1932

Abstract

For many years, major differences in morphology, motility, and mechanical characteristics have been observed between transformed cancer and normal cells. In this review, we consider these differences as linked to different states of normal and transformed cells that involve distinct mechanosensing and motility pathways. There is a strong correlation between repeated tissue healing and/or inflammation and the probability of cancer, both of which involve growth in adult tissues. Many factors are likely needed to enable growth, including the loss of rigidity sensing, but recent evidence indicates that microRNAs have important roles in causing the depletion of growth-suppressing proteins. One microRNA, , is overexpressed in many different tissues during both healing and cancer. Normal cells can become transformed by the depletion of cytoskeletal proteins that results in the loss of mechanosensing, particularly rigidity sensing. Conversely, the transformed state can be reversed by the expression of cytoskeletal proteins—without direct alteration of hormone receptor levels. In this review, we consider the different stereotypical forms of motility and mechanosensory systems. A major difference between normal and transformed cells involves a sensitivity of transformed cells to mechanical perturbations. Thus, understanding the different mechanical characteristics of transformed cells may enable new approaches to treating wound healing and cancer.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125227
2019-10-06
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125227.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125227&mimeType=html&fmt=ahah

Literature Cited

  1. Adhami M, Haghdoost AA, Sadeghi B, Malekpour Afshar R 2018. Candidate miRNAs in human breast cancer biomarkers: a systematic review. Breast Cancer 25:198–205
    [Google Scholar]
  2. Angers-Loustau A, Cote JF, Charest A, Dowbenko D, Spencer S et al. 1999. Protein tyrosine phosphatase-PEST regulates focal adhesion disassembly, migration, and cytokinesis in fibroblasts. J. Cell Biol. 144:1019–31
    [Google Scholar]
  3. Baird MA, Billington N, Wang A, Adelstein RS, Sellers JR et al. 2017. Local pulsatile contractions are an intrinsic property of the myosin 2A motor in the cortical cytoskeleton of adherent cells. Mol. Biol. Cell 28:240–51
    [Google Scholar]
  4. Berrueta L, Bergholz J, Munoz D, Muskaj I, Badger GJ et al. 2018. Stretching reduces tumor growth in a mouse breast cancer model. Sci. Rep. 8:7864
    [Google Scholar]
  5. Betof AS, Lascola CD, Weitzel D, Landon C, Scarbrough PM et al. 2015. Modulation of murine breast tumor vascularity, hypoxia and chemotherapeutic response by exercise. J. Natl. Cancer Inst. 107:djv040
    [Google Scholar]
  6. Bharadwaj S, Thanawala R, Bon G, Falcioni R, Prasad GL 2005. Resensitization of breast cancer cells to anoikis by tropomyosin-1: role of Rho kinase–dependent cytoskeleton and adhesion. Oncogene 24:8291–303
    [Google Scholar]
  7. Bhome R, Goh RW, Bullock MD, Pillar N, Thirdborough SM et al. 2017. Exosomal microRNAs derived from colorectal cancer-associated fibroblasts: role in driving cancer progression. Aging 9:2666–94
    [Google Scholar]
  8. Biondini M, Duclos G, Meyer-Schaller N, Silberzan P, Camonis J, Parrini MC 2015. RalB regulates contractility-driven cancer dissemination upon TGFβ stimulation via the RhoGEF GEF-H1. Sci. Rep. 5:11759
    [Google Scholar]
  9. Biswenger V, Baumann N, Jurschick J, Hackl M, Battle C et al. 2018. Characterization of EGF-guided MDA-MB-231 cell chemotaxis in vitro using a physiological and highly sensitive assay system. PLOS ONE 13:e0203040
    [Google Scholar]
  10. Boyer NP, Gupton SL. 2018. Revisiting Netrin-1: one who guides (axons). Front. Cell. Neurosci. 12:221
    [Google Scholar]
  11. Brabek J, Constancio SS, Siesser PF, Shin NY, Pozzi A, Hanks SK 2005. Crk-associated substrate tyrosine phosphorylation sites are critical for invasion and metastasis of SRC-transformed cells. Mol. Cancer Res. 3:307–15
    [Google Scholar]
  12. Brayford S, Bryce NS, Schevzov G, Haynes EM, Bear JE et al. 2016. Tropomyosin promotes lamellipodial persistence by collaborating with Arp2/3 at the leading edge. Curr. Biol. 26:1312–18
    [Google Scholar]
  13. Carragher NO, Fonseca BD, Frame MC 2004. Calpain activity is generally elevated during transformation but has oncogene-specific biological functions. Neoplasia 6:53–73
    [Google Scholar]
  14. Carragher NO, Westhoff MA, Riley D, Potter DA, Dutt P et al. 2002. v-Src-induced modulation of the calpain-calpastatin proteolytic system regulates transformation. Mol. Cell. Biol. 22:257–69
    [Google Scholar]
  15. Chan ML, Liang JW, Hsu LC, Chang WL, Lee SS, Guh JH 2015. Zerumbone, a ginger sesquiterpene, induces apoptosis and autophagy in human hormone-refractory prostate cancers through tubulin binding and crosstalk between endoplasmic reticulum stress and mitochondrial insult. Naunyn Schmiedebergs Arch. Pharmacol. 388:1223–36
    [Google Scholar]
  16. Cui Y, Hameed FM, Yang B, Lee K, Pan CQ et al. 2015. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6:6333
    [Google Scholar]
  17. Diz-Muñoz A, Thurley K, Chintamen S, Altschuler SJ, Wu LF et al. 2016. Membrane tension acts through PLD2 and mTORC2 to limit actin network assembly during neutrophil migration. PLOS Biol 14:e1002474
    [Google Scholar]
  18. Dubin-Thaler BJ, Hofman JM, Cai Y, Xenias H, Spielman I et al. 2008. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading. PLOS ONE 3:e3735
    [Google Scholar]
  19. Engler AJ, Sen S, Sweeney HL, Discher DE 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:4677–89
    [Google Scholar]
  20. Etem EO, Ceylan GG, Ozaydin S, Ceylan C, Ozercan I, Kuloglu T 2018. The increased expression of Piezo1 and Piezo2 ion channels in human and mouse bladder carcinoma. Adv. Clin. Exp. Med. 27:1025–31
    [Google Scholar]
  21. Fokkelman M, Balcioglu HE, Klip JE, Yan K, Verbeek FJ et al. 2016. Cellular adhesome screen identifies critical modulators of focal adhesion dynamics, cellular traction forces and cell migration behaviour. Sci. Rep. 6:31707
    [Google Scholar]
  22. Frame MC. 2004. Newest findings on the oldest oncogene; how activated Src does it. J. Cell Sci. 117:989–98
    [Google Scholar]
  23. Ge XT, Lei P, Wang HC, Zhang AL, Han ZL et al. 2014. miR-21 improves the neurological outcome after traumatic brain injury in rats. Sci. Rep. 4:6718
    [Google Scholar]
  24. Ge Y, Zhang L, Nikolova M, Reva B, Fuchs E 2016. Strand-specific in vivo screen of cancer-associated miRNAs unveils a role for miR-21* in SCC progression. Nat. Cell Biol. 18:111–21
    [Google Scholar]
  25. Gelman IH, Gao L. 2006. SSeCKS/Gravin/AKAP12 metastasis suppressor inhibits podosome formation via RhoA- and Cdc42-dependent pathways. Mol. Cancer Res. 4:151–58
    [Google Scholar]
  26. Ghassemi S, Meacci G, Liu S, Gondarenko AA, Mathur A et al. 2012. Cells test substrate rigidity by local contractions on submicrometer pillars. PNAS 109:5328–33
    [Google Scholar]
  27. Giannone G, Dubin-Thaler BJ, Rossier O, Cai Y, Chaga O et al. 2007. Lamellipodial actin mechanically links myosin activity with adhesion-site formation. Cell 128:561–75
    [Google Scholar]
  28. Gimona M, Kazzaz JA, Helfman DM 1996. Forced expression of tropomyosin 2 or 3 in v-Ki-ras-transformed fibroblasts results in distinct phenotypic effects. PNAS 93:9618–23
    [Google Scholar]
  29. Hakak Y, Hsu YS, Martin GS 2000. Shp-2 mediates v-Src-induced morphological changes and activation of the anti-apoptotic protein kinase Akt. Oncogene 19:3164–71
    [Google Scholar]
  30. Han Z, Chen Y, Zhang Y, Wei A, Zhou J et al. 2017. MiR-21/PTEN axis promotes skin wound healing by dendritic cells enhancement. J. Cell. Biochem. 118:3511–19
    [Google Scholar]
  31. Harris AR, Daeden A, Charras GT 2014. Formation of adherens junctions leads to the emergence of a tissue-level tension in epithelial monolayers. J. Cell Sci. 127:2507–17
    [Google Scholar]
  32. Helfman DM, Flynn P, Khan P, Saeed A 2008. Tropomyosin as a regulator of cancer cell transformation. Adv. Exp. Med. Biol. 644:124–31
    [Google Scholar]
  33. Holman EC, Campbell LJ, Hines J, Crews CM 2012. Microarray analysis of microRNA expression during axolotl limb regeneration. PLOS ONE 7:e41804
    [Google Scholar]
  34. Hoppe B, Pietsch S, Franke M, Engel S, Groth M et al. 2015. MiR-21 is required for efficient kidney regeneration in fish. BMC Dev. Biol. 15:43
    [Google Scholar]
  35. Hotulainen P, Lappalainen P. 2006. Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. J. Cell Biol. 173:383–94
    [Google Scholar]
  36. Hou D, Che Z, Chen P, Zhang W, Chu Y et al. 2018. Suppression of AURKA alleviates p27 inhibition on Bax cleavage and induces more intensive apoptosis in gastric cancer. Cell Death Dis 9:781
    [Google Scholar]
  37. Houle F, Poirier A, Dumaresq J, Huot J 2007. DAP kinase mediates the phosphorylation of tropomyosin-1 downstream of the ERK pathway, which regulates the formation of stress fibers in response to oxidative stress. J. Cell Sci. 120:3666–77
    [Google Scholar]
  38. Hsiao JY, Goins LM, Petek NA, Mullins RD 2015. Arp2/3 complex and cofilin modulate binding of tropomyosin to branched actin networks. Curr. Biol. 25:1573–82
    [Google Scholar]
  39. Indra I, Undyala V, Kandow C, Thirumurthi U, Dembo M, Beningo KA 2011. An in vitro correlation of mechanical forces and metastatic capacity. Phys. Biol. 8:015015
    [Google Scholar]
  40. Ivanovska J, Mahadevan V, Schneider-Stock R 2014. DAPK and cytoskeleton-associated functions. Apoptosis 19:329–38
    [Google Scholar]
  41. Jiang J, Yang P, Guo Z, Yang R, Yang H et al. 2016. Overexpression of microRNA-21 strengthens stem cell–like characteristics in a hepatocellular carcinoma cell line. World J. Surg. Oncol. 14:278
    [Google Scholar]
  42. Jodoin JN, Coravos JS, Chanet S, Vasquez CG, Tworoger M et al. 2015. Stable force balance between epithelial cells arises from F-actin turnover. Dev. Cell 35:685–97
    [Google Scholar]
  43. John K, Hadem J, Krech T, Wahl K, Manns MP et al. 2014. MicroRNAs play a role in spontaneous recovery from acute liver failure. Hepatology 60:1346–55
    [Google Scholar]
  44. Kage F, Winterhoff M, Dimchev V, Mueller J, Thalheim T et al. 2017. FMNL formins boost lamellipodial force generation. Nat. Commun. 8:14832
    [Google Scholar]
  45. Kennedy LL, Meng F, Venter JK, Zhou T, Karstens WA et al. 2016. Knockout of microRNA-21 reduces biliary hyperplasia and liver fibrosis in cholestatic bile duct ligated mice. Lab. Investig. 96:1256–67
    [Google Scholar]
  46. Kim JJ, Yin B, Christudass CS, Terada N, Rajagopalan K et al. 2013. Acquisition of paclitaxel resistance is associated with a more aggressive and invasive phenotype in prostate cancer. J. Cell. Biochem. 114:1286–93
    [Google Scholar]
  47. King BL, Yin VP. 2016. A conserved microRNA regulatory circuit is differentially controlled during limb/appendage regeneration. PLOS ONE 11:e0157106
    [Google Scholar]
  48. Koch TM, Munster S, Bonakdar N, Butler JP, Fabry B 2012. 3D traction forces in cancer cell invasion. PLOS ONE 7:e33476
    [Google Scholar]
  49. Kraning-Rush CM, Califano JP, Reinhart-King CA 2012. Cellular traction stresses increase with increasing metastatic potential. PLOS ONE 7:e32572
    [Google Scholar]
  50. Li J, Davidson D, Martins Souza C, Zhong MC, Wu N et al. 2015. Loss of PTPN12 stimulates progression of ErbB2-dependent breast cancer by enhancing cell survival, migration, and epithelial-to-mesenchymal transition. Mol. Cell. Biol. 35:4069–82
    [Google Scholar]
  51. Li X, Guo L, Liu Y, Su Y, Xie Y et al. 2018. MicroRNA-21 promotes wound healing via the Smad7-Smad2/3-Elastin pathway. Exp. Cell Res. 362:245–51
    [Google Scholar]
  52. Lien SC, Chang SF, Lee PL, Wei SY, Chang MD et al. 2013. Mechanical regulation of cancer cell apoptosis and autophagy: roles of bone morphogenetic protein receptor, Smad1/5, and p38 MAPK. Biochim. Biophys. Acta Mol. Cell Res. 1833:3124–33
    [Google Scholar]
  53. Lin CY, Tseng HC, Shiu HR, Wu MF, Chou CY, Lin WL 2012. Ultrasound sonication with microbubbles disrupts blood vessels and enhances tumor treatments of anticancer nanodrug. Int. J. Nanomed. 7:2143–52
    [Google Scholar]
  54. Liu B, Zhou Y, Lu D, Liu Y, Zhang SQ et al. 2017. Comparison of the protein expression of calpain-1, calpain-2, calpastatin and calmodulin between gastric cancer and normal gastric mucosa. Oncol. Lett. 14:3705–10
    [Google Scholar]
  55. Lou SS, Diz-Muñoz A, Weiner OD, Fletcher DA, Theriot JA 2015. Myosin light chain kinase regulates cell polarization independently of membrane tension or Rho kinase. J. Cell Biol. 209:275–88
    [Google Scholar]
  56. Lubov J, Maschietto M, Ibrahim I, Mlynarek A, Hier M et al. 2017. Meta-analysis of microRNAs expression in head and neck cancer: uncovering association with outcome and mechanisms. Oncotarget 8:55511–24
    [Google Scholar]
  57. Luo W, Yu CH, Lieu ZZ, Allard J, Mogilner A et al. 2013. Analysis of the local organization and dynamics of cellular actin networks. J. Cell Biol. 202:1057–73
    [Google Scholar]
  58. Lv L, Huang F, Mao H, Li M, Li X et al. 2013. MicroRNA-21 is overexpressed in renal cell carcinoma. Int. J. Biol. Markers 28:201–7
    [Google Scholar]
  59. Ma D, Fang J, Liu Y, Song JJ, Wang YQ et al. 2017. High level of calpain1 promotes cancer cell invasion and migration in oral squamous cell carcinoma. Oncol. Lett. 13:4017–26
    [Google Scholar]
  60. Machacek M, Hodgson L, Welch C, Elliott H, Pertz O et al. 2009. Coordination of Rho GTPase activities during cell protrusion. Nature 461:99–103
    [Google Scholar]
  61. Maninova M, Vomastek T. 2016. Dorsal stress fibers, transverse actin arcs, and perinuclear actin fibers form an interconnected network that induces nuclear movement in polarizing fibroblasts. FEBS J 283:3676–93
    [Google Scholar]
  62. Manoussaki D, Shin WD, Waterman CM, Chadwick RS 2015. Cytosolic pressure provides a propulsive force comparable to actin polymerization during lamellipod protrusion. Sci. Rep. 5:12314
    [Google Scholar]
  63. Marano F, Frairia R, Rinella L, Argenziano M, Bussolati B et al. 2017. Combining doxorubicin-nanobubbles and shockwaves for anaplastic thyroid cancer treatment: preclinical study in a xenograft mouse model. Endocr. Relat. Cancer 24:275–86
    [Google Scholar]
  64. Martin AC, Kaschube M, Wieschaus EF 2009. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–99
    [Google Scholar]
  65. Maslikowski BM, Wang L, Wu Y, Fielding B, Bedard PA 2017. JunD/AP-1 antagonizes the induction of DAPK1 to promote the survival of v-Src-transformed cells. J. Virol. 91:e01925-16
    [Google Scholar]
  66. Masoudi MS, Mehrabian E, Mirzaei H 2018. MiR-21: a key player in glioblastoma pathogenesis. J. Cell. Biochem. 119:1285–90
    [Google Scholar]
  67. McHugh BJ, Murdoch A, Haslett C, Sethi T 2012. Loss of the integrin-activating transmembrane protein Fam38A (Piezo1) promotes a switch to a reduced integrin-dependent mode of cell migration. PLOS ONE 7:e40346
    [Google Scholar]
  68. Meacci G, Wolfenson H, Liu S, Stachowiak MR, Iskratsch T et al. 2016. α-Actinin links extracellular matrix rigidity–sensing contractile units with periodic cell-edge retractions. Mol. Biol. Cell 27:3471–79
    [Google Scholar]
  69. Momtazi AA, Shahabipour F, Khatibi S, Johnston TP, Pirro M, Sahebkar A 2016. Curcumin as a MicroRNA regulator in cancer: a review. Rev. Physiol. Biochem. Pharmacol. 171:1–38
    [Google Scholar]
  70. Moore SW, Biais N, Sheetz MP 2009. Traction on immobilized netrin-1 is sufficient to reorient axons. Science 325:166
    [Google Scholar]
  71. Moore SW, Sheetz MP. 2011. Biophysics of substrate interaction: influence on neural motility, differentiation, and repair. Dev. Neurobiol. 71:1090–101
    [Google Scholar]
  72. Moore SW, Zhang X, Lynch CD, Sheetz MP 2012. Netrin-1 attracts axons through FAK-dependent mechanotransduction. J. Neurosci. 32:11574–85
    [Google Scholar]
  73. Nalluri SM, O'Connor JW, Virgi GA, Stewart SE, Ye D, Gomez EW 2018. TGFβ1-induced expression of caldesmon mediates epithelial-mesenchymal transition. Cytoskeleton 75:201–12
    [Google Scholar]
  74. Nicolai H, Steinbach P, Knuechel-Clarke R, Grimm D, Roessler W et al. 1994. Proliferation of tumor spheroids after shock-wave treatment. J. Cancer Res. Clin. Oncol. 120:438–41
    [Google Scholar]
  75. Pappu P, Madduru D, Chandrasekharan M, Modhukur V, Nallapeta S, Suravajhala P 2016. Next generation sequencing analysis of lung cancer datasets: a functional genomics perspective. Indian J. Cancer 53:1–7
    [Google Scholar]
  76. Pawlak G, Helfman DM. 2001. Cytoskeletal changes in cell transformation and tumorigenesis. Curr. Opin. Genet. Dev. 11:41–47
    [Google Scholar]
  77. Plodinec M, Loparic M, Monnier CA, Obermann EC, Zanetti-Dallenbach R et al. 2012. The nanomechanical signature of breast cancer. Nat. Nanotechnol. 7:11757–65
    [Google Scholar]
  78. Pontes B, Monzo P, Gole L, Le Roux AL, Kosmalska AJ et al. 2017. Membrane tension controls adhesion positioning at the leading edge of cells. J. Cell Biol. 216:2959–77
    [Google Scholar]
  79. Prager-Khoutorsky M, Lichtenstein A, Krishnan R, Rajendran K, Mayo A et al. 2011. Fibroblast polarization is a matrix-rigidity-dependent process controlled by focal adhesion mechanosensing. Nat. Cell Biol. 13:1457–65
    [Google Scholar]
  80. Qin R, Wolfenson H, Saxena M, Sheetz M 2018. Tumor suppressor DAPK1 catalyzes adhesion assembly on rigid but anoikis on soft matrices. bioRxiv 320739. https://doi.org/10.1101/320739
    [Crossref]
  81. Ratheesh A, Gomez GA, Priya R, Verma S, Kovacs EM et al. 2012. Centralspindlin and α-catenin regulate Rho signalling at the epithelial zonula adherens. Nat. Cell Biol. 14:818–28
    [Google Scholar]
  82. Raucher D, Sheetz MP. 2000. Cell spreading and lamellipodial extension rate is regulated by membrane tension. J. Cell Biol. 148:127–36
    [Google Scholar]
  83. Raz–Ben Aroush D, Ofer N, Abu-Shah E, Allard J, Krichevsky O et al. 2017. Actin turnover in lamellipodial fragments. Curr. Biol. 27:2963–73.e14
    [Google Scholar]
  84. Regmi S, Fu A, Luo KQ 2017. High shear stresses under exercise condition destroy circulating tumor cells in a microfluidic system. Sci. Rep. 7:39975
    [Google Scholar]
  85. Rose M, Kloten V, Noetzel E, Gola L, Ehling J et al. 2017. ITIH5 mediates epigenetic reprogramming of breast cancer cells. Mol. Cancer 16:44
    [Google Scholar]
  86. Rossier OM, Gauthier N, Biais N, Vonnegut W, Fardin MA et al. 2010. Force generated by actomyosin contraction builds bridges between adhesive contacts. EMBO J 29:1055–68
    [Google Scholar]
  87. Runge J, Reichert TE, Fritsch A, Käs J, Bertolini J, Remmerbach TW 2014. Evaluation of single-cell bio-mechanics as potential marker for oral squamous cell carcinomas: a pilot study. Oral Dis 20:3e120–27
    [Google Scholar]
  88. Ryan GL, Holz D, Yamashiro S, Taniguchi D, Watanabe N, Vavylonis D 2017. Cell protrusion and retraction driven by fluctuations in actin polymerization: a two-dimensional model. Cytoskeleton 74:490–503
    [Google Scholar]
  89. Saha S, Nagy TL, Weiner OD 2018. Joining forces: crosstalk between biochemical signalling and physical forces orchestrates cellular polarity and dynamics. Philos. Trans. R. Soc. B Biol. Sci. 373:20170145
    [Google Scholar]
  90. Saxena M, Changede R, Hone J, Wolfenson H, Sheetz MP 2017a. Force-induced calpain cleavage of talin is critical for growth, adhesion development, and rigidity sensing. Nano Lett 17:7242–51
    [Google Scholar]
  91. Saxena M, Liu S, Yang B, Hajal C, Changede R et al. 2017b. EGFR and HER2 activate rigidity sensing only on rigid matrices. Nat. Mater. 16:775–81
    [Google Scholar]
  92. Saxena N, Mogha P, Dash S, Majumder A, Jadhav S, Sen S 2018. Matrix elasticity regulates mesenchymal stem cell chemotaxis. J. Cell Sci. 131:jcs211391
    [Google Scholar]
  93. Schreiber CH, Stewart M, Duke T 2010. Simulation of cell motility that reproduces the force-velocity relationship. PNAS 107:9141–46
    [Google Scholar]
  94. Sekar D, Krishnan R, Thirugnanasambantham K, Rajasekaran B, Islam VI, Sekar P 2016. Significance of microRNA 21 in gastric cancer. Clin. Res. Hepatol. Gastroenterol. 40:538–45
    [Google Scholar]
  95. Sheetz MP, Yu H. 2018. The Cell as a Machine Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  96. Shin H, Kim D, Helfman DM 2017. Tropomyosin isoform Tpm2.1 regulates collective and amoeboid cell migration and cell aggregation in breast epithelial cells. Oncotarget 8:95192–205
    [Google Scholar]
  97. Starska K, Forma E, Jozwiak P, Lewy-Trenda I, Danilewicz M et al. 2016. Gene/protein expression of CAPN1/2-CAST system members is associated with ERK1/2 kinases activity as well as progression and clinical outcome in human laryngeal cancer. Tumour Biol 37:13185–203
    [Google Scholar]
  98. Steinberg MS, Takeichi M. 1994. Experimental specification of cell sorting, tissue spreading, and specific spatial patterning by quantitative differences in cadherin expression. PNAS 91:206–9
    [Google Scholar]
  99. Storr SJ, Thompson N, Pu X, Zhang Y, Martin SG 2015. Calpain in breast cancer: role in disease progression and treatment response. Pathobiology 82:133–41
    [Google Scholar]
  100. Su CC, Liu SH, Lee KI, Huang KT, Lu TH et al. 2015. Cantharidin induces apoptosis through the calcium/PKC-regulated endoplasmic reticulum stress pathway in human bladder cancer cells. Am. J. Chin. Med. 43:581–600
    [Google Scholar]
  101. Sun T, Aceto N, Meerbrey KL, Kessler JD, Zhou C et al. 2011. Activation of multiple proto-oncogenic tyrosine kinases in breast cancer via loss of the PTPN12 phosphatase. Cell 144:703–18
    [Google Scholar]
  102. Tanji M, Ishizaki T, Ebrahimi S, Tsuboguchi Y, Sukezane T et al. 2010. mDia1 targets v-Src to the cell periphery and facilitates cell transformation, tumorigenesis, and invasion. Mol. Cell. Biol. 30:4604–15
    [Google Scholar]
  103. Taverna S, Fontana S, Monteleone F, Pucci M, Saieva L et al. 2016. Curcumin modulates chronic myelogenous leukemia exosomes composition and affects angiogenic phenotype via exosomal miR-21. Oncotarget 7:30420–39
    [Google Scholar]
  104. Thomas JD, Lee T, Suh NP 2004. A function-based framework for understanding biological systems. Annu. Rev. Biophys. Biomol. Struct. 33:75–93
    [Google Scholar]
  105. Tijore A, Yao M, Wang YH, Nematbakhsh Y, Hariharan A, Lim CT, Sheetz M 2018. Mechanical stretch kills transformed cancer cells. bioRxiv 491746. https://doi.org/10.1101/491746
    [Crossref]
  106. Tojkander S, Gateva G, Husain A, Krishnan R, Lappalainen P 2015. Generation of contractile actomyosin bundles depends on mechanosensitive actin filament assembly and disassembly. eLife 4:e06126
    [Google Scholar]
  107. Tyson JJ, Novak B. 2014. Control of cell growth, division and death: information processing in living cells. Interface Focus 4:20130070
    [Google Scholar]
  108. van Helvert S, Storm C, Friedl P 2018. Mechanoreciprocity in cell migration. Nat. Cell Biol. 20:8–20
    [Google Scholar]
  109. Vasquez CG, Martin AC. 2016. Force transmission in epithelial tissues. Dev. Dyn. 245:361–71
    [Google Scholar]
  110. Vasquez CG, Tworoger M, Martin AC 2014. Dynamic myosin phosphorylation regulates contractile pulses and tissue integrity during epithelial morphogenesis. J. Cell Biol. 206:435–50
    [Google Scholar]
  111. Wang P, Ballestrem C, Streuli CH 2011. The C terminus of talin links integrins to cell cycle progression. J. Cell Biol. 195:499–513
    [Google Scholar]
  112. Wang X, Hang Y, Liu J, Hou Y, Wang N, Wang M 2017. Anticancer effect of curcumin inhibits cell growth through miR-21/PTEN/Akt pathway in breast cancer cell. Oncol. Lett. 13:4825–31
    [Google Scholar]
  113. Watanabe TM, Tokuo H, Gonda K, Higuchi H, Ikebe M 2010. Myosin-X induces filopodia by multiple elongation mechanism. J. Biol. Chem. 285:19605–14
    [Google Scholar]
  114. Weder G, Hendriks-Balk M, Smajda R, Rimoldt D, Liley M et al. 2014. Increased plasticity of the stiffness of melanoma cells correlates with their acquisition of metastatic properties. Nanomedicine 10:1141–48
    [Google Scholar]
  115. Weinberg J, Drubin DG. 2012. Clathrin-mediated endocytosis in budding yeast. Trends Cell Biol 22:1–13
    [Google Scholar]
  116. Wolfenson H, Meacci G, Liu S, Stachowiak MR, Iskratsch T et al. 2016. Tropomyosin controls sarcomere-like contractions for rigidity sensing and suppressing growth on soft matrices. Nat. Cell Biol. 18:33–42
    [Google Scholar]
  117. Wolfenson H, Yang B, Sheetz MP 2019. Steps in mechanotransduction pathways that control cell morphology. Annu. Rev. Physiol. 81:585–605
    [Google Scholar]
  118. Wu SK, Budnar S, Yap AS, Gomez GA 2014. Pulsatile contractility of actomyosin networks organizes the cellular cortex at lateral cadherin junctions. Eur. J. Cell Biol. 93:396–404
    [Google Scholar]
  119. Yang B, Lieu ZZ, Wolfenson H, Hameed FM, Bershadsky AD, Sheetz MP 2016. Mechanosensing controlled directly by tyrosine kinases. Nano Lett 16:5951–61
    [Google Scholar]
  120. Yang B, Wolfenson H, Nakazawa N, Liu S, Hu J, Sheetz MP 2019. Stopping transformed growth by rigidity sensing. Nature Mater In press
    [Google Scholar]
  121. Yang Y, Nguyen E, Mege R-M, Ladoux B, Sheetz MP 2018. Local contractions test rigidity of E-cadherin adhesions. bioRxiv 318642. https://doi.org/10.1101/318642
    [Crossref]
  122. You R, Li X, Luo Z, Qu J, Li M 2015. Directional cell elongation through filopodia-steered lamellipodial extension on patterned silk fibroin films. Biointerphases 10:011005
    [Google Scholar]
  123. Yu CH, Rafiq NB, Krishinasamy A, Hartman KL, Jones GE et al. 2013. Integrin-matrix clusters form podosome-like adhesions in the absence of traction forces. Cell Rep 5:51456–68
    [Google Scholar]
  124. Zequi SC, Mourão TC, Guimarães GC 2018. Prostate cancer—local treatment after radiorecurrence: HIFU—high-intensity focused ultrasound. Int. Braz. J. Urol. 44:429–32
    [Google Scholar]
  125. Zhang J, Zhou Y, Huang T, Wu F, Liu L et al. 2018. PIEZO1 functions as a potential oncogene by promoting cell proliferation and migration in gastric carcinogenesis. Mol. Carcinog. 57:1144–55
    [Google Scholar]
  126. Zhang W, Bai W, Zhang W 2014. MiR-21 suppresses the anticancer activities of curcumin by targeting PTEN gene in human non–small cell lung cancer A549 cells. Clin. Transl. Oncol. 16:708–13
    [Google Scholar]
  127. Zhang X, Jiang G, Cai Y, Monkley SJ, Critchley DR, Sheetz MP 2008. Talin depletion reveals independence of initial cell spreading from integrin activation and traction. Nat. Cell Biol. 10:1062–8
    [Google Scholar]
  128. Zhao Q, Chen S, Zhu Z, Yu L, Ren Y et al. 2018. miR-21 promotes EGF-induced pancreatic cancer cell proliferation by targeting Spry2. Cell Death Dis 9:1157
    [Google Scholar]
  129. Zheng Q, Safina A, Bakin AV 2008. Role of high-molecular weight tropomyosins in TGF-β-mediated control of cell motility. Int. J. Cancer 122:78–90
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125227
Loading
/content/journals/10.1146/annurev-cellbio-100818-125227
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error