Transposable elements (TEs) account for at least 50% of the human genome. They constitute essential motors of evolution through their ability to modify genomic architecture, mutate genes and regulate gene expression. Accordingly, TEs are subject to tight epigenetic control during the earliest phases of embryonic development via histone and DNA methylation. Key to this process is recognition by sequence-specific RNA- and protein-based repressors. Collectively, these mediators are responsible for silencing a very broad range of TEs in an evolutionarily dynamic fashion. As a consequence, mobile elements and their controllers exert a marked influence on transcriptional networks in embryonic stem cells and a variety of adult tissues. The emerging picture is not that of a simple arms race but rather of a massive and sophisticated enterprise of TE domestication for the evolutionary benefit of the host.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Allis CD, Berger SL, Cote J, Dent S, Jenuwien T. et al. 2007. New nomenclature for chromatin-modifying enzymes. Cell 131:633–36 [Google Scholar]
  2. Aravin AA, Bourc'his D. 2008. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes Dev. 22:970–75 [Google Scholar]
  3. Aravin AA, Gaidatzis D, Pfeffer S, Lagos-Quintana M, Landgraf P. et al. 2006. A novel class of small RNAs bind to MILI protein in mouse testes. Nature 442:203–7 [Google Scholar]
  4. Aravin AA, Hannon GJ. 2008. Small RNA silencing pathways in germ and stem cells. Cold Spring Harb. Symp. Quant. Biol. 73:283–90 [Google Scholar]
  5. Aravin AA, Hannon GJ, Brennecke J. 2007. The Piwi-piRNA pathway provides an adaptive defense in the transposon arms race. Science 318:761–64 [Google Scholar]
  6. Aravin AA, Naumova NM, Tulin AV, Vagin VV, Rozovsky YM, Gvozdev VA. 2001. Double-stranded RNA-mediated silencing of genomic tandem repeats and transposable elements in the D. melanogaster germline. Curr. Biol. 11:1017–27 [Google Scholar]
  7. Baillie JK, Barnett MW, Upton KR, Gerhardt DJ, Richmond TA. et al. 2011. Somatic retrotransposition alters the genetic landscape of the human brain. Nature 479:534–37 [Google Scholar]
  8. Bannert N, Kurth R. 2004. Retroelements and the human genome: new perspectives on an old relation. PNAS 101:Suppl. 214572–79 [Google Scholar]
  9. Bannert N, Kurth R. 2006. The evolutionary dynamics of human endogenous retroviral families. Annu. Rev. Genomics Hum. Genet. 7:149–73 [Google Scholar]
  10. Barde I, Rauwel B, Marin-Florez RM, Corsinotti A, Laurenti E. et al. 2013. A KRAB/KAP1-miRNA cascade regulates erythropoiesis through stage-specific control of mitophagy. Science 340:350–53 [Google Scholar]
  11. Beck CR, Garcia-Perez JL, Badge RM, Moran JV. 2011. LINE-1 elements in structural variation and disease. Annu. Rev. Genomics Hum. Genet. 12:187–215 [Google Scholar]
  12. Bejerano G, Lowe CB, Ahituv N, King B, Siepel A. et al. 2006. A distal enhancer and an ultraconserved exon are derived from a novel retroposon. Nature 441:87–90 [Google Scholar]
  13. Belancio VP, Hedges DJ, Deininger P. 2008. Mammalian non-LTR retrotransposons: for better or worse, in sickness and in health. Genome Res. 18:343–58 [Google Scholar]
  14. Belshaw R, Pereira V, Katzourakis A, Talbot G, Paces J. et al. 2004. Long-term reinfection of the human genome by endogenous retroviruses. PNAS 101:4894–99 [Google Scholar]
  15. Best S, Le Tissier P, Towers G, Stoye JP. 1996. Positional cloning of the mouse retrovirus restriction gene Fv1. Nature 382:826–29 [Google Scholar]
  16. Bogerd HP, Wiegand HL, Doehle BP, Lueders KK, Cullen BR. 2006a. APOBEC3A and APOBEC3B are potent inhibitors of LTR-retrotransposon function in human cells. Nucleic Acids Res. 34:89–95 [Google Scholar]
  17. Bogerd HP, Wiegand HL, Hulme AE, Garcia-Perez JL, O'Shea KS. et al. 2006b. Cellular inhibitors of long interspersed element 1 and Alu retrotransposition. PNAS 103:8780–85 [Google Scholar]
  18. Boissinot S, Davis J, Entezam A, Petrov D, Furano AV. 2006. Fitness cost of LINE-1 (L1) activity in humans. PNAS 103:9590–94 [Google Scholar]
  19. Bostick M, Kim JK, Esteve PO, Clark A, Pradhan S, Jacobsen SE. 2007. UHRF1 plays a role in maintaining DNA methylation in mammalian cells. Science 317:1760–64 [Google Scholar]
  20. Bourc'his D, Bestor TH. 2004. Meiotic catastrophe and retrotransposon reactivation in male germ cells lacking Dnmt3L. Nature 431:96–99 [Google Scholar]
  21. Bourc'his D, Voinnet O. 2010. A small-RNA perspective on gametogenesis, fertilization, and early zygotic development. Science 330:617–22 [Google Scholar]
  22. Bourque G, Leong B, Vega VB, Chen X, Lee YL. et al. 2008. Evolution of the mammalian transcription factor binding repertoire via transposable elements. Genome Res. 18:1752–62 [Google Scholar]
  23. Brennecke J, Aravin AA, Stark A, Dus M, Kellis M. et al. 2007. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell 128:1089–103 [Google Scholar]
  24. Britten RJ, Davidson EH. 1969. Gene regulation for higher cells: a theory. Science 165:349–57 [Google Scholar]
  25. Bulut-Karslioglu A, De La Rosa-Velázquez IA, Ramirez F, Barenboim M, Onishi-Seebacher M. et al. 2014. Suv39h-dependent H3K9me3 marks intact retrotransposons and silences LINE elements in mouse embryonic stem cells. Mol. Cell 55:277–90 [Google Scholar]
  26. Cabili MN, Trapnell C, Goff L, Koziol M, Tazon-Vega B. et al. 2011. Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. Genes Dev. 25:1915–27 [Google Scholar]
  27. Cammas F, Mark M, Dollé P, Dierich A, Chambon P, Losson R. 2000. Mice lacking the transcriptional corepressor TIF1β are defective in early postimplantation development. Development 127:2955–63 [Google Scholar]
  28. Carmell MA, Girard A, van de Kant HJ, Bourc'his D, Bestor TH. et al. 2007. MIWI2 is essential for spermatogenesis and repression of transposons in the mouse male germline. Dev. Cell 12:503–14 [Google Scholar]
  29. Castro-Diaz N, Ecco G, Coluccio A, Kapopoulou A, Yazdanpanah B. et al. 2014. Evolutionally dynamic L1 regulation in embryonic stem cells. Genes Dev. 28:1397–409 [Google Scholar]
  30. Chedin F, Lieber MR, Hsieh CL. 2002. The DNA methyltransferase-like protein DNMT3L stimulates de novo methylation by Dnmt3a. PNAS 99:16916–21 [Google Scholar]
  31. Chen T, Ueda Y, Dodge JE, Wang Z, Li E. 2003. Establishment and maintenance of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and Dnmt3b. Mol. Cell. Biol. 23:5594–605 [Google Scholar]
  32. Chiu YL, Greene WC. 2008. The APOBEC3 cytidine deaminases: an innate defensive network opposing exogenous retroviruses and endogenous retroelements. Annu. Rev. Immunol. 26:317–53 [Google Scholar]
  33. Chuong EB. 2013. Retroviruses facilitate the rapid evolution of the mammalian placenta. BioEssays 35:853–61 [Google Scholar]
  34. Chuong EB, Rumi MA, Soares MJ, Baker JC. 2013. Endogenous retroviruses function as species-specific enhancer elements in the placenta. Nat. Genet. 45:325–29 [Google Scholar]
  35. Corsinotti A, Kapopoulou A, Gubelmann C, Imbeault M, Santoni de Sio FR. et al. 2013. Global and stage specific patterns of Kruppel-associated-box zinc finger protein gene expression in murine early embryonic cells. PLOS ONE 8:e56721 [Google Scholar]
  36. Coufal NG, Garcia-Perez JL, Peng GE, Yeo GW, Mu Y. et al. 2009. L1 retrotransposition in human neural progenitor cells. Nature 460:1127–31 [Google Scholar]
  37. de Koning AP, Gu W, Castoe TA, Batzer MA, Pollock DD. 2011. Repetitive elements may comprise over two-thirds of the human genome. PLOS Genet. 7:e1002384 [Google Scholar]
  38. Derrien T, Johnson R, Bussotti G, Tanzer A, Djebali S. et al. 2012. The GENCODE v7 catalog of human long noncoding RNAs: analysis of their gene structure, evolution, and expression. Genome Res. 22:1775–89 [Google Scholar]
  39. Dewannieux M, Heidmann T. 2013. Endogenous retroviruses: acquisition, amplification and taming of genome invaders. Curr. Opin. Virol. 3:646–56 [Google Scholar]
  40. Dinger ME, Amaral PP, Mercer TR, Mattick JS. 2009. Pervasive transcription of the eukaryotic genome: functional indices and conceptual implications. Brief. Funct. Genomics Proteomics 8:407–23 [Google Scholar]
  41. Dinger ME, Amaral PP, Mercer TR, Pang KC, Bruce SJ. et al. 2008. Long noncoding RNAs in mouse embryonic stem cell pluripotency and differentiation. Genome Res. 18:1433–45 [Google Scholar]
  42. Douville R, Liu J, Rothstein J, Nath A. 2011. Identification of active loci of a human endogenous retrovirus in neurons of patients with amyotrophic lateral sclerosis. Ann. Neurol. 69:141–51 [Google Scholar]
  43. Duhl DM, Vrieling H, Miller KA, Wolff GL, Barsh GS. 1994. Neomorphic agouti mutations in obese yellow mice. Nat. Genet. 8:59–65 [Google Scholar]
  44. Dupressoir A, Lavialle C, Heidmann T. 2012. From ancestral infectious retroviruses to bona fide cellular genes: role of the captured syncytins in placentation. Placenta 33:663–71 [Google Scholar]
  45. Eickbush TH, Jamburuthugoda VK. 2008. The diversity of retrotransposons and the properties of their reverse transcriptases. Virus Res. 134:221–34 [Google Scholar]
  46. Emerson RO, Thomas JH. 2009. Adaptive evolution in zinc finger transcription factors. PLOS Genet. 5:e1000325 [Google Scholar]
  47. ENCODE Project Consort., Birney E, Stamatoyannopoulos JA, Dutta A, Guigo R et al. 2007. Identification and analysis of functional elements in 1% of the human genome by the ENCODE pilot project. Nature 447:799–816 [Google Scholar]
  48. Erwin JA, Marchetto MC, Gage FH. 2014. Mobile DNA elements in the generation of diversity and complexity in the brain. Nat. Rev. Neurosci. 15:497–506 [Google Scholar]
  49. Esnault C, Heidmann O, Delebecque F, Dewannieux M, Ribet D. et al. 2005. APOBEC3G cytidine deaminase inhibits retrotransposition of endogenous retroviruses. Nature 433:430–33 [Google Scholar]
  50. Esnault C, Millet J, Schwartz O, Heidmann T. 2006. Dual inhibitory effects of APOBEC family proteins on retrotransposition of mammalian endogenous retroviruses. Nucleic Acids Res. 34:1522–31 [Google Scholar]
  51. Evrony GD, Cai X, Lee E, Hills LB, Elhosary PC. et al. 2012. Single-neuron sequencing analysis of L1 retrotransposition and somatic mutation in the human brain. Cell 151:483–96 [Google Scholar]
  52. Evrony GD, Lee E, Mehta BK, Benjamini Y, Johnson RM. et al. 2015. Cell lineage analysis in human brain using endogenous retroelements. Neuron 85:49–59 [Google Scholar]
  53. Fasching L, Kapopoulou A, Sachdeva R, Petri R, Jönsson ME. et al. 2015. TRIM28 represses transcription of endogenous retroviruses in neural progenitor cells. Cell Rep. 10:20–28 [Google Scholar]
  54. Faulkner GJ, Kimura Y, Daub CO, Wani S, Plessy C. et al. 2009. The regulated retrotransposon transcriptome of mammalian cells. Nat. Genet. 41:563–71 [Google Scholar]
  55. Feschotte C. 2008. Transposable elements and the evolution of regulatory networks. Nat. Rev. Genet. 9:397–405 [Google Scholar]
  56. Feschotte C, Gilbert C. 2012. Endogenous viruses: insights into viral evolution and impact on host biology. Nat. Rev. Genet. 13:283–96 [Google Scholar]
  57. Finnegan DJ. 2012. Retrotransposons. Curr. Biol. 22:R432–37 [Google Scholar]
  58. Fort A, Hashimoto K, Yamada D, Salimullah M, Keya CA. et al. 2014. Deep transcriptome profiling of mammalian stem cells supports a regulatory role for retrotransposons in pluripotency maintenance. Nat. Genet. 46:558–66 [Google Scholar]
  59. Friedli M, Nikolaev S, Lyle R, Arcangeli M, Duboule D. et al. 2008. Characterization of mouse Dactylaplasia mutations: a model for human ectrodactyly SHFM3. Mamm. Genome 19:272–78 [Google Scholar]
  60. Friedli M, Turelli P, Kapopoulou A, Rauwel B, Castro-Diaz N. et al. 2014. Loss of transcriptional control over endogenous retroelements during reprogramming to pluripotency. Genome Res. 24:1251–59 [Google Scholar]
  61. Gall A, Treuting P, Elkon KB, Loo YM, Gale M Jr. 2012. Autoimmunity initiates in nonhematopoietic cells and progresses via lymphocytes in an interferon-dependent autoimmune disease. Immunity 36:120–31 [Google Scholar]
  62. Garcia-Perez JL, Marchetto MC, Muotri AR, Coufal NG, Gage FH. et al. 2007. LINE-1 retrotransposition in human embryonic stem cells. Hum. Mol. Genet. 16:1569–77 [Google Scholar]
  63. Gerstein MB, Kundaje A, Hariharan M, Landt SG, Yan KK. et al. 2012. Architecture of the human regulatory network derived from ENCODE data. Nature 489:91–100 [Google Scholar]
  64. Gifford WD, Pfaff SL, Macfarlan TS. 2013. Transposable elements as genetic regulatory substrates in early development. Trends Cell Biol. 23:218–26 [Google Scholar]
  65. Girard A, Hannon GJ. 2008. Conserved themes in small-RNA–mediated transposon control. Trends Cell Biol. 18:136–48 [Google Scholar]
  66. Girard A, Sachidanandam R, Hannon GJ, Carmell MA. 2006. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature 442:199–202 [Google Scholar]
  67. Göke J, Lu X, Chan YS, Ng HH, Ly LH. et al. 2015. Dynamic transcription of distinct classes of endogenous retroviral elements marks specific populations of early human embryonic cells. Cell Stem Cell 16:135–41 [Google Scholar]
  68. Goldstone DC, Ennis-Adeniran V, Hedden JJ, Groom HC, Rice GI. et al. 2011. HIV-1 restriction factor SAMHD1 is a deoxynucleoside triphosphate triphosphohydrolase. Nature 480:379–82 [Google Scholar]
  69. Goodier JL, Kazazian HH Jr. 2008. Retrotransposons revisited: the restraint and rehabilitation of parasites. Cell 135:23–35 [Google Scholar]
  70. Guttman M, Amit I, Garber M, French C, Lin MF. et al. 2009. Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals. Nature 458:223–27 [Google Scholar]
  71. Hacein-Bey-Abina S, Von Kalle C, Schmidt M, McCormack MP, Wulffraat N. et al. 2003. LMO2-associated clonal T cell proliferation in two patients after gene therapy for SCID-X1. Science 302:415–19 [Google Scholar]
  72. Hancks DC, Kazazian HH Jr. 2012. Active human retrotransposons: variation and disease. Curr. Opin. Genet. Dev. 22:191–203 [Google Scholar]
  73. Harris RS, Bishop KN, Sheehy AM, Craig HM, Petersen-Mahrt SK. et al. 2003. DNA deamination mediates innate immunity to retroviral infection. Cell 113:803–9 [Google Scholar]
  74. Harris RS, Liddament MT. 2004. Retroviral restriction by APOBEC proteins. Nat. Rev. Immunol. 4:868–77 [Google Scholar]
  75. He YF, Li BZ, Li Z, Liu P, Wang Y. et al. 2011. Tet-mediated formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. Science 333:1303–7 [Google Scholar]
  76. Heras SR, Macias S, Plass M, Fernandez N, Cano D. et al. 2013. The Microprocessor controls the activity of mammalian retrotransposons. Nat. Struct. Mol. Biol. 20:1173–81 [Google Scholar]
  77. Hrecka K, Hao C, Gierszewska M, Swanson SK, Kesik-Brodacka M. et al. 2011. Vpx relieves inhibition of HIV-1 infection of macrophages mediated by the SAMHD1 protein. Nature 474:658–61 [Google Scholar]
  78. Huntley S, Baggott DM, Hamilton AT, Tran-Gyamfi M, Yang S. et al. 2006. A comprehensive catalog of human KRAB-associated zinc finger genes: insights into the evolutionary history of a large family of transcriptional repressors. Genome Res. 16:669–77 [Google Scholar]
  79. Hurst TP, Magiorkinis G. 2014. Activation of the innate immune response by endogenous retroviruses. J. Gen. Virol. 961207–18 [Google Scholar]
  80. Iqbal K, Jin SG, Pfeifer GP, Szabo PE. 2011. Reprogramming of the paternal genome upon fertilization involves genome-wide oxidation of 5-methylcytosine. PNAS 108:3642–47 [Google Scholar]
  81. Ito S, D'Alessio AC, Taranova OV, Hong K, Sowers LC, Zhang Y. 2010. Role of Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass specification. Nature 466:1129–33 [Google Scholar]
  82. Iyengar S, Farnham PJ. 2011. KAP1 protein: an enigmatic master regulator of the genome. J. Biol. Chem. 286:26267–76 [Google Scholar]
  83. Jacob F, Perrin D, Sanchez C, Monod J. 1960. Operon: a group of genes with the expression coordinated by an operator. C. R. Acad. Sci. 250:1727–29 [Google Scholar]
  84. Jacobs FM, Greenberg D, Nguyen N, Haeussler M, Ewing AD. et al. 2014. An evolutionary arms race between KRAB zinc-finger genes ZNF91/93 and SVA/L1 retrotransposons. Nature 516:242–45 [Google Scholar]
  85. Jakobsson J, Cordero MI, Bisaz R, Groner AC, Busskamp V. et al. 2008. KAP1-mediated epigenetic repression in the forebrain modulates behavioral vulnerability to stress. Neuron 60:818–31 [Google Scholar]
  86. Jern P, Coffin JM. 2008. Effects of retroviruses on host genome function. Annu. Rev. Genet. 42:709–32 [Google Scholar]
  87. Jia H, Osak M, Bogu GK, Stanton LW, Johnson R, Lipovich L. 2010. Genome-wide computational identification and manual annotation of human long noncoding RNA genes. RNA 16:1478–87 [Google Scholar]
  88. Johnson R, Guigo R. 2014. The RIDL hypothesis: transposable elements as functional domains of long noncoding RNAs. RNA 20:959–76 [Google Scholar]
  89. Jordan IK, Rogozin IB, Glazko GV, Koonin EV. 2003. Origin of a substantial fraction of human regulatory sequences from transposable elements. Trends Genet. 19:68–72 [Google Scholar]
  90. Jurka J. 2000. Repbase update: a database and an electronic journal of repetitive elements. Trends Genet. 16:418–20 [Google Scholar]
  91. Kaiser SM, Malik HS, Emerman M. 2007. Restriction of an extinct retrovirus by the human TRIM5α antiviral protein. Science 316:1756–58 [Google Scholar]
  92. Kano H, Kurahashi H, Toda T. 2007. Genetically regulated epigenetic transcriptional activation of retrotransposon insertion confers mouse dactylaplasia phenotype. PNAS 104:19034–39 [Google Scholar]
  93. Kapitonov VV, Jurka J. 2005. RAG1 core and V(D)J recombination signal sequences were derived from Transib transposons. PLOS Biol. 3:e181 [Google Scholar]
  94. Kapranov P, Cheng J, Dike S, Nix DA, Duttagupta R. et al. 2007. RNA maps reveal new RNA classes and a possible function for pervasive transcription. Science 316:1484–88 [Google Scholar]
  95. Kapusta A, Kronenberg Z, Lynch VJ, Zhuo X, Ramsay L. et al. 2013. Transposable elements are major contributors to the origin, diversification, and regulation of vertebrate long noncoding RNAs. PLOS Genet. 9:e1003470 [Google Scholar]
  96. Kassiotis G. 2014. Endogenous retroviruses and the development of cancer. J. Immunol. 192:1343–49 [Google Scholar]
  97. Kazazian HH Jr. 2004. Mobile elements: drivers of genome evolution. Science 303:1626–32 [Google Scholar]
  98. Kazazian HH Jr, Wong C, Youssoufian H, Scott AF, Phillips DG, Antonarakis SE. 1988. Haemophilia A resulting from de novo insertion of L1 sequences represents a novel mechanism for mutation in man. Nature 332:164–66 [Google Scholar]
  99. Kelley D, Rinn J. 2012. Transposable elements reveal a stem cell–specific class of long noncoding RNAs. Genome Biol. 13:R107 [Google Scholar]
  100. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH. et al. 2002. The human genome browser at UCSC. Genome Res. 12:996–1006 [Google Scholar]
  101. Kondo Y, Issa JP. 2003. Enrichment for histone H3 lysine 9 methylation at Alu repeats in human cells. J. Biol. Chem. 278:27658–62 [Google Scholar]
  102. Koyanagi-Aoi M, Ohnuki M, Takahashi K, Okita K, Noma H. et al. 2013. Differentiation-defective phenotypes revealed by large-scale analyses of human pluripotent stem cells. PNAS 110:20569–74 [Google Scholar]
  103. Krull M, Petrusma M, Makalowski W, Brosius J, Schmitz J. 2007. Functional persistence of exonized mammalian-wide interspersed repeat elements (MIRs). Genome Res. 17:1139–45 [Google Scholar]
  104. Kunarso G, Chia NY, Jeyakani J, Hwang C, Lu X. et al. 2010. Transposable elements have rewired the core regulatory network of human embryonic stem cells. Nat. Genet. 42:631–34 [Google Scholar]
  105. Kuramochi-Miyagawa S, Watanabe T, Gotoh K, Totoki Y, Toyoda A. et al. 2008. DNA methylation of retrotransposon genes is regulated by Piwi family members MILI and MIWI2 in murine fetal testes. Genes Dev. 22:908–17 [Google Scholar]
  106. Kurihara Y, Kawamura Y, Uchijima Y, Amamo T, Kobayashi H. et al. 2008. Maintenance of genomic methylation patterns during preimplantation development requires the somatic form of DNA methyltransferase 1. Dev. Biol. 313:335–46 [Google Scholar]
  107. Laguette N, Sobhian B, Casartelli N, Ringeard M, Chable-Bessia C. et al. 2011. SAMHD1 is the dendritic- and myeloid-cell-specific HIV-1 restriction factor counteracted by Vpx. Nature 474:654–57 [Google Scholar]
  108. Lander ES, Linton LM, Birren B, Nusbaum C, Zody MC. et al. 2001. Initial sequencing and analysis of the human genome. Nature 409:860–921 [Google Scholar]
  109. Law JA, Jacobsen SE. 2010. Establishing, maintaining and modifying DNA methylation patterns in plants and animals. Nat. Rev. Genet. 11:204–20 [Google Scholar]
  110. Lee YN, Malim MH, Bieniasz PD. 2008. Hypermutation of an ancient human retrovirus by APOBEC3G. J. Virol. 82:8762–70 [Google Scholar]
  111. Leung DC, Dong KB, Maksakova IA, Goyal P, Appanah R. et al. 2011. Lysine methyltransferase G9a is required for de novo DNA methylation and the establishment, but not the maintenance, of proviral silencing. PNAS 108:5718–23 [Google Scholar]
  112. Levy A, Sela N, Ast G. 2008. TranspoGene and microTranspoGene: Transposed elements influence on the transcriptome of seven vertebrates and invertebrates. Nucleic Acids Res. 36:D47–52 [Google Scholar]
  113. Liang G, Chan MF, Tomigahara Y, Tsai YC, Gonzales FA. et al. 2002. Cooperativity between DNA methyltransferases in the maintenance methylation of repetitive elements. Mol. Cell. Biol. 22:480–91 [Google Scholar]
  114. Lu X, Sachs F, Ramsay L, Jacques PE, Göke J. et al. 2014. The retrovirus HERVH is a long noncoding RNA required for human embryonic stem cell identity. Nat. Struct. Mol. Biol. 21:423–25 [Google Scholar]
  115. Lynch VJ, Leclerc RD, May G, Wagner GP. 2011. Transposon-mediated rewiring of gene regulatory networks contributed to the evolution of pregnancy in mammals. Nat. Genet. 43:1154–59 [Google Scholar]
  116. Macfarlan TS, Gifford WD, Agarwal S, Driscoll S, Lettieri K. et al. 2011. Endogenous retroviruses and neighboring genes are coordinately repressed by LSD1/KDM1A. Genes Dev. 25:594–607 [Google Scholar]
  117. Macfarlan TS, Gifford WD, Driscoll S, Lettieri K, Rowe HM. et al. 2012. Embryonic stem cell potency fluctuates with endogenous retrovirus activity. Nature 487:57–63 [Google Scholar]
  118. Maksakova IA, Romanish MT, Gagnier L, Dunn CA, van de Lagemaat LN, Mager DL. 2006. Retroviral elements and their hosts: insertional mutagenesis in the mouse germ line. PLOS Genet. 2:e2 [Google Scholar]
  119. Mangeat B, Turelli P, Caron G, Friedli M, Perrin L, Trono D. 2003. Broad antiretroviral defence by human APOBEC3G through lethal editing of nascent reverse transcripts. Nature 424:99–103 [Google Scholar]
  120. Manghera M, Douville RN. 2013. Endogenous retrovirus-K promoter: a landing strip for inflammatory transcription factors?. Retrovirology 10:16 [Google Scholar]
  121. Marchetto MC, Narvaiza I, Denli AM, Benner C, Lazzarini TA. et al. 2013. Differential L1 regulation in pluripotent stem cells of humans and apes. Nature 503:525–29 [Google Scholar]
  122. Marchi E, Kanapin A, Magiorkinis G, Belshaw R. 2014. Unfixed endogenous retroviral insertions in the human population. J. Virol. 88:9529–37 [Google Scholar]
  123. Martens JH, O'Sullivan RJ, Braunschweig U, Opravil S, Radolf M. et al. 2005. The profile of repeat-associated histone lysine methylation states in the mouse epigenome. EMBO J. 24:800–12 [Google Scholar]
  124. Matsui T, Leung D, Miyashita H, Maksakova IA, Miyachi H. et al. 2010. Proviral silencing in embryonic stem cells requires the histone methyltransferase ESET. Nature 464:927–31 [Google Scholar]
  125. Mayer J, Blomberg J, Seal RL. 2011. A revised nomenclature for transcribed human endogenous retroviral loci. Mobile DNA 2:7 [Google Scholar]
  126. McClintock B. 1950. The origin and behavior of mutable loci in maize. PNAS 36:344–55 [Google Scholar]
  127. Mercer TR, Dinger ME, Mattick JS. 2009. Long non-coding RNAs: insights into functions. Nat. Rev. Genet. 10:155–59 [Google Scholar]
  128. Meylan S, Groner AC, Ambrosini G, Malani N, Quenneville S. et al. 2011. A gene-rich, transcriptionally active environment and the pre-deposition of repressive marks are predictive of susceptibility to KRAB/KAP1-mediated silencing.. BMC Genomics 12:378 [Google Scholar]
  129. Miki Y, Nishisho I, Horii A, Miyoshi Y, Utsunomiya J. et al. 1992. Disruption of the APC gene by a retrotransposal insertion of L1 sequence in a colon cancer. Cancer Res. 52:643–45 [Google Scholar]
  130. Mikkelsen TS, Ku M, Jaffe DB, Issac B, Lieberman E. et al. 2007. Genome-wide maps of chromatin state in pluripotent and lineage-committed cells. Nature 448:553–60 [Google Scholar]
  131. Mouse Genome Seq. Consort., Waterston RH, Lindblad-Toh K, Birney E, Rogers J et al. 2002. Initial sequencing and comparative analysis of the mouse genome. Nature 420:520–62 [Google Scholar]
  132. Muotri AR, Chu VT, Marchetto MC, Deng W, Moran JV, Gage FH. 2005. Somatic mosaicism in neuronal precursor cells mediated by L1 retrotransposition. Nature 435:903–10 [Google Scholar]
  133. Muotri AR, Marchetto MC, Coufal NG, Oefner R, Yeo G. et al. 2010. L1 retrotransposition in neurons is modulated by MeCP2. Nature 468:443–46 [Google Scholar]
  134. Neel BG, Gasic GP, Rogler CE, Skalka AM, Ju G. et al. 1982. Molecular analysis of the c-myc locus in normal tissue and in avian leukosis virus-induced lymphomas. J. Virol. 44:158–66 [Google Scholar]
  135. Nekrutenko A, Li WH. 2001. Transposable elements are found in a large number of human protein-coding genes. Trends Genet. 17:619–21 [Google Scholar]
  136. Nowick K, Gernat T, Almaas E, Stubbs L. 2009. Differences in human and chimpanzee gene expression patterns define an evolving network of transcription factors in brain. PNAS 106:22358–63 [Google Scholar]
  137. Okano M, Bell DW, Haber DA, Li E. 1999. DNA methyltransferases Dnmt3a and Dnmt3b are essential for de novo methylation and mammalian development. Cell 99:247–57 [Google Scholar]
  138. Pace JK 2nd, Feschotte C. 2007. The evolutionary history of human DNA transposons: evidence for intense activity in the primate lineage. Genome Res. 17:422–32 [Google Scholar]
  139. Paludan SR, Bowie AG. 2013. Immune sensing of DNA. Immunity 38:870–80 [Google Scholar]
  140. Payne GS, Bishop JM, Varmus HE. 1982. Multiple arrangements of viral DNA and an activated host oncogene in bursal lymphomas. Nature 295:209–14 [Google Scholar]
  141. Perron H, Germi R, Bernard C, Garcia-Montojo M, Deluen C. et al. 2012a. Human endogenous retrovirus type W envelope expression in blood and brain cells provides new insights into multiple sclerosis disease. Mult. Scler. 18:1721–36 [Google Scholar]
  142. Perron H, Hamdani N, Faucard R, Lajnef M, Jamain S. et al. 2012b. Molecular characteristics of Human Endogenous Retrovirus type-W in schizophrenia and bipolar disorder. Transl. Psychiatry 2:e201 [Google Scholar]
  143. Pertel T, Hausmann S, Morger D, Zuger S, Guerra J. et al. 2011. TRIM5 is an innate immune sensor for the retrovirus capsid lattice. Nature 472:361–65 [Google Scholar]
  144. Pezic D, Manakov SA, Sachidanandam R, Aravin AA. 2014. piRNA pathway targets active LINE1 elements to establish the repressive H3K9me3 mark in germ cells. Genes Dev. 28:1410–28 [Google Scholar]
  145. Pheasant M, Mattick JS. 2007. Raising the estimate of functional human sequences. Genome Res. 17:1245–53 [Google Scholar]
  146. Piriyapongsa J, Marino-Ramirez L, Jordan IK. 2007. Origin and evolution of human microRNAs from transposable elements. Genetics 176:1323–37 [Google Scholar]
  147. Polo JM, Anderssen E, Walsh RM, Schwarz BA, Nefzger CM. et al. 2012. A molecular roadmap of reprogramming somatic cells into iPS cells. Cell 151:1617–32 [Google Scholar]
  148. Ponting CP, Hardison RC. 2011. What fraction of the human genome is functional?. Genome Res. 21:1769–76 [Google Scholar]
  149. Ponting CP, Oliver PL, Reik W. 2009. Evolution and functions of long noncoding RNAs. Cell 136:629–41 [Google Scholar]
  150. Pray L, Zhaurova K. 2008. Barbara McClintock and the discovery of jumping genes (transposons). Nat. Educ. 1:169 [Google Scholar]
  151. Quenneville S, Turelli P, Bojkowska K, Raclot C, Offner S. et al. 2012. The KRAB-ZFP/KAP1 system contributes to the early embryonic establishment of site-specific DNA methylation patterns maintained during development. Cell Rep. 2:766–73 [Google Scholar]
  152. Quenneville S, Verde G, Corsinotti A, Kapopoulou A, Jakobsson J. et al. 2011. In embryonic stem cells, ZFP57/KAP1 recognize a methylated hexanucleotide to affect chromatin and DNA methylation of imprinting control regions. Mol. Cell 44:361–72 [Google Scholar]
  153. Quinlan AR, Boland MJ, Leibowitz ML, Shumilina S, Pehrson SM. et al. 2011. Genome sequencing of mouse induced pluripotent stem cells reveals retroelement stability and infrequent DNA rearrangement during reprogramming. Cell Stem Cell 9:366–73 [Google Scholar]
  154. Rebollo R, Miceli-Royer K, Zhang Y, Farivar S, Gagnier L, Mager DL. 2012a. Epigenetic interplay between mouse endogenous retroviruses and host genes. Genome Biol. 13:R89 [Google Scholar]
  155. Rebollo R, Romanish MT, Mager DL. 2012b. Transposable elements: an abundant and natural source of regulatory sequences for host genes. Annu. Rev. Genet. 46:21–42 [Google Scholar]
  156. Richardson SR, Morell S, Faulkner GJ. 2014a. L1 retrotransposons and somatic mosaicism in the brain. Annu. Rev. Genet. 48:1–27 [Google Scholar]
  157. Richardson SR, Narvaiza I, Planegger RA, Weitzman MD, Moran JV. 2014b. APOBEC3A deaminates transiently exposed single-strand DNA during LINE-1 retrotransposition. eLife 3:e02008 [Google Scholar]
  158. Rinn JL, Chang HY. 2012. Genome regulation by long noncoding RNAs. Annu. Rev. Biochem. 81:145–66 [Google Scholar]
  159. Rowe HM, Jakobsson J, Mesnard D, Rougemont J, Reynard S. et al. 2010. KAP1 controls endogenous retroviruses in embryonic stem cells. Nature 463:237–40 [Google Scholar]
  160. Rowe HM, Kapopoulou A, Corsinotti A, Fasching L, Macfarlan TS. et al. 2013. TRIM28 repression of retrotransposon-based enhancers is necessary to preserve transcriptional dynamics in embryonic stem cells. Genome Res. 23:452–61 [Google Scholar]
  161. Rowe HM, Trono D. 2011. Dynamic control of endogenous retroviruses during development. Virology 411:273–87 [Google Scholar]
  162. Ruzov A, Tsenkina Y, Serio A, Dudnakova T, Fletcher J. et al. 2011. Lineage-specific distribution of high levels of genomic 5-hydroxymethylcytosine in mammalian development. Cell Res. 21:1332–42 [Google Scholar]
  163. Santoni FA, Guerra J, Luban J. 2012. HERV-H RNA is abundant in human embryonic stem cells and a precise marker for pluripotency. Retrovirology 9:111 [Google Scholar]
  164. Sanz-Ramos M, Stoye JP. 2013. Capsid-binding retrovirus restriction factors: discovery, restriction specificity and implications for the development of novel therapeutics. J. Gen. Virol. 94:2587–98 [Google Scholar]
  165. Saresella M, Rolland A, Marventano I, Cavarretta R, Caputo D. et al. 2009. Multiple sclerosis–associated retroviral agent (MSRV)-stimulated cytokine production in patients with relapsing-remitting multiple sclerosis. Mult. Scler. 15:443–47 [Google Scholar]
  166. Schlesinger S, Goff SP. 2014. Retroviral transcriptional regulation and embryonic stem cells: war and peace. Mol. Cell. Biol. 35:770–77 [Google Scholar]
  167. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Goncalves A. et al. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:335–48 [Google Scholar]
  168. Seberg O, Petersen G. 2009. A unified classification system for eukaryotic transposable elements should reflect their phylogeny. Nat. Rev. Genet. 10:276 [Google Scholar]
  169. Sela N, Mersch B, Gal-Mark N, Lev-Maor G, Hotz-Wagenblatt A, Ast G. 2007. Comparative analysis of transposed element insertion within human and mouse genomes reveals Alu's unique role in shaping the human transcriptome. Genome Biol. 8:R127 [Google Scholar]
  170. Sharif J, Muto M, Takebayashi S, Suetake I, Iwamatsu A. et al. 2007. The SRA protein Np95 mediates epigenetic inheritance by recruiting Dnmt1 to methylated DNA. Nature 450:908–12 [Google Scholar]
  171. Shen Y, Chow J, Wang Z, Fan G. 2006. Abnormal CpG island methylation occurs during in vitro differentiation of human embryonic stem cells. Hum. Mol. Genet. 15:2623–35 [Google Scholar]
  172. Siomi MC, Sato K, Pezic D, Aravin AA. 2011. PIWI-interacting small RNAs: the vanguard of genome defence. Nat. Rev. Mol. Cell Biol. 12:246–58 [Google Scholar]
  173. Slotkin RK, Martienssen R. 2007. Transposable elements and the epigenetic regulation of the genome. Nat. Rev. Genet. 8:272–85 [Google Scholar]
  174. Smalheiser NR, Torvik VI. 2005. Mammalian microRNAs derived from genomic repeats. Trends Genet. 21:322–26 [Google Scholar]
  175. Smit AFA, Hubley R, Green P. 1996–2010. RepeatMasker Open-3.0 http://www.repeatmasker.org [Google Scholar]
  176. Soifer HS, Zaragoza A, Peyvan M, Behlke MA, Rossi JJ. 2005. A potential role for RNA interference in controlling the activity of the human LINE-1 retrotransposon. Nucleic Acids Res. 33:846–56 [Google Scholar]
  177. Song M, Boissinot S. 2007. Selection against LINE-1 retrotransposons results principally from their ability to mediate ectopic recombination. Gene 390:206–13 [Google Scholar]
  178. Sorek R. 2007. The birth of new exons: mechanisms and evolutionary consequences. RNA 13:1603–8 [Google Scholar]
  179. Sorek R, Ast G, Graur D. 2002. Alu-containing exons are alternatively spliced. Genome Res. 12:1060–67 [Google Scholar]
  180. Stavenhagen JB, Robins DM. 1988. An ancient provirus has imposed androgen regulation on the adjacent mouse sex-limited protein gene. Cell 55:247–54 [Google Scholar]
  181. Stetson DB, Ko JS, Heidmann T, Medzhitov R. 2008. Trex1 prevents cell-intrinsic initiation of autoimmunity. Cell 134:587–98 [Google Scholar]
  182. Stocking C, Kozak CA. 2008. Murine endogenous retroviruses. Cell. Mol. Life Sci. 65:3383–98 [Google Scholar]
  183. Stoye JP. 2012. Studies of endogenous retroviruses reveal a continuing evolutionary saga. Nat. Rev. Microbiol. 10:395–406 [Google Scholar]
  184. Suetake I, Shinozaki F, Miyagawa J, Takeshima H, Tajima S. 2004. DNMT3L stimulates the DNA methylation activity of Dnmt3a and Dnmt3b through a direct interaction. J. Biol. Chem. 279:27816–23 [Google Scholar]
  185. Svoboda P, Stein P, Anger M, Bernstein E, Hannon GJ, Schultz RM. 2004. RNAi and expression of retrotransposons MuERV-L and IAP in preimplantation mouse embryos. Dev. Biol. 269:276–85 [Google Scholar]
  186. Tahiliani M, Koh KP, Shen Y, Pastor WA, Bandukwala H. et al. 2009. Conversion of 5-methylcytosine to 5-hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324:930–35 [Google Scholar]
  187. Tan X, Xu X, Elkenani M, Smorag L, Zechner U. et al. 2013. Zfp819, a novel KRAB-zinc finger protein, interacts with KAP1 and functions in genomic integrity maintenance of mouse embryonic stem cells. Stem Cell Res. 11:1045–59 [Google Scholar]
  188. Thomas JH, Schneider S. 2011. Coevolution of retroelements and tandem zinc finger genes. Genome Res. 21:1800–12 [Google Scholar]
  189. Tugnet N, Rylance P, Roden D, Trela M, Nelson P. 2013. Human endogenous retroviruses (HERVs) and autoimmune rheumatic disease: Is there a link?. Open Rheumatol. J. 7:13–21 [Google Scholar]
  190. Turelli P, Castro-Diaz N, Marzetta F, Kapopoulou A, Raclot C. et al. 2014. Interplay of TRIM28 and DNA methylation in controlling human endogenous retroelements. Genome Res. 24:1260–70 [Google Scholar]
  191. Turelli P, Mangeat B, Jost S, Vianin S, Trono D. 2004. Inhibition of hepatitis B virus replication by APOBEC3G. Science 303:1829 [Google Scholar]
  192. van de Lagemaat LN, Landry JR, Mager DL, Medstrand P. 2003. Transposable elements in mammals promote regulatory variation and diversification of genes with specialized functions. Trends Genet. 19:530–36 [Google Scholar]
  193. Venter JC, Adams MD, Myers EW, Li PW, Mural RJ. et al. 2001. The sequence of the human genome. Science 291:1304–51 [Google Scholar]
  194. Volff JN. 2006. Turning junk into gold: domestication of transposable elements and the creation of new genes in eukaryotes. BioEssays 28:913–22 [Google Scholar]
  195. Walsh CP, Chaillet JR, Bestor TH. 1998. Transcription of IAP endogenous retroviruses is constrained by cytosine methylation. Nat. Genet. 20:116–17 [Google Scholar]
  196. Wang J, Lunyak VV, Jordan IK. 2012. Genome-wide prediction and analysis of human chromatin boundary elements. Nucleic Acids Res. 40:511–29 [Google Scholar]
  197. Wang T, Zeng J, Lowe CB, Sellers RG, Salama SR. et al. 2007. Species-specific endogenous retroviruses shape the transcriptional network of the human tumor suppressor protein p53. PNAS 104:18613–18 [Google Scholar]
  198. Wang-Johanning F, Li M, Esteva FJ, Hess KR, Yin B. et al. 2014. Human endogenous retrovirus type K antibodies and mRNA as serum biomarkers of early-stage breast cancer. Int. J. Cancer 134:587–95 [Google Scholar]
  199. Wang-Johanning F, Rycaj K, Plummer JB, Li M, Yin B. et al. 2012. Immunotherapeutic potential of anti-human endogenous retrovirus-K envelope protein antibodies in targeting breast tumors. J. Natl. Cancer Inst. 104:189–210 [Google Scholar]
  200. Wicker T, Sabot F, Hua-Van A, Bennetzen JL, Capy P. et al. 2007. A unified classification system for eukaryotic transposable elements. Nat. Rev. Genet. 8:973–82 [Google Scholar]
  201. Wissing S, Muñoz-Lopez M, Macia A, Yang Z, Montano M. et al. 2012. Reprogramming somatic cells into iPS cells activates LINE-1 retroelement mobility. Hum. Mol. Genet. 21:208–18 [Google Scholar]
  202. Wiznerowicz M, Jakobsson J, Szulc J, Liao S, Quazzola A. et al. 2007. The Kruppel-associated box repressor domain can trigger de novo promoter methylation during mouse early embryogenesis. J. Biol. Chem. 282:34535–41 [Google Scholar]
  203. Wolf D, Goff SP. 2008. Host restriction factors blocking retroviral replication. Annu. Rev. Genet. 42:143–63 [Google Scholar]
  204. Wolf D, Goff SP. 2009. Embryonic stem cells use ZFP809 to silence retroviral DNAs. Nature 458:1201–4 [Google Scholar]
  205. Xiong Y, Eickbush TH. 1990. Origin and evolution of retroelements based upon their reverse transcriptase sequences. EMBO J. 9:3353–62 [Google Scholar]
  206. Xu M, You Y, Hunsicker P, Hori T, Small C. et al. 2008. Mice deficient for a small cluster of Piwi-interacting RNAs implicate Piwi-interacting RNAs in transposon control. Biol. Reprod. 79:51–57 [Google Scholar]
  207. Yoder JA, Walsh CP, Bestor TH. 1997. Cytosine methylation and the ecology of intragenomic parasites. Trends Genet. 13:335–40 [Google Scholar]
  208. Zhang A, Dong B, Doucet AJ, Moldovan JB, Moran JV, Silverman RH. 2014. RNase L restricts the mobility of engineered retrotransposons in cultured human cells. Nucleic Acids Res. 42:3803–20 [Google Scholar]
  209. Zhang XH, Chasin LA. 2006. Comparison of multiple vertebrate genomes reveals the birth and evolution of human exons. PNAS 103:13427–32 [Google Scholar]
  210. Zhou L, Mitra R, Atkinson PW, Hickman AB, Dyda F, Craig NL. 2004. Transposition of hAT elements links transposable elements and V(D)J recombination. Nature 432:995–1001 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error