1932

Abstract

Phospholipids are synthesized primarily within the endoplasmic reticulum and are subsequently distributed to various subcellular membranes to maintain the unique lipid composition of specific organelles. As a result, in most cases, the steady-state localization of membrane phospholipids does not match their site of synthesis. This raises the question of how diverse lipid species reach their final membrane destinations and what molecular processes provide the energy to maintain the lipid gradients that exist between various membrane compartments. Recent studies have highlighted the role of inositol phospholipids in the nonvesicular transport of lipids at membrane contact sites. This review attempts to summarize our current understanding of these complex lipid dynamics and highlights their implications for defining future research directions.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125251
2019-10-06
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125251.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125251&mimeType=html&fmt=ahah

Literature Cited

  1. Alpy F, Tomasetto C. 2005. Give lipids a START: the StAR-related lipid transfer (START) domain in mammals. J. Cell Sci. 118:2791–801
    [Google Scholar]
  2. Ashlin TG, Blunsom NJ, Ghosh M, Cockcroft S, Rihel J 2018. Pitpnc1a regulates zebrafish sleep and wake behavior through modulation of insulin-like growth factor signaling. Cell Rep 24:1389–96
    [Google Scholar]
  3. Balla T. 2013. Phosphoinositides: tiny lipids with giant impact on cell regulation. Physiol. Rev. 93:1019–137
    [Google Scholar]
  4. Balla T. 2018. Ca2+ and lipid signals hold hands at endoplasmic reticulum–plasma membrane contact sites. J. Physiol. 596:2709–16
    [Google Scholar]
  5. Balla T, Varnai P. 2009. Visualization of cellular phosphoinositide pools with GFP-fused protein-domains. Curr. Protoc. Cell Biol. 42:24.4.1–24.4.27
    [Google Scholar]
  6. Bankaitis VA, Malehorn DE, Emr SD, Greene R 1989. The Saccharomyces cerevisiae SEC 14 gene encodes a cytosolic factor that is required for transport of secretory proteins from the yeast Golgi complex. J. Cell Biol. 108:1271–81
    [Google Scholar]
  7. Berman HM, Westbrook J, Feng Z, Gilliland G, Bhat TN et al. 2000. The Protein Data Bank. Nucleic Acids Res 28:235–42
    [Google Scholar]
  8. Berridge MJ. 1984. Inositol trisphosphate and diacylglycerol as intracellular messengers. Biochem. J. 220:345–60
    [Google Scholar]
  9. Besprozvannaya M, Dickson E, Li H, Ginburg KS, Bers DM et al. 2018. GRAM domain proteins specialize functionally distinct ER-PM contact sites in human cells. eLife 7:e31019
    [Google Scholar]
  10. Bian X, Saheki Y, De Camilli P 2018. Ca2+ releases E-Syt1 autoinhibition to couple ER–plasma membrane tethering with lipid transport. EMBO J 37:219–34
    [Google Scholar]
  11. Bockelmann S, Mina JGM, Korneev S, Hassan DG, Muller D et al. 2018. A search for ceramide binding proteins using bifunctional lipid analogs yields CERT-related protein StarD7. J. Lipid Res. 59:515–30
    [Google Scholar]
  12. Booth DM, Enyedi B, Geiszt M, Varnai P, Hajnoczky G 2016. Redox nanodomains are induced by and control calcium signaling at the ER-mitochondrial interface. Mol. Cell 63:240–48
    [Google Scholar]
  13. Bradley RM, Marvyn PM, Aristizabal Henao JJ, Mardian EB, George S et al. 2015. Acylglycerophosphate acyltransferase 4 (AGPAT4) is a mitochondrial lysophosphatidic acid acyltransferase that regulates brain phosphatidylcholine, phosphatidylethanolamine, and phosphatidylinositol levels. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:1566–76
    [Google Scholar]
  14. Bruntz RC, Lindsley CW, Brown HA 2014. Phospholipase D signaling pathways and phosphatidic acid as therapeutic targets in cancer. Pharmacol. Rev. 66:1033–79
    [Google Scholar]
  15. Bumpus TW, Baskin JM. 2017. Clickable substrate mimics enable imaging of phospholipase D activity. ACS Cent. Sci. 3:1070–77
    [Google Scholar]
  16. Burgett AW, Poulsen TB, Wangkanont K, Anderson DR, Kikuchi C et al. 2011. Natural products reveal cancer cell dependence on oxysterol-binding proteins. Nat. Chem. Biol. 7:639–47
    [Google Scholar]
  17. Cai J, Abramovici H, Gee SH, Topham MK 2009. Diacylglycerol kinases as sources of phosphatidic acid. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1791:942–48
    [Google Scholar]
  18. Carman GM, Han GS. 2006. Roles of phosphatidate phosphatase enzymes in lipid metabolism. Trends Biochem. Sci. 31:694–99
    [Google Scholar]
  19. Carvou N, Holic R, Li M, Futter C, Skippen A, Cockcroft S 2010. Phosphatidylinositol- and phosphatidylcholine-transfer activity of PITPβ is essential for COPI-mediated retrograde transport from the Golgi to the endoplasmic reticulum. J. Cell Sci. 123:1262–73
    [Google Scholar]
  20. Chang CL, Chen YJ, Liou J 2017. ER–plasma membrane junctions: Why and how do we study them. Biochim. Biophys. Acta Mol. Cell Res. 1864:1494–506
    [Google Scholar]
  21. Chang CL, Hsieh TS, Yang TT, Rothberg KG, Azizoglu DB et al. 2013. Feedback regulation of receptor-induced Ca2+ signaling mediated by e-Syt1 and Nir2 at endoplasmic reticulum–plasma membrane junctions. Cell Rep 5:813–25
    [Google Scholar]
  22. Chang CL, Liou J. 2015. Phosphatidylinositol 4,5-bisphosphate homeostasis regulated by Nir2 and Nir3 proteins at endoplasmic reticulum–plasma membrane junctions. J. Biol. Chem. 290:14289–301
    [Google Scholar]
  23. Chauhan N, Farine L, Pandey K, Menon AK, Butikofer P 2016. Lipid topogenesis—35 years on. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:757–66
    [Google Scholar]
  24. Chung J, Torta F, Masai K, Lucast L, Czapla H et al. 2015. PI4P/phosphatidylserine countertransport at ORP5- and ORP8-mediated ER–plasma membrane contacts. Science 349:428–32
    [Google Scholar]
  25. Connerth M, Tatsuta T, Haag M, Klecker T, Westermann B, Langer T 2012. Intramitochondrial transport of phosphatidic acid in yeast by a lipid transfer protein. Science 338:815–18
    [Google Scholar]
  26. Csordas G, Renken C, Varnai P, Walter L, Weaver D et al. 2006. Structural and functional features and significance of the physical linkage between ER and mitochondria. J. Cell Biol. 174:915–21
    [Google Scholar]
  27. Csordas G, Weaver D, Hajnoczky G 2018. Endoplasmic reticulum–mitochondrial contactology: structure and signaling functions. Trends Cell Biol 28:523–40
    [Google Scholar]
  28. D'Angelo G, Polishchuk E, Di Tullio G, Santoro M, Di Campli A et al. 2007. Glycosphingolipid synthesis requires FAPP2 transfer of glucosylceramide. Nature 449:62–67
    [Google Scholar]
  29. Das A, Goldstein JL, Anderson DD, Brown MS Radhakrishnan A 2013. Use of mutant 125I-perfringolysin O to probe transport and organization of cholesterol in membranes of animal cells. PNAS 110:10580–85
    [Google Scholar]
  30. Dawson AP, Irvine RF. 1984. Inositol(1,4,5)trisphosphate-promoted Ca2+ release from microsomal fractions of rat liver. Biochem. Biophys. Res. Commun. 120:858–64
    [Google Scholar]
  31. Dawson RM. 1954. Studies on the labelling of brain phospholipids with radioactive phosphorus. Biochem. J. 57:237–45
    [Google Scholar]
  32. de Saint-Jean M, Delfosse V, Douguet D, Chicanne G, Payrastre B et al. 2011. Osh4p exchanges sterols for phosphatidylinositol 4-phosphate between lipid bilayers. J. Cell Biol. 195:965–78
    [Google Scholar]
  33. Di Paolo G, De Camilli P 2006. Phosphoinositides in cell regulation and membrane dynamics. Nature 443:651–57
    [Google Scholar]
  34. Domart MC, Hobday TM, Peddie CJ, Chung GH, Wang A et al. 2012. Acute manipulation of diacylglycerol reveals roles in nuclear envelope assembly & endoplasmic reticulum morphology. PLOS ONE 7:e51150
    [Google Scholar]
  35. Dong R, Saheki Y, Swarup S, Lucast L, Harper JW, De Camilli P 2016. Endosome-ER contacts control actin nucleation and retromer function through VAP-dependent regulation of PI4P. Cell 166:408–23
    [Google Scholar]
  36. Dowler S, Currie RA, Campbell DG, Deak M, Kular G et al. 2000. Identification of pleckstrin-homology-domain-containing proteins with novel phosphoinositide-binding specificities. Biochem. J. 351:19–31
    [Google Scholar]
  37. Elbaz-Alon Y, Eisenberg-Bord M, Shinder V, Stiller SB, Shimoni E et al. 2015. Lam6 regulates the extent of contacts between organelles. Cell Rep 12:7–14
    [Google Scholar]
  38. Epand RM. 2012. Recognition of polyunsaturated acyl chains by enzymes acting on membrane lipids. Biochim. Biophys. Acta Membr. 1818:957–62
    [Google Scholar]
  39. Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L et al. 2011. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194:257–75
    [Google Scholar]
  40. Foti M, Audhya A, Emr SD 2001. Sac1 lipid phosphatase and stt4 phosphatidylinositol 4-kinase regulate a pool of phosphatidylinositol 4-phosphate that functions in the control of the actin cytoskeleton and vacuole morphology. Mol. Biol. Cell 128:2396–411
    [Google Scholar]
  41. Friedman JR, Lackner LL, West M, DiBenedetto JR, Nunnari J, Voeltz GK 2011. ER tubules mark sites of mitochondrial division. Science 334:358–62
    [Google Scholar]
  42. Galmes R, Houcine A, van Vliet AR, Agostinis P, Jackson CL, Giordano F 2016. ORP5/ORP8 localize to endoplasmic reticulum–mitochondria contacts and are involved in mitochondrial function. EMBO Rep 17:800–10
    [Google Scholar]
  43. Garner K, Hunt AN, Koster G, Somerharju P, Groves E et al. 2012. Phosphatidylinositol transfer protein, cytoplasmic 1 (PITPNC1) binds and transfers phosphatidic acid. J. Biol. Chem. 287:32263–76
    [Google Scholar]
  44. Garner K, Li M, Ugwuanya N, Cockcroft S 2011. The phosphatidylinositol transfer protein RdgBβ binds 14-3-3 via its unstructured C-terminus, whereas its lipid-binding domain interacts with the integral membrane protein ATRAP (angiotensin II type I receptor–associated protein). Biochem. J. 439:97–111
    [Google Scholar]
  45. Gatta AT, Wong LH, Sere YY, Calderon-Norena DM, Cockcroft S et al. 2015. A new family of StART domain proteins at membrane contact sites has a role in ER-PM sterol transport. eLife 4:e07253
    [Google Scholar]
  46. Ghai R, Du X, Wang H, Dong J, Ferguson C et al. 2017. ORP5 and ORP8 bind phosphatidylinositol-4, 5-biphosphate (PtdIns(4,5)P2) and regulate its level at the plasma membrane. Nat. Commun. 8:757
    [Google Scholar]
  47. Gimpl G, Gehrig-Burger K. 2007. Cholesterol reporter molecules. Biosci. Rep. 27:335–58
    [Google Scholar]
  48. Giordano F, Saheki Y, Idevall-Hagren O, Colombo SF, Pirruccello M et al. 2013. PI(4,5)P2-dependent and Ca2+-regulated ER-PM interactions mediated by the extended synaptotagmins. Cell 153:1494–509
    [Google Scholar]
  49. Goldsmith JR, Fayngerts S, Chen YH 2017. Regulation of inflammation and tumorigenesis by the TIPE family of phospholipid transfer proteins. Cell. Mol. Immunol. 14:482–87
    [Google Scholar]
  50. Gonzalez-Baro MR, Coleman RA. 2017. Mitochondrial acyltransferases and glycerophospholipid metabolism. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:49–55
    [Google Scholar]
  51. Grabon A, Bankaitis VA, McDermott MI 2019. The interface between phosphatidylinositol transfer protein function and phosphoinositide signaling in higher eukaryotes. J. Lipid Res. 60:242–68
    [Google Scholar]
  52. Grabon A, Khan D, Bankaitis VA 2015. Phosphatidylinositol transfer proteins and instructive regulation of lipid kinase biology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:724–35
    [Google Scholar]
  53. Guo S, Stolz LE, Lemrow SM, York JD 1999. SAC1-like domains of yeast SAC1, INP52, and INP53 and of human synaptojanin encode polyphosphoinositide phosphatases. J. Biol. Chem. 274:12990–95
    [Google Scholar]
  54. Hamilton BA, Smith DJ, Mueller KL, Kerrebrock AW, Bronson RT et al. 1997. The vibrator mutation causes neurodegeneration via reduced expression of PITPα: positional complementation cloning and extragenic suppression. Neuron 18:711–22
    [Google Scholar]
  55. Hammond GR, Balla T. 2015. Polyphosphoinositide binding domains: key to inositol lipid biology. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1851:746–58
    [Google Scholar]
  56. Hammond GR, Schiavo G, Irvine RF 2009. Immunocytochemical techniques reveal multiple, distinct cellular pools of PtdIns4P and PtdIns(4,5)P2. Biochem. J. 422:23–35
    [Google Scholar]
  57. Hanada K, Kumagai K, Yasuda S, Miura Y, Kawano M et al. 2003. Molecular machinery for non-vesicular trafficking of ceramide. Nature 426:803–9
    [Google Scholar]
  58. Hay JC, Martin TFJ. 1993. Phosphatidylinositol transfer protein required for ATP-dependent priming of Ca2+-activated secretion. Nature 366:572–75
    [Google Scholar]
  59. Hayashi T, Rizzuto R, Hajnoczky G, Su TP 2009. MAM: more than just a housekeeper. Trends Cell Biol 19:81–88
    [Google Scholar]
  60. Helmkamp GM Jr., Harvey MS, Wirtz KW, Van Deenen LL. 1974. Phospholipid exchange between membranes: purification of bovine brain proteins that preferentially catalyze the transfer of phosphatidylinositol. J. Biol. Chem. 249:6382–89
    [Google Scholar]
  61. Hirabayashi Y, Kwon SK, Paek H, Pernice WM, Paul MA et al. 2017. ER-mitochondria tethering by PDZD8 regulates Ca2+ dynamics in mammalian neurons. Science 358:623–30
    [Google Scholar]
  62. Honscher C, Mari M, Auffarth K, Bohnert M, Griffith J et al. 2014. Cellular metabolism regulates contact sites between vacuoles and mitochondria. Dev. Cell 30:86–94
    [Google Scholar]
  63. Horchani H, de Saint-Jean M, Barelli H, Antonny B 2014. Interaction of the Spo20 membrane-sensor motif with phosphatidic acid and other anionic lipids, and influence of the membrane environment. PLOS ONE 9:e113484
    [Google Scholar]
  64. Horenkamp FA, Valverde DP, Nunnari J, Reinisch KM 2018. Molecular basis for sterol transport by StART-like lipid transfer domains. EMBO J 37:e98002
    [Google Scholar]
  65. Hoyer MJ, Chitwood PJ, Ebmeier CC, Striepen JF, Qi RZ et al. 2018. A novel class of ER membrane proteins regulates ER-associated endosome fission. Cell 175:254–65.e14
    [Google Scholar]
  66. Huang H, Frohman MA. 2009. Lipid signaling on the mitochondrial surface. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1791:839–44
    [Google Scholar]
  67. Huang H, Gao Q, Peng X, Choi SY, Sarma K et al. 2011. piRNA-associated germline nuage formation and spermatogenesis require MitoPLD profusogenic mitochondrial-surface lipid signaling. Dev. Cell 20:376–87
    [Google Scholar]
  68. Hung V, Lam SS, Udeshi ND, Svinkina T, Guzman G et al. 2017. Proteomic mapping of cytosol-facing outer mitochondrial and ER membranes in living human cells by proximity biotinylation. eLife 6:e24463
    [Google Scholar]
  69. Inoue H, Baba T, Sato S, Ohtsuki R, Takemori A et al. 2012. Roles of SAM and DDHD domains in mammalian intracellular phospholipase A1 KIAA0725p. Biochim. Biophys. Acta Mol. Cell Res. 1823:930–39
    [Google Scholar]
  70. Karten B, Peake KB, Vance JE 2009. Mechanisms and consequences of impaired lipid trafficking in Niemann-Pick type C1–deficient mammalian cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1791:659–70
    [Google Scholar]
  71. Kassas N, Tryoen-Toth P, Corrotte M, Thahouly T, Bader MF et al. 2012. Genetically encoded probes for phosphatidic acid. Methods Cell Biol 108:445–59
    [Google Scholar]
  72. Kelley LA, Mezulis S, Yates CM, Wass MN, Sternberg MJ 2015. The Phyre2 web portal for protein modeling, prediction and analysis. Nat. Protoc. 10:845–58
    [Google Scholar]
  73. Kentala H, Weber-Boyvat M, Olkkonen VM 2016. OSBP-related protein family: mediators of lipid transport and signaling at membrane contact sites. Int. Rev. Cell Mol. Biol. 321:299–340
    [Google Scholar]
  74. Kim S, Kedan A, Marom M, Gavert N, Keinan O et al. 2013. The phosphatidylinositol-transfer protein Nir2 binds phosphatidic acid and positively regulates phosphoinositide signalling. EMBO Rep 14:891–99
    [Google Scholar]
  75. Kim YJ, Guzman-Hernandez ML, Balla T 2011. A highly dynamic ER-derived phosphatidylinositol-synthesizing organelle supplies phosphoinositides to cellular membranes. Dev. Cell 21:813–24
    [Google Scholar]
  76. Kim YJ, Guzman-Hernandez ML, Wisniewski E, Balla T 2015. Phosphatidylinositol-phosphatidic acid exchange by Nir2 at ER-PM contact sites maintains phosphoinositide signaling competence. Dev. Cell 33:549–61
    [Google Scholar]
  77. Kim YJ, Hernandez ML, Balla T 2013. Inositol lipid regulation of lipid transfer in specialized membrane domains. Trends Cell Biol 23:270–78
    [Google Scholar]
  78. Kopec KO, Alva V, Lupas AN 2010. Homology of SMP domains to the TULIP superfamily of lipid-binding proteins provides a structural basis for lipid exchange between ER and mitochondria. Bioinformatics 26:1927–31
    [Google Scholar]
  79. Kornmann B, Currie E, Collins SR, Schuldiner M, Nunnari J et al. 2009. An ER-mitochondria tethering complex revealed by a synthetic biology screen. Science 325:477–81
    [Google Scholar]
  80. Kuge O, Hasegawa K, Saito K, Nishijima M 1998. Control of phosphatidylserine biosynthesis through phosphatidylserine-mediated inhibition of phosphatidylserine synthase I in Chinese hamster ovary cells. PNAS 95:4199–203
    [Google Scholar]
  81. Lee JE, Westrate LM, Wu H, Page C, Voeltz GK 2016. Multiple dynamin family members collaborate to drive mitochondrial division. Nature 540:139–43
    [Google Scholar]
  82. Lees JA, Messa M, Sun EW, Wheeler H, Torta F et al. 2017. Lipid transport by TMEM24 at ER–plasma membrane contacts regulates pulsatile insulin secretion. Science 355:eaah6171
    [Google Scholar]
  83. Lev S, Hernandez J, Martinez R, Chen A, Plowman G, Schlessinger J 1999. Identification of a novel family of targets of PYK2 related to Drosophila retinal degeneration B (rdgB) protein. Mol. Cell. Biol 19:2278–88
    [Google Scholar]
  84. Leventis PA, Grinstein S. 2010. The distribution and function of phosphatidylserine in cellular membranes. Annu. Rev. Biophys. 39:407–27
    [Google Scholar]
  85. Litvak V, Dahan N, Ramachandran S, Sabanay H, Lev S 2005. Maintenance of the diacylglycerol level in the Golgi apparatus by the Nir2 protein is critical for Golgi secretory function. Nat. Cell Biol. 7:225–34
    [Google Scholar]
  86. Litvinov DY, Savushkin EV, Dergunov AD 2018. Intracellular and plasma membrane events in cholesterol transport and homeostasis. J. Lipids 2018:3965054
    [Google Scholar]
  87. Luo J, Jiang LY, Yang H, Song BL 2019. Intracellular cholesterol transport by sterol transfer proteins at membrane contact sites. Trends Biochem. Sci. 44:273–92
    [Google Scholar]
  88. Maeda K, Anand K, Chiapparino A, Kumar A, Poletto M et al. 2013. Interactome map uncovers phosphatidylserine transport by oxysterol-binding proteins. Nature 501:257–61
    [Google Scholar]
  89. Maekawa M, Yang Y, Fairn GD 2016. Perfringolysin O theta toxin as a tool to monitor the distribution and inhomogeneity of cholesterol in cellular membranes. Toxins 8:67
    [Google Scholar]
  90. Manford AG, Stefan CJ, Yuan HL, Macgurn JA, Emr SD 2012. ER–to–plasma membrane tethering proteins regulate cell signaling and ER morphology. Dev. Cell 23:1129–40
    [Google Scholar]
  91. Manor U, Bartholomew S, Golani G, Christenson E, Kozlov M et al. 2015. A mitochondria-anchored isoform of the actin-nucleating spire protein regulates mitochondrial division. eLife 4:e08828
    [Google Scholar]
  92. Mesmin B, Antonny B. 2016. The counterflow transport of sterols and PI4P. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:940–51
    [Google Scholar]
  93. Mesmin B, Bigay J, Moser von Filseck J, Lacas-Gervais S, Drin G, Antonny B 2013. A four-step cycle driven by PI(4)P hydrolysis directs sterol/PI(4)P exchange by the ER-Golgi tether OSBP. Cell 155:830–43
    [Google Scholar]
  94. Meyer T, Oancea E. 1998. Protein kinase C as a molecular machine for decoding calcium and diacylglycerol signals. Cell 95:307–18
    [Google Scholar]
  95. Michell RH. 1975. Inositol phospholipids and cell surface receptor function. Biochim. Biophys. Acta Rev. Biomembr. 415:81–147
    [Google Scholar]
  96. Miliara X, Garnett JA, Tatsuta T, Abid Ali F, Baldie H et al. 2015. Structural insight into the TRIAP1/PRELI-like domain family of mitochondrial phospholipid transfer complexes. EMBO Rep 16:824–35
    [Google Scholar]
  97. Moser von Filseck J, Copic A, Delfosse V, Vanni S, Jackson CL et al. 2015. Phosphatidylserine transport by ORP/Osh proteins is driven by phosphatidylinositol 4-phosphate. Science 349:432–36
    [Google Scholar]
  98. Murley A, Sarsam RD, Toulmay A, Yamada J, Prinz WA, Nunnari J 2015. Ltc1 is an ER-localized sterol transporter and a component of ER-mitochondria and ER-vacuole contacts. J. Cell Biol. 209:539–48
    [Google Scholar]
  99. Murphy SE, Levine TP. 2016. VAP, a versatile access point for the endoplasmic reticulum: review and analysis of FFAT-like motifs in the VAPome. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:952–61
    [Google Scholar]
  100. Nelson RK, Frohman MA. 2015. Physiological and pathophysiological roles for phospholipase D. J. Lipid Res. 56:2229–37
    [Google Scholar]
  101. Nile AH, Bankaitis VA, Grabon A 2010. Mammalian diseases of phosphatidylinositol transfer proteins and their homologs. Clin. Lipidol. 5:867–97
    [Google Scholar]
  102. Olkkonen VM. 2015. OSBP-related protein family in lipid transport over membrane contact sites. Lipid Insights 8:1–9
    [Google Scholar]
  103. Pan X, Roberts P, Chen Y, Kvam E, Shulga N et al. 2000. Nucleus-vacuole junctions in Saccharomyces cerevisiae are formed through the direct interaction of Vac8p with Nvj1p. Mol. Biol. Cell 11:2445–57
    [Google Scholar]
  104. Panaretou C, Domin J, Cockcroft S, Waterfield MD 1997. Characterization of p150, an adaptor protein for the human phosphatidylinositol (PtdIns) 3-kinase. Substrate presentation by phosphatidylinositol transfer protein to the p150/PtdIns 3-kinase complex. J. Biol. Chem. 272:2477–85
    [Google Scholar]
  105. Pasquali C, Fialka I, Huber LA 1999. Subcellular fractionation, electromigration analysis and mapping of organelles. J. Chromatogr. B Biomed. Sci. Appl. 722:89–102
    [Google Scholar]
  106. Peake KB, Vance JE. 2010. Defective cholesterol trafficking in Niemann-Pick C–deficient cells. FEBS Lett 584:2731–39
    [Google Scholar]
  107. Perry RJ, Ridgway ND. 2006. Oxysterol-binding protein and VAMP-associated protein are required for sterol-dependent activation of the ceramide transport protein. Mol. Biol. Cell 17:2604–16
    [Google Scholar]
  108. Phillips SE, Ile KE, Boukhelifa M, Huijbregts RP, Bankaitis VA 2006. Specific and nonspecific membrane-binding determinants cooperate in targeting phosphatidylinositol transfer protein beta-isoform to the mammalian trans-Golgi network. Mol. Biol. Cell 17:2498–512
    [Google Scholar]
  109. Pietrangelo A, Ridgway ND. 2018. Bridging the molecular and biological functions of the oxysterol-binding protein family. Cell. Mol. Life Sci. 75:3079–98
    [Google Scholar]
  110. Reinisch KM, De Camilli P 2016. SMP-domain proteins at membrane contact sites: structure and function. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:924–27
    [Google Scholar]
  111. Reutelingsperger CP, Dumont E, Thimister PW, van Genderen H, Kenis H et al. 2002. Visualization of cell death in vivo with the annexin A5 imaging protocol. J. Immunol. Methods 265:123–32
    [Google Scholar]
  112. Rosenbaum AI, Maxfield FR. 2011. Niemann-Pick type C disease: molecular mechanisms and potential therapeutic approaches. J. Neurochem. 116:789–95
    [Google Scholar]
  113. Rowland AA, Chitwood PJ, Phillips MJ, Voeltz GK 2014. ER contact sites define the position and timing of endosome fission. Cell 159:1027–41
    [Google Scholar]
  114. Saheki Y, Bian X, Schauder CM, Sawaki Y, Surma MA et al. 2016. Control of plasma membrane lipid homeostasis by the extended synaptotagmins. Nat. Cell Biol. 18:504–15
    [Google Scholar]
  115. Salman M, Pagano RE. 1997. Use of a fluorescent analog of CDP-DAG in human skin fibroblasts: characterization of metabolism, distribution, and application to studies of phosphatidylinositol turnover. J. Lipid Res. 38:482–90
    [Google Scholar]
  116. Sandhu J, Li S, Fairall L, Pfisterer SG, Gurnett JE et al. 2018. Aster proteins facilitate nonvesicular plasma membrane to ER cholesterol transport in mammalian cells. Cell 175:514–29.e20
    [Google Scholar]
  117. Sasaki T, Takasuga S, Sasaki J, Kofuji S, Eguchi S et al. 2009. Mammalian phosphoinositide kinases and phosphatases. Prog. Lipid Res. 48:307–43
    [Google Scholar]
  118. Schaaf G, Ortlund EA, Tyeryar KR, Mousley CJ, Ile KE et al. 2008. Functional anatomy of phospholipid binding and regulation of phosphoinositide homeostasis by proteins of the sec14 superfamily. Mol. Cell 29:191–206
    [Google Scholar]
  119. Schlame M, Haldar D. 1993. Cardiolipin is synthesized on the matrix side of the inner membrane in rat liver mitochondria. J. Biol. Chem. 268:74–79
    [Google Scholar]
  120. Schouten A, Agianian B, Westerman J, Kroon J, Wirtz KW, Gros P 2002. Structure of apo-phosphatidylinositol transfer protein alpha provides insight into membrane association. EMBO J 21:2117–21
    [Google Scholar]
  121. Sohn M, Ivanova P, Brown HA, Toth DJ, Varnai P et al. 2016. Lenz-Majewski mutations in PTDSS1 affect phosphatidylinositol 4-phosphate metabolism at ER-PM and ER-Golgi junctions. PNAS 113:4314–19
    [Google Scholar]
  122. Sohn M, Korzeniowski M, Zewe JP, Wills RC, Hammond GRV et al. 2018. PI(4,5)P2 controls plasma membrane PI4P and PS levels via ORP5/8 recruitment to ER-PM contact sites. J. Cell Biol. 217:1797–813
    [Google Scholar]
  123. Solanko KA, Modzel M, Solanko LM, Wustner D 2015. Fluorescent sterols and cholesteryl esters as probes for intracellular cholesterol transport. Lipid Insights 8:95–114
    [Google Scholar]
  124. Sousa SB, Jenkins D, Chanudet E, Tasseva G, Ishida M et al. 2014. Gain-of-function mutations in the phosphatidylserine synthase 1 (PTDSS1) gene cause Lenz-Majewski syndrome. Nat. Genet. 46:70–76
    [Google Scholar]
  125. Spät A, Fabiato A, Rubin RP 1986. Binding of inositol trisphosphate by a liver microsomal fraction. Biochem. J. 233:929–32
    [Google Scholar]
  126. Stefan CJ, Manford AG, Baird D, Yamada-Hanff J, Mao Y, Emr SD 2011. Osh Proteins regulate phosphoinositide metabolism at ER–plasma membrane contact sites. Cell 144:389–401
    [Google Scholar]
  127. Stocco DM. 2001. StAR protein and the regulation of steroid hormone biosynthesis. Annu. Rev. Physiol. 63:193–213
    [Google Scholar]
  128. Stone SJ, Vance JE. 2000. Phosphatidylserine synthase-1 and -2 are localized to mitochondria-associated membranes. J. Biol. Chem. 275:34534–40
    [Google Scholar]
  129. Tamura Y, Harada Y, Nishikawa S, Yamano K, Kamiya M et al. 2013. Tam41 is a CDP-diacylglycerol synthase required for cardiolipin biosynthesis in mitochondria. Cell Metab 17:709–18
    [Google Scholar]
  130. Tanguy E, Kassas N, Vitale N 2018. Protein–phospholipid interaction motifs: a focus on phosphatidic acid. Biomolecules 8:E20
    [Google Scholar]
  131. Thomas GMH, Cunningham E, Fensome A, Ball A, Totty NF et al. 1993. An essential role of phosphatidylinositol transfer protein in phospholipase C–mediated inositol lipid signaling. Cell 74:919–28
    [Google Scholar]
  132. Tong J, Manik MK, Yang H, Im YJ 2016. Structural insights into nonvesicular lipid transport by the oxysterol binding protein homologue family. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1861:928–39
    [Google Scholar]
  133. Topham MK, Epand RM. 2009. Mammalian diacylglycerol kinases: molecular interactions and biological functions of selected isoforms. Biochim. Biophys. Acta Gen. Subj. 1790:416–24
    [Google Scholar]
  134. Toulmay A, Prinz WA. 2012. A conserved membrane-binding domain targets proteins to organelle contact sites. J. Cell Sci. 125:49–58
    [Google Scholar]
  135. Tsuji T, Takatori S, Fujimoto T 2018. Definition of phosphoinositide distribution in the nanoscale. Curr. Opin. Cell Biol. 57:33–39
    [Google Scholar]
  136. van Meer G, Voelker DR, Feigenson GW 2008. Membrane lipids: where they are and how they behave. Nat. Rev. Mol. Cell Biol. 9:112–24
    [Google Scholar]
  137. Vance JE. 1990. Phospholipid synthesis in a membrane fraction associated with mitochondria. J. Biol. Chem. 265:7248–56
    [Google Scholar]
  138. Vance JE, Tasseva G. 2013. Formation and function of phosphatidylserine and phosphatidylethanolamine in mammalian cells. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1831:543–54
    [Google Scholar]
  139. Varnai P, Gulyas G, Toth DJ, Sohn M, Sengupta N, Balla T 2017. Quantifying lipid changes in various membrane compartments using lipid binding protein domains. Cell Calcium 64:72–82
    [Google Scholar]
  140. Varnai P, Toth B, Toth DJ, Hunyady L, Balla T 2007. Visualization and manipulation of plasma membrane–endoplasmic reticulum contact sites indicates the presence of additional molecular components within the STIM1-Orai1 complex. J. Biol. Chem. 282:29678–90
    [Google Scholar]
  141. Vihtelic TS, Hyde DR, O'Tousa JE 1991. Isolation and characterization of the Drosophila retinal degeneration B (rdgB) gene. Genetics 127:761–68
    [Google Scholar]
  142. Walther TC, Chung J, Farese RV Jr 2017. Lipid droplet biogenesis. Annu. Rev. Cell Dev. Biol. 33:491–510
    [Google Scholar]
  143. Wang H, Airola MV, Reue K 2017. How lipid droplets “TAG” along: glycerolipid synthetic enzymes and lipid storage. Biochim. Biophys. Acta Mol. Cell Biol. Lipids 1862:1131–45
    [Google Scholar]
  144. Wang H, Ma Q, Qi Y, Dong J, Du X et al. 2019. ORP2 delivers cholesterol to the plasma membrane in exchange for phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2). Mol. Cell 73:458–73.e7
    [Google Scholar]
  145. Wang H, Zhang J, Qiu W, Han GS, Carman GM, Adeli K 2011. Lipin-1γ isoform is a novel lipid droplet–associated protein highly expressed in the brain. FEBS Lett 585:1979–84
    [Google Scholar]
  146. Wills RC, Goulden BD, Hammond GRV 2018. Genetically encoded lipid biosensors. Mol. Biol. Cell 29:1526–32
    [Google Scholar]
  147. Wong LH, Gatta AT, Levine TP 2019. Lipid transfer proteins: the lipid commute via shuttles, bridges and tubes. Nat. Rev. Mol. Cell Biol. 20:85–101
    [Google Scholar]
  148. Wong LH, Levine TP. 2016. Lipid transfer proteins do their thing anchored at membrane contact sites…but what is their thing. Biochem. Soc. Trans. 44:517–27
    [Google Scholar]
  149. Wu H, Carvalho P, Voeltz GK 2018. Here, there, and everywhere: the importance of ER membrane contact sites. Science 361:eaan5835
    [Google Scholar]
  150. Xie Z, Hur SK, Zhao L, Abrams CS, Bankaitis VA 2018. A Golgi lipid signaling pathway controls apical Golgi distribution and cell polarity during neurogenesis. Dev. Cell 44:725–40.e4
    [Google Scholar]
  151. Yadav S, Garner K, Georgiev P, Li M, Gomez-Espinosa E et al. 2015. RDGBα, a PtdIns-PtdOH transfer protein, regulates G-protein-coupled PtdIns(4,5)P2 signalling during Drosophila phototransduction. J. Cell Sci. 128:3330–44
    [Google Scholar]
  152. Yang Y, Lee M, Fairn GD 2018. Phospholipid subcellular localization and dynamics. J. Biol. Chem. 293:6230–40
    [Google Scholar]
  153. Zhao K, Ridgway ND. 2017. Oxysterol-binding protein-related protein 1L regulates cholesterol egress from the endo-lysosomal system. Cell Rep 19:1807–18
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125251
Loading
/content/journals/10.1146/annurev-cellbio-100818-125251
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error