1932

Abstract

In spite of the high metabolic cost of cellular production, the brain contains only a fraction of the neurons generated during embryonic development. In the rodent cerebral cortex, a first wave of programmed cell death surges at embryonic stages and affects primarily progenitor cells. A second, larger wave unfolds during early postnatal development and ultimately determines the final number of cortical neurons. Programmed cell death in the developing cortex is particularly dependent on neuronal activity and unfolds in a cell-specific manner with precise temporal control. Pyramidal cells and interneurons adjust their numbers in sync, which is likely crucial for the establishment of balanced networks of excitatory and inhibitory neurons. In contrast, several other neuronal populations are almost completely eliminated through apoptosis during the first two weeks of postnatal development, highlighting the importance of programmed cell death in sculpting the mature cerebral cortex.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125204
2019-10-06
2024-06-19
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125204.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125204&mimeType=html&fmt=ahah

Literature Cited

  1. Achilles K, Okabe A, Ikeda M, Shimizu-Okabe C, Yamada J et al. 2007. Kinetic properties of Cl uptake mediated by Na+-dependent K+-2Cl cotransport in immature rat neocortical neurons. J. Neurosci. 27:8616–27
    [Google Scholar]
  2. Allendoerfer KL, Shatz CJ. 1994. The subplate, a transient neocortical structure: its role in the development of connections between thalamus and cortex. Annu. Rev. Neurosci. 17:185–218
    [Google Scholar]
  3. Allendoerfer KL, Shelton DL, Shooter EM, Shatz CJ 1990. Nerve growth factor receptor immunoreactivity is transiently associated with the subplate neurons of the mammalian cerebral cortex. PNAS 87:187–90
    [Google Scholar]
  4. Allene C, Cossart R. 2010. Early NMDA receptor–driven waves of activity in the developing neocortex: physiological or pathological network oscillations. J. Physiol. 588:83–91
    [Google Scholar]
  5. Anastasiades PG, Marques-Smith A, Lyngholm D, Lickiss T, Raffiq S et al. 2016. GABAergic interneurons form transient layer-specific circuits in early postnatal neocortex. Nat. Commun. 7:10584
    [Google Scholar]
  6. Anstotz M, Cosgrove KE, Hack I, Mugnaini E, Maccaferri G, Lubke JH 2014. Morphology, input-output relations and synaptic connectivity of Cajal-Retzius cells in layer 1 of the developing neocortex of CXCR4-EGFP mice. Brain Struct. Funct. 219:2119–39
    [Google Scholar]
  7. Anthony TE, Klein C, Fishell G, Heintz N 2004. Radial glia serve as neuronal progenitors in all regions of the central nervous system. Neuron 41:881–90
    [Google Scholar]
  8. Baek M, Enriquez J, Mann RS 2013. Dual role for Hox genes and Hox co-factors in conferring leg motoneuron survival and identity in Drosophila. Development 140:2027–38
    [Google Scholar]
  9. Barres BA, Hart IK, Coles HS, Burne JF, Voyvodic JT et al. 1992. Cell death and control of cell survival in the oligodendrocyte lineage. Cell 70:31–46
    [Google Scholar]
  10. Bergles DE, Richardson WD. 2015. Oligodendrocyte development and plasticity. Cold Spring Harb. Perspect. Biol. 8:a020453
    [Google Scholar]
  11. Bielle F, Griveau A, Narboux-Neme N, Vigneau S, Sigrist M et al. 2005. Multiple origins of Cajal-Retzius cells at the borders of the developing pallium. Nat. Neurosci. 8:1002–12
    [Google Scholar]
  12. Blanquie O, Liebmann L, Hubner CA, Luhmann HJ, Sinning A 2017a. NKCC1-mediated GABAergic signaling promotes postnatal cell death in neocortical Cajal-Retzius cells. Cereb. Cortex 27:1644–59
    [Google Scholar]
  13. Blanquie O, Yang JW, Kilb W, Sharopov S, Sinning A, Luhmann HJ 2017b. Electrical activity controls area-specific expression of neuronal apoptosis in the developing mouse cerebral cortex. eLife 6:e27696
    [Google Scholar]
  14. Blaschke AJ, Staley K, Chun J 1996. Widespread programmed cell death in proliferative and postmitotic regions of the fetal cerebral cortex. Development 122:1165–74
    [Google Scholar]
  15. Bohlen CJ, Bennett FC, Tucker AF, Collins HY, Mulinyawe SB, Barres BA 2017. Diverse requirements for microglial survival, specification, and function revealed by defined-medium cultures. Neuron 94:759–73.e8
    [Google Scholar]
  16. Borello U, Pierani A. 2010. Patterning the cerebral cortex: traveling with morphogens. Curr. Opin. Genet. Dev. 20:408–15
    [Google Scholar]
  17. Butler MG, Dasouki MJ, Zhou XP, Talebizadeh Z, Brown M et al. 2005. Subset of individuals with autism spectrum disorders and extreme macrocephaly associated with germline PTEN tumour suppressor gene mutations. J. Med. Genet. 42:318–21
    [Google Scholar]
  18. Butt SJ, Stacey JA, Teramoto Y, Vagnoni C 2017. A role for GABAergic interneuron diversity in circuit development and plasticity of the neonatal cerebral cortex. Curr. Opin. Neurobiol. 43:149–55
    [Google Scholar]
  19. Buxbaum JD, Cai G, Chaste P, Nygren G, Goldsmith J et al. 2007. Mutation screening of the PTEN gene in patients with autism spectrum disorders and macrocephaly. Am. J. Med. Genet. B Neuropsychiatr. Genet. 144B:484–91
    [Google Scholar]
  20. Causeret F, Coppola E, Pierani A 2018. Cortical developmental death: selected to survive or fated to die. Curr. Opin. Neurobiol. 53:35–42
    [Google Scholar]
  21. Cecconi F, Alvarez-Bolado G, Meyer BI, Roth KA, Gruss P 1998. Apaf1 (CED-4 homolog) regulates programmed cell death in mammalian development. Cell 94:727–37
    [Google Scholar]
  22. Chao DL, Ma L, Shen K 2009. Transient cell-cell interactions in neural circuit formation. Nat. Rev. Neurosci. 10:262–71
    [Google Scholar]
  23. Chen JF, Zhang Y, Wilde J, Hansen KC, Lai F, Niswander L 2014. Microcephaly disease gene Wdr62 regulates mitotic progression of embryonic neural stem cells and brain size. Nat. Commun. 5:3885
    [Google Scholar]
  24. Chen SK, Chew KS, McNeill DS, Keeley PW, Ecker JL et al. 2013. Apoptosis regulates ipRGC spacing necessary for rods and cones to drive circadian photoentrainment. Neuron 77:503–15
    [Google Scholar]
  25. Chowdhury TG, Jimenez JC, Bomar JM, Cruz-Martin A, Cantle JP, Portera-Cailliau C 2010. Fate of Cajal-Retzius neurons in the postnatal mouse neocortex. Front. Neuroanat. 4:10
    [Google Scholar]
  26. Clarke PG. 1992. Neuron death in the developing avian isthmo-optic nucleus, and its relation to the establishment of functional circuitry. J. Neurobiol. 23:1140–58
    [Google Scholar]
  27. Datta SR, Dudek H, Tao X, Masters S, Fu H et al. 1997. Akt phosphorylation of BAD couples survival signals to the cell-intrinsic death machinery. Cell 91:231–41
    [Google Scholar]
  28. De Carlos JA, O'Leary DD 1992. Growth and targeting of subplate axons and establishment of major cortical pathways. J. Neurosci. 12:1194–211
    [Google Scholar]
  29. DeFelipe J, Alonso-Nanclares L, Arellano JI 2002. Microstructure of the neocortex: comparative aspects. J. Neurocytol. 31:299–316
    [Google Scholar]
  30. Dekkers MP, Nikoletopoulou V, Barde YA 2013. Death of developing neurons: new insights and implications for connectivity. J. Cell Biol. 203:385–93
    [Google Scholar]
  31. Del Río JA, Heimrich B, Borrell V, Forster E, Drakew A et al. 1997. A role for Cajal-Retzius cells and reelin in the development of hippocampal connections. Nature 385:70–74
    [Google Scholar]
  32. Del Río JA, Heimrich B, Supèr H, Borrell V, Frotscher M, Soriano E 1996. Differential survival of Cajal-Retzius cells in organotypic cultures of hippocampus and neocortex. J. Neurosci. 16:6896–907
    [Google Scholar]
  33. Denaxa M, Neves G, Rabinowitz A, Kemlo S, Liodis P et al. 2018. Modulation of apoptosis controls inhibitory interneuron number in the cortex. Cell Rep 22:1710–21
    [Google Scholar]
  34. Dhumale P, Menon S, Chiang J, Puschel AW 2018. The loss of the kinases SadA and SadB results in early neuronal apoptosis and a reduced number of progenitors. PLOS ONE 13:e0196698
    [Google Scholar]
  35. Dudek H, Datta SR, Franke TF, Birnbaum MJ, Yao R et al. 1997. Regulation of neuronal survival by the serine-threonine protein kinase Akt. Science 275:661–65
    [Google Scholar]
  36. Duque A, Krsnik Z, Kostovic I, Rakic P 2016. Secondary expansion of the transient subplate zone in the developing cerebrum of human and nonhuman primates. PNAS 113:9892–97
    [Google Scholar]
  37. Eriksson SH, Thom M, Heffernan J, Lin WR, Harding BN et al. 2001. Persistent reelin-expressing Cajal-Retzius cells in polymicrogyria. Brain 124:1350–61
    [Google Scholar]
  38. Ernfors P, Lee KF, Jaenisch R 1994. Mice lacking brain-derived neurotrophic factor develop with sensory deficits. Nature 368:147–50
    [Google Scholar]
  39. Ferrer I, Bernet E, Soriano E, Del Rio T, Fonseca M 1990. Naturally occurring cell death in the cerebral cortex of the rat and removal of dead cells by transitory phagocytes. Neuroscience 39:451–58
    [Google Scholar]
  40. Finlay BL, Slattery M. 1983. Local differences in the amount of early cell death in neocortex predict adult local specializations. Science 219:1349–51
    [Google Scholar]
  41. Flavell SW, Greenberg ME. 2008. Signaling mechanisms linking neuronal activity to gene expression and plasticity of the nervous system. Annu. Rev. Neurosci. 31:563–90
    [Google Scholar]
  42. Galluzzi L, Vitale I, Aaronson SA, Abrams JM, Adam D et al. 2018. Molecular mechanisms of cell death: recommendations of the Nomenclature Committee on Cell Death 2018. Cell Death Differ 25:486–541
    [Google Scholar]
  43. Ge WP, Miyawaki A, Gage FH, Jan YN, Jan LY 2012. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–80
    [Google Scholar]
  44. Ghosh A, Antonini A, McConnell SK, Shatz CJ 1990. Requirement for subplate neurons in the formation of thalamocortical connections. Nature 347:179–81
    [Google Scholar]
  45. Ghosh A, Carnahan J, Greenberg ME 1994. Requirement for BDNF in activity-dependent survival of cortical neurons. Science 263:1618–23
    [Google Scholar]
  46. Goldschneider D, Mehlen P. 2010. Dependence receptors: a new paradigm in cell signaling and cancer therapy. Oncogene 29:1865–82
    [Google Scholar]
  47. Granholm A, Reyland M, Albeck D, Sanders L, Gerhardt G et al. 2000. Glial cell line–derived neurotrophic factor is essential for postnatal survival of midbrain dopamine neurons. J. Neurosci. 20:3182–90
    [Google Scholar]
  48. Hamburger V, Levi-Montalcini R. 1949. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111:457–501
    [Google Scholar]
  49. Heck N, Golbs A, Riedemann T, Sun JJ, Lessmann V, Luhmann HJ 2008. Activity-dependent regulation of neuronal apoptosis in neonatal mouse cerebral cortex. Cereb. Cortex 18:1335–49
    [Google Scholar]
  50. Heumann D, Leuba G. 1983. Neuronal death in the development and aging of the cerebral cortex of the mouse. Neuropathol. Appl. Neurobiol. 9:297–311
    [Google Scholar]
  51. Heumann D, Leuba G, Rabinowicz T 1978. Postnatal development of the mouse cerebral neocortex. IV. Evolution of the total cortical volume, of the population of neurons and glial cells. J. Hirnforsch. 19:385–93
    [Google Scholar]
  52. Hill RA, Patel KD, Goncalves CM, Grutzendler J, Nishiyama A 2014. Modulation of oligodendrocyte generation during a critical temporal window after NG2 cell division. Nat. Neurosci. 17:1518–27
    [Google Scholar]
  53. Hoerder-Suabedissen A, Molnar Z. 2013. Molecular diversity of early-born subplate neurons. Cereb. Cortex 23:1473–83
    [Google Scholar]
  54. Hoerder-Suabedissen A, Molnar Z. 2015. Development, evolution and pathology of neocortical subplate neurons. Nat. Rev. Neurosci. 16:133–46
    [Google Scholar]
  55. Houart C, Westerfield M, Wilson SW 1998. A small population of anterior cells patterns the forebrain during zebrafish gastrulation. Nature 391:788–92
    [Google Scholar]
  56. Hu JS, Vogt D, Lindtner S, Sandberg M, Silberberg SN, Rubenstein JLR 2017. Coup-TF1 and Coup-TF2 control subtype and laminar identity of MGE-derived neocortical interneurons. Development 144:2837–51
    [Google Scholar]
  57. Ikonomidou C, Bosch F, Miksa M, Bittigau P, Vockler J et al. 1999. Blockade of NMDA receptors and apoptotic neurodegeneration in the developing brain. Science 283:70–74
    [Google Scholar]
  58. Jackson-Lewis V, Vila M, Djaldetti R, Guegan C, Liberatore G et al. 2000. Developmental cell death in dopaminergic neurons of the substantia nigra of mice. J. Comp. Neurol. 424:476–88
    [Google Scholar]
  59. Jones KR, Fariñas I, Backus C, Reichardt LF 1994. Targeted disruption of the BDNF gene perturbs brain and sensory neuron development but not motor neuron development. Cell 76:989–99
    [Google Scholar]
  60. Julien O, Wells JA. 2017. Caspases and their substrates. Cell Death Differ 24:1380–89
    [Google Scholar]
  61. Jung AR, Kim TW, Rhyu IJ, Kim H, Lee YD et al. 2008. Misplacement of Purkinje cells during postnatal development in Bax knock-out mice: a novel role for programmed cell death in the nervous system. J. Neurosci. 28:2941–48
    [Google Scholar]
  62. Kale J, Liu Q, Leber B, Andrews DW 2012. Shedding light on apoptosis at subcellular membranes. Cell 151:1179–84
    [Google Scholar]
  63. Keeley PW, Sliff BJ, Lee SC, Fuerst PG, Burgess RW et al. 2012. Neuronal clustering and fasciculation phenotype in Dscam- and Bax-deficient mouse retinas. J. Comp. Neurol. 520:1349–64
    [Google Scholar]
  64. Kerr JFR, Wyllie AH, Currie AR 1972. Apoptosis: a basic biological phenomenon with wide-ranging implications in tissue kinetics. Br. J. Cancer 26:239–57
    [Google Scholar]
  65. Kessaris N, Fogarty M, Iannarelli P, Grist M, Wegner M, Richardson WD 2006. Competing waves of oligodendrocytes in the forebrain and postnatal elimination of an embryonic lineage. Nat. Neurosci. 9:173–79
    [Google Scholar]
  66. Khazipov R, Luhmann HJ. 2006. Early patterns of electrical activity in the developing cerebral cortex of humans and rodents. Trends Neurosci 29:414–18
    [Google Scholar]
  67. Kiecker C, Lumsden A. 2012. The role of organizers in patterning the nervous system. Annu. Rev. Neurosci. 35:347–67
    [Google Scholar]
  68. Kilb W, Luhmann HJ. 2001. Spontaneous GABAergic postsynaptic currents in Cajal-Retzius cells in neonatal rat cerebral cortex. Eur. J. Neurosci. 13:1387–90
    [Google Scholar]
  69. Kingsbury MA, Friedman B, McConnell MJ, Rehen SK, Yang AH et al. 2005. Aneuploid neurons are functionally active and integrated into brain circuitry. PNAS 102:6143
    [Google Scholar]
  70. Kirischuk S, Luhmann HJ, Kilb W 2014. Cajal-Retzius cells: update on structural and functional properties of these mystic neurons that bridged the 20th century. Neuroscience 275:33–46
    [Google Scholar]
  71. Kostovic I, Rakic P. 1980. Cytology and time of origin of interstitial neurons in the white matter in infant and adult human and monkey telencephalon. J. Neurocytol. 9:219–42
    [Google Scholar]
  72. Krahe TE, Medina AE, Lantz CL, Filgueiras CC 2015. Hyperactivity and depression-like traits in Bax KO mice. Brain Res 1625:246–54
    [Google Scholar]
  73. Kuert PA, Hartenstein V, Bello BC, Lovick JK, Reichert H 2014. Neuroblast lineage identification and lineage-specific Hox gene action during postembryonic development of the subesophageal ganglion in the Drosophila central brain. Dev. Biol. 390:102–15
    [Google Scholar]
  74. Kuida K, Haydar TF, Kuan CY, Gu Y, Taya C et al. 1998. Reduced apoptosis and cytochrome c–mediated caspase activation in mice lacking caspase 9. Cell 94:325–37
    [Google Scholar]
  75. Kuida K, Zheng TS, Na S, Kuan C, Yang D et al. 1996. Decreased apoptosis in the brain and premature lethality in CPP32-deficient mice. Nature 384:368–72
    [Google Scholar]
  76. Ledonne F, Orduz D, Mercier J, Vigier L, Grove EA et al. 2016. Targeted inactivation of Bax reveals a subtype-specific mechanism of Cajal-Retzius neuron death in the postnatal cerebral cortex. Cell Rep 17:3133–41
    [Google Scholar]
  77. Leonard JR, Klocke BJ, D'sa C, Flavell RA, Roth KA 2002. Strain-dependent neurodevelopmental abnormalities in caspase-3-deficient mice. J. Neuropathol. Exp. Neurol. 61:673–77
    [Google Scholar]
  78. Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M et al. 1997. Cytochrome c and dATP-dependent formation of Apaf-1/caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–89
    [Google Scholar]
  79. Li S, Sukeena JM, Simmons AB, Hansen EJ, Nuhn RE et al. 2015. DSCAM promotes refinement in the mouse retina through cell death and restriction of exploring dendrites. J. Neurosci. 35:5640–54
    [Google Scholar]
  80. Llorca A, Ciceri G, Beattie R, Wong FK, Diana D et al. 2018. Heterogeneous progenitor cell behavior orchestrates mammalian cortical development. bioRxiv 494088. https://doi.org/10.1101/494088
    [Crossref]
  81. Luhmann HJ, Khazipov R. 2018. Neuronal activity patterns in the developing barrel cortex. Neuroscience 368:256–67
    [Google Scholar]
  82. Lui JH, Hansen DV, Kriegstein AR 2011. Development and evolution of the human neocortex. Cell 146:18–36
    [Google Scholar]
  83. Marín O, Rubenstein JLR. 2001. A long, remarkable journey: tangential migration in the telencephalon. Nat. Rev. Neurosci. 2:780–90
    [Google Scholar]
  84. Marín O, Rubenstein JLR. 2003. Cell migration in the forebrain. Annu. Rev. Neurosci. 26:441–83
    [Google Scholar]
  85. Marx M, Qi G, Hanganu-Opatz IL, Kilb W, Luhmann HJ, Feldmeyer D 2017. Neocortical layer 6B as a remnant of the subplate—a morphological comparison. Cereb. Cortex 27:1011–26
    [Google Scholar]
  86. Meyer G, Gonzalez-Gomez M. 2018. The subpial granular layer and transient versus persisting Cajal-Retzius neurons of the fetal human cortex. Cereb. Cortex 28:2043–58
    [Google Scholar]
  87. Mienville JM. 1998. Persistent depolarizing action of GABA in rat Cajal-Retzius cells. J. Physiol. 512:Pt 3809–17
    [Google Scholar]
  88. Mienville JM, Pesold C. 1999. Low resting potential and postnatal upregulation of NMDA receptors may cause Cajal-Retzius cell death. J. Neurosci. 19:1636–46
    [Google Scholar]
  89. Mihalas AB, Hevner RF. 2018. Clonal analysis reveals laminar fate multipotency and daughter cell apoptosis of mouse cortical intermediate progenitors. Development 145:dev164335
    [Google Scholar]
  90. Miller MW. 1995. Relationship of the time of origin and death of neurons in rat somatosensory cortex: barrel versus septal cortex and projection versus local circuit neurons. J. Comp. Neurol. 355:6–14
    [Google Scholar]
  91. Miyoshi G, Hjerling-Leffler J, Karayannis T, Sousa VH, Butt SJ et al. 2010. Genetic fate mapping reveals that the caudal ganglionic eminence produces a large and diverse population of superficial cortical interneurons. J. Neurosci. 30:1582–94
    [Google Scholar]
  92. Motoyama N, Wang F, Roth KA, Sawa H, Nakayama K et al. 1995. Massive cell death of immature hematopoietic cells and neurons in Bcl-x-deficient mice. Science 267:1506–10
    [Google Scholar]
  93. Murase S, Owens DF, McKay RD 2011. In the newborn hippocampus, neurotrophin-dependent survival requires spontaneous activity and integrin signaling. J. Neurosci. 31:7791–800
    [Google Scholar]
  94. Nakamura A, Swahari V, Plestant C, Smith I, McCoy E et al. 2016. Bcl-xL is essential for the survival and function of differentiated neurons in the cortex that control complex behaviors. J. Neurosci. 36:5448–61
    [Google Scholar]
  95. Nicholson-Fish JC, Cousin MA, Smillie KJ 2016. Phosphatidylinositol 3-kinase couples localised calcium influx to activation of Akt in central nerve terminals. Neurochem. Res. 41:534–43
    [Google Scholar]
  96. Nikodemova M, Kimyon RS, De I, Small AL, Collier LS, Watters JJ 2015. Microglial numbers attain adult levels after undergoing a rapid decrease in cell number in the third postnatal week. J. Neuroimmunol. 278:280–88
    [Google Scholar]
  97. Nikoletopoulou V, Lickert H, Frade JM, Rencurel C, Giallonardo P et al. 2010. Neurotrophin receptors TrkA and TrkC cause neuronal death whereas TrkB does not. Nature 467:59–63
    [Google Scholar]
  98. Nikolic M, Gardner HA, Tucker KL 2013. Postnatal neuronal apoptosis in the cerebral cortex: physiological and pathophysiological mechanisms. Neuroscience 254:369–78
    [Google Scholar]
  99. Nonomura K, Yamaguchi Y, Hamachi M, Koike M, Uchiyama Y et al. 2013. Local apoptosis modulates early mammalian brain development through the elimination of morphogen-producing cells. Dev. Cell 27:621–34
    [Google Scholar]
  100. Nykjaer A, Willnow TE, Petersen CM 2005. p75NTR—live or let die. Curr. Opin. Neurobiol. 15:49–57
    [Google Scholar]
  101. Ohtaka-Maruyama C, Okamoto M, Endo K, Oshima M, Kaneko N et al. 2018. Synaptic transmission from subplate neurons controls radial migration of neocortical neurons. Science 360:313–17
    [Google Scholar]
  102. Oo TF, Kholodilov N, Burke RE 2003. Regulation of natural cell death in dopaminergic neurons of the substantia nigra by striatal glial cell line–derived neurotrophic factor in vivo. J. Neurosci. 23:5141–48
    [Google Scholar]
  103. Oppenheim RW. 1991. Cell death during development of the nervous system. Annu. Rev. Neurosci. 14:453–501
    [Google Scholar]
  104. Park E, Kim Y, Noh H, Lee H, Yoo S, Park S 2013. EphA/ephrin-A signaling is critically involved in region-specific apoptosis during early brain development. Cell Death Differ 20:169–80
    [Google Scholar]
  105. Peterson SE, Yang AH, Bushman DM, Westra JW, Yung YC et al. 2012. Aneuploid cells are differentially susceptible to Caspase-mediated death during embryonic cerebral cortical development. J. Neurosci. 32:16213–22
    [Google Scholar]
  106. Pezet S, Spyropoulos A, Williams RJ, McMahon SB 2005. Activity-dependent phosphorylation of Akt/PKB in adult DRG neurons. Eur. J. Neurosci. 21:1785–97
    [Google Scholar]
  107. Pfisterer U, Khodosevich K. 2017. Neuronal survival in the brain: neuron type–specific mechanisms. Cell Death Dis 8:e2643
    [Google Scholar]
  108. Pilaz LJ, McMahon JJ, Miller EE, Lennox AL, Suzuki A et al. 2016. Prolonged mitosis of neural progenitors alters cell fate in the developing brain. Neuron 89:83–99
    [Google Scholar]
  109. Pozas E, Paco S, Soriano E, Aguado F 2008. Cajal-Retzius cells fail to trigger the developmental expression of the Cl extruding co-transporter KCC2. Brain Res 1239:85–91
    [Google Scholar]
  110. Price DJ, Aslam S, Tasker L, Gillies K 1997. Fates of the earliest generated cells in the developing murine neocortex. J. Comp. Neurol. 377:414–22
    [Google Scholar]
  111. Priya R, Paredes MF, Karayannis T, Yusuf N, Liu X et al. 2018. Activity regulates cell death within cortical interneurons through a Calcineurin-dependent mechanism. Cell Rep 22:1695–709
    [Google Scholar]
  112. Raff MC, Barres BA, Burne JF, Coles HS, Ishizaki Y, Jacobson MD 1993. Programmed cell death and the control of cell survival: lessons from the nervous system. Science 262:695–700
    [Google Scholar]
  113. Rauskolb S, Zagrebelsky M, Dreznjak A, Deogracias R, Matsumoto T et al. 2010. Global deprivation of brain-derived neurotrophic factor in the CNS reveals an area-specific requirement for dendritic growth. J. Neurosci. 30:1739–49
    [Google Scholar]
  114. Rehen SK, McConnell MJ, Kaushal D, Kingsbury MA, Yang AH, Chun J 2001. Chromosomal variation in neurons of the developing and adult mammalian nervous system. PNAS 98:13361–66
    [Google Scholar]
  115. Rice DS, Curran T. 2001. Role of the Reelin signaling pathway in central nervous system development. Annu. Rev. Neurosci. 24:1005–39
    [Google Scholar]
  116. Rochefort NL, Garaschuk O, Milos RI, Narushima M, Marandi N et al. 2009. Sparsification of neuronal activity in the visual cortex at eye-opening. PNAS 106:15049–54
    [Google Scholar]
  117. Rondi-Reig L, Lohof A, Dubreuil YL, Delhaye-Bouchaud N, Martinou JC et al. 1999. Hu-Bcl-2 transgenic mice with supernumerary neurons exhibit timing impairment in a complex motor task. Eur. J. Neurosci. 11:2285–90
    [Google Scholar]
  118. Roth KA, Kuan C, Haydar TF, D'Sa-Eipper C, Shindler KS et al. 2000. Epistatic and independent functions of caspase-3 and Bcl-XL in developmental programmed cell death. PNAS 97:466–71
    [Google Scholar]
  119. Rubenstein JL, Shimamura K, Martinez S, Puelles L 1998. Regionalization of the prosencephalic neural plate. Annu. Rev. Neurosci. 21:445–77
    [Google Scholar]
  120. Ruijter JM, Baker RE, De Jong BM, Romijn HJ 1991. Chronic blockade of bioelectric activity in neonatal rat cortex grown in vitro: morphological effects. Int. J. Dev. Neurosci. 9:331–38
    [Google Scholar]
  121. Saelens X, Festjens N, Vande Walle L, Van Gurp M, Van Loo G, Vandenabeele P 2004. Toxic proteins released from mitochondria in cell death. Oncogene 23:2861–74
    [Google Scholar]
  122. Shulga A, Magalhaes AC, Autio H, Plantman S, di Lieto A et al. 2012. The loop diuretic bumetanide blocks posttraumatic p75NTR upregulation and rescues injured neurons. J. Neurosci. 32:1757–70
    [Google Scholar]
  123. Soriano E, Del Río JA 2005. The cells of Cajal-Retzius: still a mystery one century after. Neuron 46:389–94
    [Google Scholar]
  124. Southwell DG, Paredes MF, Galvao RP, Jones DL, Froemke RC et al. 2012. Intrinsically determined cell death of developing cortical interneurons. Nature 491:109–13
    [Google Scholar]
  125. Stambolic V, Suzuki A, de la Pompa JL, Brothers GM, Mirtsos C et al. 1998. Negative regulation of PKB/Akt-dependent cell survival by the tumor suppressor PTEN. Cell 95:29–39
    [Google Scholar]
  126. Sulston JE, Horvitz HR. 1977. Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. Dev. Biol. 56:110–56
    [Google Scholar]
  127. Supèr H, Del Río JA, Martinez A, Perez-Sust P, Soriano E 2000. Disruption of neuronal migration and radial glia in the developing cerebral cortex following ablation of Cajal-Retzius cells. Cereb. Cortex 10:602–13
    [Google Scholar]
  128. Supèr H, Martinez A, Del Río JA, Soriano E 1998. Involvement of distinct pioneer neurons in the formation of layer-specific connections in the hippocampus. J. Neurosci. 18:4616–26
    [Google Scholar]
  129. Takiguchi-Hayashi K, Sekiguchi M, Ashigaki S, Takamatsu M, Hasegawa H et al. 2004. Generation of reelin-positive marginal zone cells from the caudomedial wall of telencephalic vesicles. J. Neurosci. 24:2286–95
    [Google Scholar]
  130. Thion MS, Ginhoux F, Garel S 2018. Microglia and early brain development: an intimate journey. Science 362:185–89
    [Google Scholar]
  131. Thomaidou D, Mione MC, Cavanagh JF, Parnavelas JG 1997. Apoptosis and its relation to the cell cycle in the developing cerebral cortex. J. Neurosci. 17:1075–85
    [Google Scholar]
  132. Tissir F, Ravni A, Achouri Y, Riethmacher D, Meyer G, Goffinet AM 2009. DeltaNp73 regulates neuronal survival in vivo. PNAS 106:16871–76
    [Google Scholar]
  133. Trapp BD, Nishiyama A, Cheng D, Macklin W 1997. Differentiation and death of premyelinating oligodendrocytes in developing rodent brain. J. Cell Biol. 137:459–68
    [Google Scholar]
  134. Vaillant AR, Mazzoni I, Tudan C, Boudreau M, Kaplan DR, Miller FD 1999. Depolarization and neurotrophins converge on the phosphatidylinositol 3-kinase–Akt pathway to synergistically regulate neuronal survival. J. Cell Biol. 146:955–66
    [Google Scholar]
  135. Vallender EJ, Lahn BT. 2006. A primate-specific acceleration in the evolution of the caspase-dependent apoptosis pathway. Hum. Mol. Genet. 15:3034–40
    [Google Scholar]
  136. Valverde F, López-Mascaraque L, Santacana M, De Carlos JA 1995. Persistence of early-generated neurons in the rodent subplate: assessment of cell death in neocortex during the early postnatal period. J. Neurosci. 15:5014–24
    [Google Scholar]
  137. Verney C, Takahashi T, Bhide PG, Nowakowski RS, Caviness VS Jr. 2000. Independent controls for neocortical neuron production and histogenetic cell death. Dev. Neurosci. 22:125–38
    [Google Scholar]
  138. Villar-Cerviño V, Marín O. 2012. Cajal-Retzius cells. Curr. Biol. 22:R179
    [Google Scholar]
  139. Voigt T, Baier H, de Lima AD 1997. Synchronization of neuronal activity promotes survival of individual rat neocortical neurons in early development. Eur. J. Neurosci. 9:990–99
    [Google Scholar]
  140. Wei MC, Zong WX, Cheng EH, Lindsten T, Panoutsakopoulou V et al. 2001. Proapoptotic BAX and BAK: a requisite gateway to mitochondrial dysfunction and death. Science 292:727–30
    [Google Scholar]
  141. White FA, Keller-Peck CR, Knudson CM, Korsmeyer SJ, Snider WD 1998. Widespread elimination of naturally occurring neuronal death in Bax-deficient mice. J. Neurosci. 18:1428–39
    [Google Scholar]
  142. Wilsch-Bräuninger M, Florio M, Huttner WB 2016. Neocortex expansion in development and evolution: from cell biology to single genes. Curr. Opin. Neurobiol. 39:122–32
    [Google Scholar]
  143. Wong FK, Bercsenyi K, Sreenivasan V, Portalés A, Fernández-Otero M, Marín O 2018. Pyramidal cell regulation of interneuron survival sculpts cortical networks. Nature 557:668–73
    [Google Scholar]
  144. Xu Q, Cobos I, De La Cruz E, Rubenstein JL, Anderson SA 2004. Origins of cortical interneuron subtypes. J. Neurosci. 24:2612–22
    [Google Scholar]
  145. Yamaguchi Y, Miura M. 2015. Programmed cell death in neurodevelopment. Dev. Cell 32:478–90
    [Google Scholar]
  146. Yang A, Kaushal D, Rehen S, Kriedt K, Kingsbury M et al. 2003. Chromosome segregation defects contribute to aneuploidy in normal neural progenitor cells. J. Neurosci. 23:10454–62
    [Google Scholar]
  147. Yang X, Klein R, Tian X, Cheng HT, Kopan R, Shen J 2004. Notch activation induces apoptosis in neural progenitor cells through a p53-dependent pathway. Dev. Biol. 269:81–94
    [Google Scholar]
  148. Yeo W, Gautier J. 2004. Early neural cell death: dying to become neurons. Dev. Biol. 274:233–44
    [Google Scholar]
  149. Yoshida H, Kong YY, Yoshida R, Elia AJ, Hakem A et al. 1998. Apaf1 is required for mitochondrial pathways of apoptosis and brain development. Cell 94:739–50
    [Google Scholar]
  150. Yuste R, Nelson DA, Rubin WW, Katz LC 1995. Neuronal domains in developing neocortex: mechanisms of coactivation. Neuron 14:7–17
    [Google Scholar]
  151. Zhu JM, Tsai HJ, Gordon MR, Li R 2018. Cellular stress associated with aneuploidy. Dev. Cell 44:420–31
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125204
Loading
/content/journals/10.1146/annurev-cellbio-100818-125204
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error