1932

Abstract

Microorganisms often live in habitats characterized by fluid flow, from lakes and oceans to soil and the human body. Bacteria and plankton experience a broad range of flows, from the chaotic motion characteristic of turbulence to smooth flows at boundaries and in confined environments. Flow creates forces and torques that affect the movement, behavior, and spatial distribution of microorganisms and shapes the chemical landscape on which they rely for nutrient acquisition and communication. Methodological advances and closer interactions between physicists and biologists have begun to reveal the importance of flow–microorganism interactions and the adaptations of microorganisms to flow. Here we review selected examples of such interactions from bacteria, phytoplankton, larvae, and zooplankton. We hope that this article will serve as a blueprint for a more in-depth consideration of the effects of flow in the biology of microorganisms and that this discussion will stimulate further multidisciplinary effort in understanding this important component of microorganism habitats.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125119
2019-10-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125119.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125119&mimeType=html&fmt=ahah

Literature Cited

  1. Amato A, Dell'Aquila G, Musacchia F, Annunziata R, Ugarte A et al. 2017. Marine diatoms change their gene expression profile when exposed to microscale turbulence under nutrient replete conditions. Sci. Rep. 7:13826
    [Google Scholar]
  2. Autrusson N, Guglielmini L, Lecuyer S, Rusconi R, Stone HA 2011. The shape of an elastic filament in a two-dimensional corner flow. Phys. Fluids 23:6063602
    [Google Scholar]
  3. Barton AD, Ward BA, Williams RG, Follows MJ 2014. The impact of fine‐scale turbulence on phytoplankton community structure. Limnol. Oceanogr. Fluids Environ. 4:134–49
    [Google Scholar]
  4. Bassler BL, Greenberg EP, Stevens AM 1997. Cross-species induction of luminescence in the quorum-sensing bacterium Vibrio harveyi. J. Bacteriol 179:124043–45
    [Google Scholar]
  5. Bearon RN, Hazel AL. 2015. The trapping in high-shear regions of slender bacteria undergoing chemotaxis in a channel. J. Fluid Mech. 771:R3
    [Google Scholar]
  6. Belas R 2014. Biofilms, flagella, and mechanosensing of surfaces by bacteria. Trends Microbiol 22:9517–27
    [Google Scholar]
  7. Bergkvist J, Klawonn I, Whitehouse MJ, Lavik G, Brüchert V, Ploug H 2018. Turbulence simultaneously stimulates small- and large-scale CO2 sequestration by chain-forming diatoms in the sea. Nat. Commun. 9:13046
    [Google Scholar]
  8. Berke AP, Turner L, Berg HC, Lauga E 2008. Hydrodynamic attraction of swimming microorganisms by surfaces. Phys. Rev. Lett. 101:3038102
    [Google Scholar]
  9. Breier RE, Lalescu CC, Waas D, Wilczek M, Mazza MG 2018. Emergence of phytoplankton patchiness at small scales in mild turbulence. PNAS 115:4812112–17
    [Google Scholar]
  10. Budelmann BU. 1988. Morphological diversity of equilibrium receptor systems in aquatic invertebrates. Sensory Biology of Aquatic Animals J Atema, RR Fay, AN Popper, WN Tavolga 757–82 New York: Springer
    [Google Scholar]
  11. Casas J, Dangles O. 2010. Physical ecology of fluid flow sensing in arthropods. Annu. Rev. Entomol. 55:505–20
    [Google Scholar]
  12. Chan KYK. 2012. Biomechanics of larval morphology affect swimming: insights from the sand dollars Dendraster excentricus. Integr. Comp. Biol 52:4458–69
    [Google Scholar]
  13. Chengala A, Hondzo M, Mashek DG 2013. Fluid motion mediates biochemical composition and physiological aspects in the green alga Dunaliella primolecta Butcher. Limnol. Oceanogr. Fluids Environ. 3:174–88
    [Google Scholar]
  14. Conrad JC, Poling-Skutvik R. 2018. Confined flow: consequences and implications for bacteria and biofilms. Annu. Rev. Chem. Biomol. Eng. 9:175–200
    [Google Scholar]
  15. Coombs S, Van Netten S 2006. The hydrodynamics and structural mechanics of the lateral line system. Fish Biomechanics RE Sahdwick, GV Lauder 103–39 San Diego: Academic
    [Google Scholar]
  16. Cox CD, Bavi N, Martinac B 2018. Bacterial mechanosensors. Annu. Rev. Physiol. 80:71–93
    [Google Scholar]
  17. Cózar A, Echevarría F. 2005. Size structure of the planktonic community in microcosms with different levels of turbulence. Sci. Mar. 69:2187–97
    [Google Scholar]
  18. De Lillo F, Cencini M, Durham WM, Barry M, Stocker R et al. 2014. Turbulent fluid acceleration generates clusters of gyrotactic microorganisms. Phys. Rev. Lett. 112:4044502
    [Google Scholar]
  19. Dekshenieks MM, Donaghay PL, Sullivan JM, Rines JE, Osborn TR, Twardowski MS 2001. Temporal and spatial occurrence of thin phytoplankton layers in relation to physical processes. Mar. Ecol. Prog. Ser. 223:61–71
    [Google Scholar]
  20. Dekshenieks MM, Hofmann EE, Klinck JM, Powell EN 1996. Modeling the vertical distribution of oyster larvae in response to environmental conditions. Mar. Ecol. Prog. Ser. 136:97–110
    [Google Scholar]
  21. DiBacco C, Fuchs HL, Pineda J, Helfrich K 2011. Swimming behavior and velocities of barnacle cyprids in a downwelling flume. Mar. Ecol. Prog. Ser. 433:131–48
    [Google Scholar]
  22. Dombrowski C, Cisneros L, Chatkaew S, Goldstein RE, Kessler JO 2004. Self-concentration and large-scale coherence in bacterial dynamics. Phys. Rev. Lett. 93:9098103
    [Google Scholar]
  23. Drescher K, Dunkel J, Nadell CD, van Teeffelen S, Grnja I et al. 2016. Architectural transitions in Vibrio cholerae biofilms at single-cell resolution. PNAS 113:14E2066–72
    [Google Scholar]
  24. Drescher K, Shen Y, Bassler BL, Stone HA 2013. Biofilm streamers cause catastrophic disruption of flow with consequences for environmental and medical systems. PNAS 110:114345–50
    [Google Scholar]
  25. Dukowicz AC, Lacy BE, Levine GM 2007. Small intestinal bacterial overgrowth: a comprehensive review. Gastroenterol. Hepatol. 3:2112–22
    [Google Scholar]
  26. Durham WM, Climent E, Barry M, De Lillo F, Boffetta G et al. 2013. Turbulence drives microscale patches of motile phytoplankton. Nat. Commun. 4:2148
    [Google Scholar]
  27. Durham WM, Kessler JO, Stocker R 2009. Disruption of vertical motility by shear triggers formation of thin phytoplankton layers. Science 323:59171067–70
    [Google Scholar]
  28. Durham WM, Stocker R. 2012. Thin phytoplankton layers: characteristics, mechanisms, and consequences. Annu. Rev. Mar. Sci. 4:177–207
    [Google Scholar]
  29. Emge P, Moeller J, Jang H, Rusconi R, Yawata Y et al. 2016. Resilience of bacterial quorum sensing against fluid flow. Sci. Rep. 6:33115
    [Google Scholar]
  30. Ezhilan B, Saintillan D. 2015. Transport of a dilute active suspension in pressure-driven channel flow. J. Fluid Mech. 777:482–522
    [Google Scholar]
  31. Falciatore A, d'Alcalà MR, Croot P, Bowler C 2000. Perception of environmental signals by a marine diatom. Science 288:54752363–66
    [Google Scholar]
  32. Fuchs HL, Gerbi GP, Hunter EJ, Christman AJ, Diez FJ 2015. Hydrodynamic sensing and behavior by oyster larvae in turbulence and waves. J. Exp. Biol. 218:1419–32
    [Google Scholar]
  33. Galy O, Latour-Lambert P, Zrelli K, Ghigo JM, Beloin C, Henry N 2012. Mapping of bacterial biofilm local mechanics by magnetic microparticle actuation. Biophys. J. 103:61400–8
    [Google Scholar]
  34. Garren M, Son K, Raina JB, Rusconi R, Menolascina F et al. 2014. A bacterial pathogen uses dimethylsulfoniopropionate as a cue to target heat-stressed corals. ISME J 8:5999–1007
    [Google Scholar]
  35. Gaylord B, Hodin J, Ferner MC 2013. Turbulent shear spurs settlement in larval sea urchins. PNAS 110:76901–6
    [Google Scholar]
  36. Gordon VD, Wang L. 2019. Bacterial mechanosensing: The force will be with you, always. J. Cell Sci. 132:7 jcs227694
    [Google Scholar]
  37. Gustavsson K, Berglund F, Jonsson PR, Mehlig B 2016. Preferential sampling and small-scale clustering of gyrotactic microswimmers in turbulence. Phys. Rev. Lett. 116:10108104
    [Google Scholar]
  38. Guttenplan SB, Blair KM, Kearns DB 2010. The EpsE flagellar clutch is bifunctional and synergizes with EPS biosynthesis to promote Bacillus subtilis biofilm formation. PLOS Genet 6:12e1001243
    [Google Scholar]
  39. Häder DP, Faddoul JA, Lebert MI, Richter PE, Schuster MA et al. 2010. Investigation of gravitaxis and phototaxis in Euglena gracilis. Advances in Life Sciences R Sinha, NK Sharma, AK Rai 117–31 New Delhi: IK Int. Publ. House
    [Google Scholar]
  40. Hadfield MG. 2011. Biofilms and marine invertebrate larvae: what bacteria produce that larvae use to choose settlement sites. Annu. Rev. Mar. Sci. 3:453–70
    [Google Scholar]
  41. Hadfield MG, Koehl MAR 2004. Rapid behavioral responses of an invertebrate larva to dissolved settlement cue. Biol. Bull. 207:128–43
    [Google Scholar]
  42. Hall-Stoodley L, Costerton JW, Stoodley P 2004. Bacterial biofilms: from the natural environment to infectious diseases. Nat. Rev. Microbiol. 2:295–108
    [Google Scholar]
  43. Hassanpourfard M, Nikakhtari Z, Ghosh R, Das S, Thundat T et al. 2015. Bacterial floc mediated rapid streamer formation in creeping flows. Sci. Rep. 5:13070
    [Google Scholar]
  44. Helfrich KR, Pineda J. 2003. Accumulation of particles in propagating fronts. Limnol. Oceanogr. 48:41509–20
    [Google Scholar]
  45. Hill J, Kalkanci O, McMurry JL, Koser H 2007. Hydrodynamic surface interactions enable Escherichia coli to seek efficient routes to swim upstream. Phys. Rev. Lett. 98:6068101
    [Google Scholar]
  46. Hodin J, Ferner MC, Ng G, Gaylord B 2018. Turbulence exposure recapitulates desperate behavior in late-stage sand dollar larvae. BMC Zool 3:19
    [Google Scholar]
  47. Jeffrey GB. 1922. The motion of ellipsoidal particles immersed in a viscous fluid. Proc. R. Soc. A 102:715161–79
    [Google Scholar]
  48. Jonsson PR, André C, Lindegarth M 1991. Swimming behaviour of marine bivalve larvae in a flume boundary-layer flow: evidence for near-bottom confinement. Mar. Ecol. Prog. Ser. 79:67–76
    [Google Scholar]
  49. Kaiser A, Peshkov A, Sokolov A, Ten Hagen B, Löwen H, Aranson IS 2014. Transport powered by bacterial turbulence. Phys. Rev. Lett. 112:15158101
    [Google Scholar]
  50. Kannan A, Yang Z, Kim MK, Stone HA, Siryaporn A 2018. Dynamic switching enables efficient bacterial colonization in flow. PNAS 115:215438–43
    [Google Scholar]
  51. Karp-Boss L, Boss E, Jumars PA 1996. Nutrient fluxes to planktonic osmotrophs in the presence of fluid motion. Oceanogr. Mar. Biol. 34:71–108
    [Google Scholar]
  52. Kaya T, Koser H. 2012. Direct upstream motility in Escherichia coli. Biophys. J 102:71514–23
    [Google Scholar]
  53. Kim MK, Ingremeau F, Zhao A, Bassler BL, Stone HA 2016. Local and global consequences of flow on bacterial quorum sensing. Nat. Microbiol. 1:115005
    [Google Scholar]
  54. Kiørboe T. 1993. Turbulence, phytoplankton cell size, and the structure of pelagic food webs. Advances in Marine Biology 29 JHS Blaxter, AJ Southward 1–72 London: Academic
    [Google Scholar]
  55. Kiørboe T. 2008. A Mechanistic Approach to Plankton Ecology Princeton, NJ: Princeton Univ. Press
  56. Kiørboe T, Grossart HP, Ploug H, Tang K 2002. Mechanisms and rates of bacterial colonization of sinking aggregates. Appl. Environ. Microbiol. 68:83996–4006
    [Google Scholar]
  57. Kiørboe T, Jackson GA. 2001. Marine snow, organic solute plumes, and optimal chemosensory behavior of bacteria. Limnol. Oceanogr. 46:61309–18
    [Google Scholar]
  58. Kirisits MJ, Margolis JJ, Purevdorj-Gage BL, Vaughan B, Chopp DL et al. 2007. Influence of the hydrodynamic environment on quorum sensing in Pseudomonas aeruginosa biofilms. J. Bacteriol. 189:228357–60
    [Google Scholar]
  59. Klapper I, Rupp CJ, Cargo R, Purvedorj B, Stoodley P 2002. Viscoelastic fluid description of bacterial biofilm material properties. Biotechnol. Bioeng. 80:3289–96
    [Google Scholar]
  60. Koehl MAR, Hadfield MG. 2010. Hydrodynamics of larval settlement from a larva's point of view. Integr. Comp. Biol. 50:4539–51
    [Google Scholar]
  61. Koehl MAR, Reidenbach MA. 2010. Swimming by microscopic organisms in ambient water flow. Animal Locomotion G Taylor, MS Triantafyllou, C Tropea117–30 Berlin/Heidelberg: Springer
    [Google Scholar]
  62. Kundukad B, Seviour T, Liang Y, Rice SA, Kjelleberg S, Doyle PS 2016. Mechanical properties of the superficial biofilm layer determine the architecture of biofilms. Soft Matter 12:265718–26
    [Google Scholar]
  63. Lecuyer S, Rusconi R, Shen Y, Forsyth A, Vlamakis H et al. 2011. Shear stress increases the residence time of adhesion of Pseudomonas aeruginosa. Biophys. J 100:2341–50
    [Google Scholar]
  64. Lee WJ, Hase K. 2014. Gut microbiota–generated metabolites in animal health and disease. Nat. Chem. Biol. 10:6416–24
    [Google Scholar]
  65. Lele PP, Hosu BG, Berg HC 2013. Dynamics of mechanosensing in the bacterial flagellar motor. PNAS 110:2911839–44
    [Google Scholar]
  66. Locsei JT, Pedley TJ. 2009. Run and tumble chemotaxis in a shear flow: the effect of temporal comparisons, persistence, rotational diffusion, and cell shape. Bull. Math. Biol. 71:51089–116
    [Google Scholar]
  67. Luchsinger RH, Bergersen B, Mitchell JG 1999. Bacterial swimming strategies and turbulence. Biophys. J. 77:52377–86
    [Google Scholar]
  68. Marcos Fu HC, Powers TR, Stocker R 2009. Separation of microscale chiral objects by shear flow. Phys. Rev. Lett. 102:15158103
    [Google Scholar]
  69. Martínez-García R, Nadell CD, Hartmann R, Drescher K, Bonachela JA 2018. Cell adhesion and fluid flow jointly initiate genotype spatial distribution in biofilms. PLOS Comput. Biol. 14:4e1006094
    [Google Scholar]
  70. Meng Y, Li Y, Galvani CD, Hao G, Turner JN et al. 2005. Upstream migration of Xylella fastidiosa via pilus-driven twitching motility. J. Bacteriol. 187:165560–67
    [Google Scholar]
  71. Miki K, Clapham DE. 2013. Rheotaxis guides mammalian sperm. Curr. Biol. 23:6443–52
    [Google Scholar]
  72. Miyata M, Ryu WS, Berg HC 2002. Force and velocity of Mycoplasma mobile gliding. J. Bacteriol. 184:71827–31
    [Google Scholar]
  73. Mogami Y, Ishii J, Baba SA 2001. Theoretical and experimental dissection of gravity-dependent mechanical orientation in gravitactic microorganisms. Biol. Bull. 201:126–33
    [Google Scholar]
  74. Molaei M, Barry M, Stocker R, Sheng J 2014. Failed escape: Solid surfaces prevent tumbling of Escherichia coli. Phys. Rev. Lett 113:6068103
    [Google Scholar]
  75. Moline MA, Benoit-Bird KJ, Robbins IC, Schroth-Miller M, Waluk CM, Zelenke B 2010. Integrated measurements of acoustical and optical thin layers II: horizontal length scales. Cont. Shelf Res. 30:129–38
    [Google Scholar]
  76. Musielak MM, Karp-Boss L, Jumars PA, Fauci LJ 2009. Nutrient transport and acquisition by diatom chains in a moving fluid. J. Fluid Mech. 638:401–21
    [Google Scholar]
  77. Nadell CD, Ricaurte D, Yan J, Drescher K, Bassler BL 2017. Flow environment and matrix structure interact to determine spatial competition in Pseudomonas aeruginosa biofilms. eLife 6:e21855
    [Google Scholar]
  78. North EW, Schlag Z, Hood RR, Li M, Zhong L et al. 2008. Vertical swimming behavior influences the dispersal of simulated oyster larvae in a coupled particle-tracking and hydrodynamic model of Chesapeake Bay. Mar. Ecol. Prog. Ser. 359:99–115
    [Google Scholar]
  79. O'Loughlin CT, Miller LC, Siryaporn A, Drescher K, Semmelhack MF, Bassler BL 2013. A quorum-sensing inhibitor blocks Pseudomonas aeruginosa virulence and biofilm formation. PNAS 110:4417981–86
    [Google Scholar]
  80. Pahlow M, Riebesell U, Wolf‐Gladrow DA 1997. Impact of cell shape and chain formation on nutrient acquisition by marine diatoms. Limnol. Oceanogr. 42:81660–72
    [Google Scholar]
  81. Pappelbaum KI, Gorzelanny C, Grässle S, Suckau J, Laschke MW et al. 2013. Ultralarge von Willebrand factor fibers mediate luminal Staphylococcus aureus adhesion to an intact endothelial cell layer under shear stress. Circulation 128:150–59
    [Google Scholar]
  82. Paul E, Ochoa JC, Pechaud Y, Liu Y, Liné A 2012. Effect of shear stress and growth conditions on detachment and physical properties of biofilms. Water Res 46:175499–508
    [Google Scholar]
  83. Pepper RE, Jaffe JS, Variano E, Koehl MAR 2015. Zooplankton in flowing water near benthic communities encounter rapidly fluctuating velocity gradients and accelerations. Mar. Biol 162:101939–54
    [Google Scholar]
  84. Persat A, Inclan YF, Engel JN, Stone HA, Gitai Z 2015. Type IV pili mechanochemically regulate virulence factors in Pseudomonas aeruginosa. PNAS 112:247563–68
    [Google Scholar]
  85. Persat A, Stone HA, Gitai Z 2014. The curved shape of Caulobacter crescentus enhances surface colonization in flow. Nat. Commun. 5:3824
    [Google Scholar]
  86. Peters F, Arin L, Marrasé C, Berdalet E, Sala MM 2006. Effects of small-scale turbulence on the growth of two diatoms of different size in a phosphorus-limited medium. J. Mar. Syst. 61:3–4134–48
    [Google Scholar]
  87. Roberts AM. 1970. Geotaxis in motile micro-organisms. J. Exp. Biol. 53:3687–99
    [Google Scholar]
  88. Rodesney CA, Roman B, Dhamani N, Cooley BJ, Touhami A, Gordon VD 2017. Mechanosensing of shear by Pseudomonas aeruginosa leads to increased levels of the cyclic-di-GMP signal initiating biofilm development. PNAS 23:5906–11
    [Google Scholar]
  89. Rupp CJ, Fux CA, Stoodley P 2005. Viscoelasticity of Staphylococcus aureus biofilms in response to fluid shear allows resistance to detachment and facilitates rolling migration. Appl. Environ. Microbiol. 71:42175–78
    [Google Scholar]
  90. Rusconi R, Guasto JS, Stocker R 2014. Bacterial transport suppressed by fluid shear. Nat. Phys. 10:3212–17
    [Google Scholar]
  91. Rusconi R, Lecuyer S, Autrusson N, Guglielmini L, Stone HA 2011. Secondary flow as a mechanism for the formation of biofilm streamers. Biophys. J. 100:61392–99
    [Google Scholar]
  92. Rusconi R, Lecuyer S, Guglielmini L, Stone HA 2010. Laminar flow around corners triggers the formation of biofilm streamers. J. R. Soc. Interface 7:501293–99
    [Google Scholar]
  93. Ryan JP, McManus MA, Paduan JD, Chavez FP 2008. Phytoplankton thin layers caused by shear in frontal zones of a coastal upwelling system. Mar. Ecol. Prog. Ser. 354:21–34
    [Google Scholar]
  94. Salek MM, Jones SM, Martinuzzi RJ 2009. The influence of flow cell geometry related shear stresses on the distribution, structure and susceptibility of Pseudomonas aeruginosa 01 biofilms. Biofouling 25:8711–25
    [Google Scholar]
  95. Secchi E, Rusconi R, Buzzaccaro S, Salek MM, Smriga S et al. 2016. Intermittent turbulence in flowing bacterial suspensions. J. R. Soc. Interface 13:11920160175
    [Google Scholar]
  96. Sengupta A, Carrara F, Stocker R 2017. Phytoplankton can actively diversify their migration strategy in response to turbulent cues. Nature 543:7646555–58
    [Google Scholar]
  97. Shapiro OH, Fernandez VI, Garren M, Guasto JS, Debaillon-Vesque FP et al. 2014. Vortical ciliary flows actively enhance mass transport in reef corals. PNAS 111:3713391–96
    [Google Scholar]
  98. Shen Y, Siryaporn A, Lecuyer S, Gitai Z, Stone HA 2012. Flow directs surface-attached bacteria to twitch upstream. Biophys. J. 103:1146–51
    [Google Scholar]
  99. Siryaporn A, Kim MK, Shen Y, Stone HA, Gitai Z 2015. Colonization, competition, and dispersal of pathogens in fluid flow networks. Curr. Biol. 25:91201–7
    [Google Scholar]
  100. Siryaporn A, Kuchma SL, O'Toole GA, Gitai Z 2014. Surface attachment induces Pseudomonas aeruginosa virulence. PNAS 111:4716860–65
    [Google Scholar]
  101. Son K, Menolascina F, Stocker R 2016. Speed-dependent chemotactic precision in marine bacteria. PNAS 113:318624–29
    [Google Scholar]
  102. Stewart PS. 2003. Diffusion in biofilms. J. Bacteriol. 185:51485–91
    [Google Scholar]
  103. Stocker R, Seymour JR. 2012. Ecology and physics of bacterial chemotaxis in the ocean. Microbiol. Mol. Biol. Rev. 76:4792–812
    [Google Scholar]
  104. Stocker R, Seymour JR, Samadani A, Hunt DE, Polz MF 2008. Rapid chemotactic response enables marine bacteria to exploit ephemeral microscale nutrient patches. PNAS 105:114209–14
    [Google Scholar]
  105. Stoodley P. 2016. Biofilms: Flow disrupts communication. Nat. Microbiol. 1:15012
    [Google Scholar]
  106. Stoodley P, Cargo R, Rupp CJ, Wilson S, Klapper I 2002. Biofilm material properties as related to shear-induced deformation and detachment phenomena. J. Ind. Microbiol. Biotechnol. 29:6361–67
    [Google Scholar]
  107. Stoodley P, Dodds I, Boyle JD, Lappin‐Scott HM 1999. Influence of hydrodynamics and nutrients on biofilm structure. J. Appl. Microbiol. 85:19–28
    [Google Scholar]
  108. Sullivan JM, Donaghay PL, Rines JE 2010. Coastal thin layer dynamics: consequences to biology and optics. Cont. Shelf Res. 30:150–65
    [Google Scholar]
  109. Sycuro LK, Wyckoff TJ, Biboy J, Born P, Pincus Z et al. 2012. Multiple peptidoglycan modification networks modulate Helicobacter pylori’s cell shape, motility, and colonization potential. PLOS Pathog 8:3e1002603
    [Google Scholar]
  110. Tamburri MN, Zimmer-Faust RK, Tamplin ML 1992. Natural sources and properties of chemical inducers mediating settlement of oyster larvae: a re-examination. Biol. Bull. 183:2327–38
    [Google Scholar]
  111. Taylor JR, Stocker R. 2012. Trade-offs of chemotactic foraging in turbulent water. Science 338:6107675–79
    [Google Scholar]
  112. Thomas WE, Vogel V, Sokurenko E 2008. Biophysics of catch bonds. Annu. Rev. Biophys. 37:399–416
    [Google Scholar]
  113. Thomen P, Robert J, Monmeyran A, Bitbol AF, Douarche C, Henry N 2017. Bacterial biofilm under flow: first a physical struggle to stay, then a matter of breathing. PLOS ONE 12:4e0175197
    [Google Scholar]
  114. Tung CK, Ardon F, Roy A, Koch DL, Suarez SS, Wu M 2015. Emergence of upstream swimming via a hydrodynamic transition. Phys. Rev. Lett. 114:10108102
    [Google Scholar]
  115. Turner EJ, Zimmer‐Faust RK, Palmer MA, Luckenbach M, Pentchef ND 1994. Settlement of oyster (Crassostrea virginica) larvae: effects of water flow and a water‐soluble chemical cue. Limnol. Oceanogr. 39:71579–93
    [Google Scholar]
  116. Vogel S. 1996. Life in Moving Fluids Princeton, NJ: Princeton Univ. Press
  117. Weaver WM, Dharmaraja S, Milisavljevic V, Di Carlo D 2011. The effects of shear stress on isolated receptor–ligand interactions of Staphylococcus epidermidis and human plasma fibrinogen using molecularly patterned microfluidics. Lab Chip 11:5883–89
    [Google Scholar]
  118. Welch J, Forward R. 2001. Flood tide transport of blue crab, Callinectes sapidus, postlarvae: behavioral responses to salinity and turbulence. Mar. Biol. 139:5911–18
    [Google Scholar]
  119. Wheeler JD, Chan KYK, Anderson EJ, Mullineaux LS 2016. Ontogenetic changes in larval swimming and orientation of pre-competent sea urchin Arbacia punctulata in turbulence. J. Exp. Biol. 219:91303–10
    [Google Scholar]
  120. Wheeler JD, Helfrich KR, Anderson EJ, Mullineaux LS 2015. Isolating the hydrodynamic triggers of the dive response in eastern oyster larvae. Limnol. Oceanogr. 60:41332–43
    [Google Scholar]
  121. Wiederhold ML, Sheridan CE, Smith NK 1989. Function of molluscan statocysts. Origin, Evolution, and Modern Aspects of Biomineralization in Plants and Animals RE Crick 393–408 Boston, MA: Springer
    [Google Scholar]
  122. Wioland H, Lushi E, Goldstein RE 2016. Directed collective motion of bacteria under channel confinement. New J. Phys. 18:727–30
    [Google Scholar]
  123. Yawata Y, Nguyen J, Stocker R, Rusconi R 2016. Microfluidic studies of biofilm formation in dynamic environments. J. Bacteriol. 198:2589–95
    [Google Scholar]
  124. Yen J. 2000. Life in transition: balancing inertial and viscous forces by planktonic copepods. Biol. Bull. 198:2213–24
    [Google Scholar]
  125. Young KD. 2006. The selective value of bacterial shape. Microbiol. Mol. Biol. Rev. 70:3660–703
    [Google Scholar]
  126. Zaferani M, Cheong SH, Abbaspourrad A 2018. Rheotaxis-based separation of sperm with progressive motility using a microfluidic corral system. PNAS 115:338272–77
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125119
Loading
/content/journals/10.1146/annurev-cellbio-100818-125119
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error