1932

Abstract

Expansion microscopy (ExM) is a physical form of magnification that increases the effective resolving power of any microscope. Here, we describe the fundamental principles of ExM, as well as how recently developed ExM variants build upon and apply those principles. We examine applications of ExM in cell and developmental biology for the study of nanoscale structures as well as ExM's potential for scalable mapping of nanoscale structures across large sample volumes. Finally, we explore how the unique anchoring and hydrogel embedding properties enable postexpansion molecular interrogation in a purified chemical environment. ExM promises to play an important role complementary to emerging live-cell imaging techniques, because of its relative ease of adoption and modification and its compatibility with tissue specimens up to at least 200 μm thick.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125320
2019-10-06
2024-06-25
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125320.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125320&mimeType=html&fmt=ahah

Literature Cited

  1. Andrey G, Mundlos S. 2017. The three-dimensional genome: regulating gene expression during pluripotency and development. Development 144:203646–58
    [Google Scholar]
  2. Artur C, Womack T, Eriksen JLJ, Mayerich D, Shih W-C 2017. Hyperspectral expansion microscopy. Proceedings of the 2017 IEEE Photonics Conference23–24 Piscataway, NJ: IEEE
    [Google Scholar]
  3. Artur CG, Womack T, Zhao F, Eriksen JL, Mayerich D, Shih W-C 2018. Plasmonic nanoparticle-based expansion microscopy with surface-enhanced Raman and dark-field spectroscopic imaging. Biomed. Opt. Express 9:2603–15
    [Google Scholar]
  4. Beghein E, Gettemans J. 2017. Nanobody technology: a versatile toolkit for microscopic imaging, protein-protein interaction analysis, and protein function exploration. Front. Immunol. 8:771–84
    [Google Scholar]
  5. Betzig E, Patterson GH, Sougrat R, Lindwasser OW, Olenych S et al. 2006. Imaging intracellular fluorescent proteins at nanometer resolution. Science 313:57931642–45
    [Google Scholar]
  6. Biederer T, Kaeser PS, Blanpied TA 2017. Transcellular nanoalignment of synaptic function. Neuron 96:3680–96
    [Google Scholar]
  7. Burette AC, Lesperance T, Crum J, Martone M, Volkmann N et al. 2012. Electron tomographic analysis of synaptic ultrastructure. J. Comp. Neurol. 520:122697–711
    [Google Scholar]
  8. Cahoon CK, Yu Z, Wang Y, Guo F, Unruh JR et al. 2017. Superresolution expansion microscopy reveals the three-dimensional organization of the Drosophila synaptonemal complex. PNAS 114:33E6857–66
    [Google Scholar]
  9. Cang H, Tong Z, Beuzer P, Ye Q, Axelrod J, Hong Z 2016. Ex-STORM: expansion single molecule nanoscopy. bioRxiv 049403. https://doi.org/10.1101/049403
    [Crossref]
  10. Chang J, Chen F, Yoon Y, Jung E, Babcock H et al. 2017. Iterative expansion microscopy. Nat. Methods 14:6593–99
    [Google Scholar]
  11. Chen B-C, Legant WR, Wang K, Shao L, Milkie DE et al. 2014. Lattice light-sheet microscopy: imaging molecules to embryos at high spatiotemporal resolution. Science 346:62081257998
    [Google Scholar]
  12. Chen F, Tillberg PW, Boyden ES 2015. Expansion microscopy. Science 347:6221543–48
    [Google Scholar]
  13. Chen F, Wassie AT, Cote AJ, Sinha A, Alon S et al. 2016. Nanoscale imaging of RNA with expansion microscopy. Nat. Methods 13:8679–84
    [Google Scholar]
  14. Chhetri RK, Amat F, Wan Y, Höckendorf B, Lemon WC, Keller PJ 2015. Whole-animal functional and developmental imaging with isotropic spatial resolution. Nat. Methods 12:121171–78
    [Google Scholar]
  15. Chozinski TJ, Halpern AR, Okawa H, Kim H-J, Tremel GJ et al. 2016. Expansion microscopy with conventional antibodies and fluorescent proteins. Nat. Methods 13:April1–7
    [Google Scholar]
  16. Chozinski TJ, Mao C, Halpern AR, Pippin JW, Shankland SJ et al. 2018. Volumetric, nanoscale optical imaging of mouse and human kidney via expansion microscopy. Sci. Rep. 8:110396
    [Google Scholar]
  17. Chung K, Wallace J, Kim S-Y, Kalyanasundaram S, Andalman AS et al. 2013. Structural and molecular interrogation of intact biological systems. Nature 497:7449332–37
    [Google Scholar]
  18. Costa RP, Mizusaki BEP, Sjöström PJ, van Rossum MCW 2017. Functional consequences of pre- and postsynaptic expression of synaptic plasticity. Philos. Trans. R. Soc. B Biol. Sci. 372:171520160153
    [Google Scholar]
  19. Crittenden J, Tillberg P, Riad M, Shima Y, Gerfen C et al. 2016. Striosome-dendron bouquets highlight a unique striatonigral circuit targeting dopamine-containing neurons. PNAS 113:4011318–23
    [Google Scholar]
  20. Deshpande T, Li T, Herde MK, Becker A, Vatter H et al. 2017. Subcellular reorganization and altered phosphorylation of the astrocytic gap junction protein connexin43 in human and experimental temporal lobe epilepsy. Glia 65:111809–20
    [Google Scholar]
  21. Economo MN, Clack NG, Lavis LD, Gerfen CR, Svoboda K et al. 2016. A platform for brain-wide imaging and reconstruction of individual neurons. eLife 5:e10566
    [Google Scholar]
  22. Fecher C, Trovò L, Müller SA, Snaidero N, Wettmarshausen J et al. 2018. Profound functional and molecular diversity of mitochondria revealed by cell type–specific profiling in vivo. bioRxiv 403774. https://doi.org/10.1101/403774
    [Crossref]
  23. Freifeld L, Odstrcil I, Förster D, Ramirez A, Gagnon JA et al. 2017. Expansion microscopy of zebrafish for neuroscience and developmental biology studies. PNAS 114:50E10799–808
    [Google Scholar]
  24. Fulterer A, Andlauer TFM, Ender A, Maglione M, Eyring K et al. 2018. Active zone scaffold protein ratios tune functional diversity across brain synapses. Cell Rep 23:51259–74
    [Google Scholar]
  25. Gambarotto D, Zwettler FU, Le Guennec M, Schmidt-Cernohorska M, Fortun D et al. 2019. Imaging cellular ultrastructures using expansion microscopy (U-ExM). Nat. Methods 16:171–74
    [Google Scholar]
  26. Gao R, Asano SM, Upadhyayula S, Pisarev I, Milkie DE et al. 2019. Cortical column and whole-brain imaging with molecular contrast and nanoscale resolution. Science 363:6424 eaau8302
    [Google Scholar]
  27. Germroth PG, Gourdie RG, Thompson RP 1995. Confocal microscopy of thick sections from acrylamide gel embedded embryos. Microsc. Res. Tech. 30:6513–20
    [Google Scholar]
  28. Godin AG, Lounis B, Cognet L 2014. Super-resolution microscopy approaches for live cell imaging. Biophys. J. 107:1777–84
    [Google Scholar]
  29. Goonawardane N, Yin C, Harris M 2018. A pivotal role of serine 225 phosphorylation in the function of hepatitis C virus NS5A revealed with the application of a phosphopeptide antiserum and super-resolution microscopy. bioRxiv 387407. https://doi.org/10.1101/387407
    [Crossref]
  30. Guo F, Holla M, Díaz MM, Rosbash M 2018. A circadian output circuit controls sleep-wake arousal in Drosophila. Neuron 100:3624–35.e4
    [Google Scholar]
  31. Guo ZV, Inagaki HK, Daie K, Druckmann S, Gerfen CR, Svoboda K 2017. Maintenance of persistent activity in a frontal thalamocortical loop. Nature 545:7653181–86
    [Google Scholar]
  32. Hafner A-S, Donlin-Asp P, Leitch B, Herzog E, Schuman EM 2018. Local protein synthesis in axon terminals and dendritic spines differentiates plasticity contexts. bioRxiv 363184. https://doi.org/10.1101/363184
    [Crossref]
  33. Halpern AR, Alas GCM, Chozinski TJ, Paredez AR, Vaughan JC 2017. Hybrid structured illumination expansion microscopy reveals microbial cytoskeleton organization. ACS Nano 11:1212677–86
    [Google Scholar]
  34. Hermanson GT. 2013. Bioconjugate Techniques San Diego, CA: Academic. , 3rd ed..
    [Google Scholar]
  35. Hörl D, Rusak FR, Preusser F, Tillberg P, Randel N et al. 2018. BigStitcher: reconstructing high-resolution image datasets of cleared and expanded samples. bioRxiv 343954. https://doi.org/10.1101/343954
    [Crossref]
  36. Huisken J, Stainier DYR. 2009. Selective plane illumination microscopy techniques in developmental biology. Development 136:121963–75
    [Google Scholar]
  37. Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J et al. 2013. In situ sequencing for RNA analysis in preserved tissue and cells. Nat. Methods 10:9857–60
    [Google Scholar]
  38. Kenney M, Ray S, Boles TC 1998. Mutation typing using electrophoresis and gel-immobilized acrydite™ probes. Biotechniques 25:3516–21
    [Google Scholar]
  39. Kim CK, Yang SJ, Pichamoorthy N, Young NP, Kauvar I et al. 2016. Simultaneous fast measurement of circuit dynamics at multiple sites across the mammalian brain. Nat. Methods 13:4325–28
    [Google Scholar]
  40. Ku T, Swaney J, Park J-Y, Albanese A, Murray E et al. 2016. Multiplexed and scalable super-resolution imaging of three-dimensional protein localization in size-adjustable tissues. Nat. Biotechnol. 34:9973–81
    [Google Scholar]
  41. Kuan L, Li Y, Lau C, Feng D, Bernard A et al. 2015. Neuroinformatics of the Allen Mouse Brain Connectivity Atlas. Methods 73:4–17
    [Google Scholar]
  42. Laissue PP, Reiter C, Hiesinger PR, Halter S, Fischbach KF, Stocker RF 1999. Three-dimensional reconstruction of the antennal lobe in Drosophila melanogaster. J. Comp. Neurol 405:4543–52
    [Google Scholar]
  43. Lee JH, Daugharthy ER, Scheiman J, Kalhor R, Yang JL et al. 2014. Highly multiplexed subcellular RNA sequencing in situ. Science 343:1360–63
    [Google Scholar]
  44. Li R, Chen X, Lin Z, Wang Y, Sun Y 2018. Expansion enhanced nanoscopy. Nanoscale 10:3717552–56
    [Google Scholar]
  45. Liu Z, Tjian R. 2018. Visualizing transcription factor dynamics in living cells. J. Cell Biol. 217:41181–91
    [Google Scholar]
  46. Mapelli L, Solinas S, D'Angelo E 2014. Integration and regulation of glomerular inhibition in the cerebellar granular layer circuit. Front. Cell. Neurosci. 8:55
    [Google Scholar]
  47. Migliori B, Datta MS, Dupre C, Apak MC, Asano S et al. 2018. Light sheet theta microscopy for rapid high-resolution imaging of large biological samples. BMC Biol 16:157
    [Google Scholar]
  48. Mosca TJ, Luginbuhl DJ, Wang IE, Luo L 2017. Presynaptic LRP4 promotes synapse number and function of excitatory CNS neurons. eLife 6:e27347
    [Google Scholar]
  49. Pena JTG, Sohn-Lee C, Rouhanifard SH, Ludwig J, Hafner M et al. 2009. miRNA in situ hybridization in formaldehyde and EDC-fixed tissues. Nat. Methods 6:2139–41
    [Google Scholar]
  50. Perea G, Navarrete M, Araque A 2009. Tripartite synapses: Astrocytes process and control synaptic information. Trends Neurosci 32:8421–31
    [Google Scholar]
  51. Pesce L, Cozzolino M, Lanzanò L, Diaspro A, Bianchini P 2018. Enigma at the nanoscale: Can the NPC act as an intrinsic reporter for isotropic expansion microscopy. bioRxiv 449702. https://doi.org/10.1101/449702
    [Crossref]
  52. Rust MJ, Bates M, Zhuang XW 2006. Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM). Nat Methods 3:10793–95
    [Google Scholar]
  53. Schlafer S, Meyer RL. 2017. Confocal microscopy imaging of the biofilm matrix. J. Microbiol. Methods 138:50–59
    [Google Scholar]
  54. Shapira M, Zhai RG, Dresbach T, Bresler T, Torres VI et al. 2003. Unitary assembly of presynaptic active zones from Piccolo-Bassoon transport vesicles. Neuron 38:2237–52
    [Google Scholar]
  55. Südhof TC. 2004. The synaptic vesicle cycle. Annu. Rev. Neurosci. 27:509–47
    [Google Scholar]
  56. Suofu Y, Li W, Jean-Alphonse FG, Jia J, Khattar NK et al. 2017. Dual role of mitochondria in producing melatonin and driving GPCR signaling to block cytochrome c release. PNAS 114:38E7997–8006
    [Google Scholar]
  57. Sylwestrak EL, Rajasethupathy P, Wright MA, Jaffe A, Deisseroth K 2016. Multiplexed intact-tissue transcriptional analysis at cellular resolution. Cell 164:4792–804
    [Google Scholar]
  58. Tanaka T, Fillmore D, Sun ST, Nishio I, Swislow G, Shah A 1980. Phase transitions in ionic gels. Phys. Rev. Lett. 45:1636–39
    [Google Scholar]
  59. Tillberg PW, Chen F, Piatkevich KD, Zhao Y, Yu C-C et al. 2016. Protein-retention expansion microscopy of cells and tissues labeled using standard fluorescent proteins and antibodies. Nat. Biotechnol. 34:9987–92
    [Google Scholar]
  60. Truckenbrodt S, Maidorn M, Crzan D, Wildhagen H, Kabatas S, Rizzoli SO 2018. X10 expansion microscopy enables 25-nm resolution on conventional microscopes. EMBO Rep 19:9e45836
    [Google Scholar]
  61. Tsai A, Muthusamy AK, Alves MR, Lavis LD, Singer RH et al. 2017. Nuclear microenvironments modulate transcription from low-affinity enhancers. eLife 6:e28975
    [Google Scholar]
  62. Tsanov N, Samacoits A, Chouaib R, Traboulsi A-M, Gostan T et al. 2016. smiFISH and FISH-quant—a flexible single RNA detection approach with super-resolution capability. Nucleic Acids Res 44:22e165
    [Google Scholar]
  63. Unnersjö-Jess D, Scott L, Sevilla SZ, Patrakka J, Blom H, Brismar H 2018. Confocal super-resolution imaging of the glomerular filtration barrier enabled by tissue expansion. Kidney Int 93:41008–13
    [Google Scholar]
  64. Wang G, Moffitt JR, Zhuang X 2018. Multiplexed imaging of high-density libraries of RNAs with MERFISH and expansion microscopy. Sci. Rep. 8:14847
    [Google Scholar]
  65. Wang IE, Lapan SW, Scimone ML, Clandinin TR, Reddien PW 2016. Hedgehog signaling regulates gene expression in planarian glia. eLife 5:e16996
    [Google Scholar]
  66. Wei L, Chen Z, Shi L, Long R, Anzalone AV et al. 2017. Super-multiplex vibrational imaging. Nature 544:7651465–70
    [Google Scholar]
  67. Whelan DR, Bell TDM. 2015. Image artifacts in single molecule localization microscopy: why optimization of sample preparation protocols matters. Sci. Rep. 5:17924
    [Google Scholar]
  68. Yu JY, Kanai MI, Demir E, Jefferis GSXE, Dickson BJ 2010. Cellular organization of the neural circuit that drives Drosophila courtship behavior. Curr. Biol. 20:181602–14
    [Google Scholar]
  69. Zhang L, Bailey JB, Subramanian RH, Groisman A, Tezcan FA 2018. Hyperexpandable, self-healing macromolecular crystals with integrated polymer networks. Nature 557:770386–91
    [Google Scholar]
  70. Zhang YS, Trujillo–de Santiago G, Alvarez MM, Schiff SJ, Boyden ES, Khademhosseini A 2017. Expansion mini-microscopy: an enabling alternative in point-of-care diagnostics. Curr. Opin. Biomed. Eng. 1:45–53
    [Google Scholar]
  71. Zhao Y, Bucur O, Irshad H, Chen F, Weins A et al. 2017. Nanoscale imaging of clinical specimens using pathology-optimized expansion microscopy. Nat. Biotechnol. 35:8757–64
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125320
Loading
/content/journals/10.1146/annurev-cellbio-100818-125320
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error