiramate use in pregnancy and the birth prevalence of oral clefts. Pharmacoepidemiol. Drug Saf. 23:1017–25 [Google Scholar]
  49. Mukhopadhyay A, McGuire T, Peng CY, Kessler JA. 2009. Differential effects of BMP signaling on parvalbumin and somatostatin interneuron differentiation. Development 136:2633–42 [Google Scholar]
  50. Nelson M, Millican-Slater R, Forrest LC, Brackenbury WJ. 2014. The sodium channel β1 subunit mediates outgrowth of neurite-like processes on breast cancer cells and promotes tumour growth and metastasis. Int. J. Cancer 135:2338–51 [Google Scholar]
  51. Oeggerli M, Tian Y, Ruiz C, Wijker B, Sauter G. et al. 2012. Role of KCNMA1 in breast cancer. PLOS ONE 7:e41664 [Google Scholar]
  52. Ouadid-Ahidouch H, Chaussade F, Roudbaraki M, Slomianny C, Dewailly E. et al. 2000. KV1.1 K+ channels identification in human breast carcinoma cells: involvement in cell proliferation. Biochem. Biophys. Res. Commun. 278:272–77 [Google Scholar]
  53. Pai VP, Aw S, Shomrat T, Lemire JM, Levin M. 2012. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139:313–23 [Google Scholar]
  54. Papineau SD, Wilson S. 2014. Dentition abnormalities in a Timothy syndrome patient with a novel genetic mutation: a case report. Pediatr. Dent. 36:245–49 [Google Scholar]
  55. Parada C, Chai Y. 2012. Roles of BMP signaling pathway in lip and palate development. Front. Oral Biol. 16:60–70 [Google Scholar]
  56. Park KS, Yang JW, Seikel E, Trimmer JS. 2008. Potassium channel phosphorylation in excitable cells: providing dynamic functional variability to a diverse family of ion channels. Physiology 23:49–57 [Google Scholar]
  57. Patino GA, Isom LL. 2010. Electrophysiology and beyond: multiple roles of Na+ channel β subunits in development and disease. Neurosci. Lett. 486:53–59 [Google Scholar]
  58. Paznekas WA, Boyadjiev SA, Shapiro RE, Daniels O, Wollnik B. et al. 2003. Connexin 43 (GJA1) mutations cause the pleiotropic phenotype of oculodentodigital dysplasia. Am. J. Hum. Genet. 72:408–18 [Google Scholar]
  59. Perathoner S, Daane JM, Henrion U, Seebohm G, Higdon CW. et al. 2014. Bioelectric signaling regulates size in zebrafish fins. PLOS Genet. 10:e1004080 [Google Scholar]
  60. Pi X, Ren R, Kelley R, Zhang C, Moser M. et al. 2007. Sequential roles for myosin-X in BMP6-dependent filopodial extension, migration, and activation of BMP receptors. J. Cell Biol. 179:1569–82 [Google Scholar]
  61. Piccioli ZD, Littleton JT. 2014. Retrograde BMP signaling modulates rapid activity-dependent synaptic growth via presynaptic LIM kinase regulation of cofilin. J. Neurosci. 34:4371–81 [Google Scholar]
  62. Plant LD, Dementieva IS, Kollewe A, Olikara S, Marks JD, Goldstein SA. 2010. One SUMO is sufficient to silence the dimeric potassium channel K2P1. PNAS 107:10743–48 [Google Scholar]
  63. Plant LD, Dowdell EJ, Dementieva IS, Marks JD, Goldstein SA. 2011. SUMO modification of cell surface Kv2.1 potassium channels regulates the activity of rat hippocampal neurons. J. Gen. Physiol. 137:441–54 [Google Scholar]
  64. Plaster NM, Tawil R, Tristani-Firouzi M, Canun S, Bendahhou S. et al. 2001. Mutations in Kir2.1 cause the developmental and episodic electrical phenotypes of Andersen's syndrome. Cell 105:511–19 [Google Scholar]
  65. Raftery LA, Sutherland DJ. 1999. TGF-β family signal transduction in Drosophila development: from Mad to Smads. Dev. Biol. 210:251–68 [Google Scholar]
  66. Ramachandran KV, Hennessey JA, Barnett AS, Yin X, Stadt HA. et al. 2013. Calcium influx through L-type CaV1.2 Ca2+ channels regulates mandibular development. J. Clin. Investig. 123:1638–46 [Google Scholar]
  67. Renaudo A, L'Hoste S, Guizouarn H, Borgese F, Soriani O. 2007. Cancer cell cycle modulated by a functional coupling between σ1 receptors and Cl channels. J. Biol. Chem. 282:2259–67 [Google Scholar]
  68. Richardson R, Donnai D, Meire F, Dixon MJ. 2004. Expression of Gja1 correlates with the phenotype observed in oculodentodigital syndrome/type III syndactyly. J. Med. Genet. 41:60–67 [Google Scholar]
  69. Rouzaire-Dubois B, Milandri JB, Bostel S, Dubois JM. 2000. Control of cell proliferation by cell volume alterations in rat C6 glioma cells. Pflugers Arch. 440:881–88 [Google Scholar]
  70. Sachs HG, Stambrook PJ, Ebert JD. 1974. Changes in membrane potential during the cell cycle. Exp. Cell Res. 83:362–66 [Google Scholar]
  71. Shipston MJ. 2011. Ion channel regulation by protein palmitoylation. J. Biol. Chem. 286:8709–16 [Google Scholar]
  72. Sohl G, Odermatt B, Maxeiner S, Degen J, Willecke K. 2004. New insights into the expression and function of neural connexins with transgenic mouse mutants. Brain Res. Rev. 47:245–59 [Google Scholar]
  73. Splawski I, Timothy KW, Sharpe LM, Decher N, Kumar P. et al. 2004. CaV1.2 calcium channel dysfunction causes a multisystem disorder including arrhythmia and autism. Cell 119:19–31 [Google Scholar]
  74. Swapna I, Borodinsky LN. 2012. Interplay between electrical activity and bone morphogenetic protein signaling regulates spinal neuron differentiation. Proc. Natl. Acad. Sci. USA 109:16336–41 [Google Scholar]
  75. Sui Y, Sun M, Wu F, Yang L, Di W. et al. 2014. Inhibition of TMEM16A expression suppresses growth and invasion in human colorectal cancer cells. PLOS ONE 9:e115443 [Google Scholar]
  76. Sulkowski M, Kim YJ, Serpe M. 2014. Postsynaptic glutamate receptors regulate local BMP signaling at the Drosophila neuromuscular junction. Development 141:436–47 [Google Scholar]
  77. Tawil R, Ptacek LJ, Pavlakis SG, Devivo DC, Penn AS. et al. 1994. Andersen's syndrome: potassium-sensitive periodic paralysis, ventricular ectopy, and dysmorphic features. Ann. Neurol. 35:326–30 [Google Scholar]
  78. Turner KL, Sontheimer H. 2014. KCa3.1 modulates neuroblast migration along the rostral migratory stream (RMS) in vivo. Cereb. Cortex 24:2388–400 [Google Scholar]
  79. van Steensel MA, Spruijt L, van der Burgt I, Bladergroen RS, Vermeer M. et al. 2005. A 2-bp deletion in the GJA1 gene is associated with oculo-dento-digital dysplasia with palmoplantar keratoderma. Am. J. Med. Genet. A 132A:171–74 [Google Scholar]
  80. Varga Z, Juhasz T, Matta C, Fodor J, Katona E. et al. 2011. Switch of voltage-gated K+ channel expression in the plasma membrane of chondrogenic cells affects cytosolic Ca2+-oscillations and cartilage formation. PLOS One 6:e27957 [Google Scholar]
  81. Vitiello C, D'Adamo P, Gentile F, Vingolo EM, Gasparini P, Banfi S. 2005. A novel GJA1 mutation causes oculodentodigital dysplasia without syndactyly. Am. J. Med. Genet. A 133A:58–60 [Google Scholar]
  82. Wang H, Mao Y, Zhang B, Wang T, Li F. et al. 2010. Chloride channel ClC-3 promotion of osteogenic differentiation through Runx2. J. Cell Biochem. 111:49–58 [Google Scholar]
  83. Wang YF, Jia H, Walker AM, Cukierman S. 1992. K-current mediation of prolactin-induced proliferation of malignant (Nb2) lymphocytes. J. Cell Physiol. 152:185–9 [Google Scholar]
  84. Watanabe M, Iwashita M, Ishii M, Kurachi Y, Kawakami A. et al. 2006. Spot pattern of leopard Danio is caused by mutation in the zebrafish connexin41.8 gene. EMBO Rep. 7:893–7 [Google Scholar]
  85. Weaver AK, Bomben VC, Sontheimer H. 2006. Expression and function of calcium-activated potassium channels in human glioma cells. Glia 54:223–33 [Google Scholar]
  86. West AE, Greenberg ME. 2011. Neuronal activity–regulated gene transcription in synapse development and cognitive function. Cold Spring Harb. Perspect. Biol. 3:a005744 [Google Scholar]
  87. Wollman R, Meyer T. 2012. Coordinated oscillations in cortical actin and Ca2+ correlate with cycles of vesicle secretion. Nat. Cell Biol. 14:1261–69 [Google Scholar]
  88. Xiao L, Michalski N, Kronander E, Gjoni E, Genoud C. et al. 2013. BMP signaling specifies the development of a large and fast CNS synapse. Nat. Neurosci. 16:856–64 [Google Scholar]
  89. Xiao ZC, Ragsdale DS, Malhotra JD, Mattei LN, Braun PE. et al. 1999. Tenascin-R is a functional modulator of sodium channel β subunits. J. Biol. Chem. 274:26511–17 [Google Scholar]
  90. Yang JY, Jung JY, Cho SW, Choi HJ, Kim SW. et al. 2009. Chloride intracellular channel 1 regulates osteoblast differentiation. Bone 45:1175–85 [Google Scholar]
  91. Yang M, Kozminski DJ, Wold LA, Modak R, Calhoun JD. et al. 2012. Therapeutic potential for phenytoin: targeting Nav1.5 sodium channels to reduce migration and invasion in metastatic breast cancer. Breast Cancer Res. Treat. 134:603–15 [Google Scholar]
  92. Yao X, Kwan HY. 1999. Activity of voltage-gated K+ channels is associated with cell proliferation and Ca2+ influx in carcinoma cells of colon cancer. Life Sci. 65:55–62 [Google Scholar]
  93. Yoon G, Oberoi S, Tristani-Firouzi M, Etheridge SP, Quitania L. et al. 2006. Andersen-Tawil syndrome: prospective cohort analysis and expansion of the phenotype. Am. J. Med. Genet. A 140:312–21 [Google Scholar]
  94. Yoshikawa M, Uchida S, Ezaki J, Rai T, Hayama A. et al. 2002. CLC-3 deficiency leads to phenotypes similar to human neuronal ceroid lipofuscinosis. Genes Cells 7:597–605 [Google Scholar]
  95. Yucel G, Altindag B, Gomez-Ospina N, Rana A, Panagiotakos G. et al. 2013. State-dependent signaling by Cav1.2 regulates hair follicle stem cell function. Genes Dev. 27:1217–22 [Google Scholar]
  96. Zaritsky JJ, Eckman DM, Wellman GC, Nelson MT, Schwarz TL. 2000. Targeted disruption of Kir2.1 and Kir2.2 genes reveals the essential role of the inwardly rectifying K+ current in K+-mediated vasodilation. Circ. Res. 87:160–66 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100814-125338
Loading
/content/journals/10.1146/annurev-cellbio-100814-125338
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error