1932

Abstract

The brain's synaptic networks endow an animal with powerfully adaptive biological behavior. Maps of such synaptic circuits densely reconstructed in those model brains that can be examined and manipulated by genetic means offer the best prospect for understanding the underlying biological bases of behavior. That prospect is now technologically feasible and a scientifically enabling possibility in neurobiology, much as genomics has been in molecular biology and genetics. In , two major advances are in electron microscopic technology, using focused ion beam–scanning electron microscopy (FIB-SEM) milling to capture and align digital images, and in computer-aided reconstruction of neuron morphologies. The last decade has witnessed enormous progress in detailed knowledge of the actual synaptic circuits formed by real neurons. Advances in various brain regions that heralded identification of the motion-sensing circuits in the optic lobe are now extending to other brain regions, with the prospect of encompassing the fly's entire nervous system, both brain and ventral nerve cord.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100818-125444
2019-10-06
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/35/1/annurev-cellbio-100818-125444.html?itemId=/content/journals/10.1146/annurev-cellbio-100818-125444&mimeType=html&fmt=ahah

Literature Cited

  1. Arbas EA, Meinertzhagen IA, Shaw SR 1991. Evolution in nervous systems. Annu. Rev. Neurosci. 14:9–38
    [Google Scholar]
  2. Bargmann CI. 2012. Beyond the connectome: how neuromodulators shape neural circuits. Bioessays 34:458–65 https://doi.org/10.1002/bies.201100185
    [Crossref] [Google Scholar]
  3. Beech E, Rivers M, Oldfield S, Smith PP 2017. GlobalTreeSearch: the first complete global database of tree species and country distributions. J. Sustain. Forest. 36:454–89
    [Google Scholar]
  4. Bier E, Harrison MM, O'Connor-Giles KM, Wildonger J 2018. Advances in engineering the fly genome with the CRISPR-Cas system. Genetics 208:1–18 https://doi.org/10.1534/genetics.117.1113
    [Crossref] [Google Scholar]
  5. Boschek CB. 1971. On the fine structure of the peripheral retina and lamina ganglionaris of the fly, Musca domestica. Z. Zellforsch. Mikrosk. Anat. 118:369–409
    [Google Scholar]
  6. Brand AH, Perrimon N. 1993. Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. Development 118:401–15
    [Google Scholar]
  7. Bullock TH, Bennett MV, Johnston D, Josephson R, Marder E et al. 2005. The neuron doctrine, redux. Science 310:791–93
    [Google Scholar]
  8. Butcher NJ, Friedrich AB, Lu Z, Tanimoto H, Meinertzhagen IA 2012. Different classes of input and output neurons reveal new features in microglomeruli of the adult Drosophila mushroom body calyx. J. Comp. Neurol. 520:2185–201 https://doi.org/10.1002/cne.23037
    [Crossref] [Google Scholar]
  9. Cachero S, Ostrovsky AD, Yu JY, Dickson BJ, Jefferis GS 2010. Sexual dimorphism in the fly brain. Curr. Biol. 20:1589–601
    [Google Scholar]
  10. Cajal S, Sánchez D. 1915. Contribución al conocimiento de los centros nerviosos de los insectos. Trab. Lab. Investig. Biol. Univ. Madr. 13:1–164
    [Google Scholar]
  11. Chen CL, Hermans L, Viswanathan MC, Fortun D, Aymanns F et al. 2018. Imaging neural activity in the ventral nerve cord of behaving adult Drosophila. Nat. Commun 9:4390 https://doi.org/10.1038/s41467-018-06857-z
    [Crossref] [Google Scholar]
  12. Chiang AS, Lin CY, Chuang CC, Chang HM, Hsieh CH et al. 2011. Three-dimensional reconstruction of brain-wide wiring networks in Drosophila at single-cell resolution. Curr. Biol. 21:1–11 https://doi.org/10.1016/j.cub.2010.11.056
    [Crossref] [Google Scholar]
  13. Denk W, Horstmann H. 2004. Serial block-face scanning electron microscopy to reconstruct three-dimensional tissue nanostructure. PLOS Biol 2:1900–9
    [Google Scholar]
  14. Dolan MJ, Luan H, Shropshire WC, Sutcliffe B, Cocanougher B et al. 2017. Facilitating neuron-specific genetic manipulations in Drosophila melanogaster using a split GAL4 repressor. Genetics 206:775–84 https://doi.org/10.1534/genetics.116.199687
    [Crossref] [Google Scholar]
  15. Eichler K, Li F, Litwin-Kumar A, Park Y, Andrade I et al. 2017. The complete connectome of a learning and memory centre in an insect brain. Nature 548:175–82 https://doi.org/10.1038/nature23455
    [Crossref] [Google Scholar]
  16. Fischbach K-F, Dittrich APM. 1989. The optic lobe of Drosophila melanogaster. I. A Golgi analysis of wild-type structure. Cell Tissue Res 258:441–75
    [Google Scholar]
  17. Fortuyn ABD. 1920. Vergleichende Anatomie des Nervensystems. Erst Teil: Die Leitungsbahnen im Nervensystem der Wirbellosen Tiere Haarlem, Neth.: De Erven F. Bohn
  18. Gao S, Takemura S-Y, Ting C-Y, Huang S, Lu Z et al. 2008. Neural substrate of spectral discrimination in Drosophila. Neuron 60:328–42
    [Google Scholar]
  19. Goldschmidt R. 1908. Das Nervensystem von Ascaris lumbricoides und megalocephala, I. Zeit. Wissen. Zool. 90:73–136
    [Google Scholar]
  20. Goldschmidt R. 1909. Das Nervensystem von Ascaris lumbricoides und megalocephala, II. Zeit. Wissen. Zool. 92:306–57
    [Google Scholar]
  21. Grabe V, Baschwitz A, Dweck HKM, Lavista-Llanos S, Hansson BS et al. 2016. Elucidating the neuronal architecture of olfactory glomeruli in the Drosophila antennal lobe. Cell Rep 16:3401–13 https://doi.org/10.1016/j.celrep.2016.08.063
    [Crossref] [Google Scholar]
  22. Grabe V, Strutz A, Baschwitz A, Hansson BS, Sachse S 2015. Digital in vivo 3D atlas of the antennal lobe of Drosophila melanogaster. J. Comp. Neurol 523:530–44 https://doi.org/10.1002/cne.23697
    [Crossref] [Google Scholar]
  23. Haberkern H, Jayaraman V. 2016. Studying small brains to understand the building blocks of cognition. Curr. Opin. Neurobiol. 37:59–65 https://doi.org/10.1016/j.conb.2016.01.007
    [Crossref] [Google Scholar]
  24. Hanesch U, Fischbach K-F, Heisenberg M 1989. Neuronal architecture of the central complex in Drosophila melanogaster. Cell Tissue Res 257:343–66
    [Google Scholar]
  25. Hanslovsky P, Bogovic JA, Saalfeld S 2017. Image-based correction of continuous and discontinuous non-planar axial distortion in serial section microscopy. Bioinformatics 33:91379–86
    [Google Scholar]
  26. Harris RM, Pfeiffer BD, Rubin GM, Truman JW 2015. Neuron hemilineages provide the functional ground plan for the Drosophila ventral nervous system. eLife 4:04493
    [Google Scholar]
  27. Hayworth KJ, Morgan JL, Schalek R, Berger DR, Hildebrand DG 2014. Imaging ATUM ultrathin section libraries with WaferMapper: a multi-scale approach to EM reconstruction of neural circuits. Front. Neural Circuits 8: https://doi.org/10.3389/fncir.2014.00068
    [Crossref] [Google Scholar]
  28. Hayworth KJ, Xu CS, Lu Z, Knott GW, Fetter RD et al. 2015. Ultrastructurally smooth thick partitioning and volume stitching for large-scale connectomics. Nat. Methods 12:319–22 https://doi.org/10.1038/nmeth.3292
    [Crossref] [Google Scholar]
  29. Helfrich-Förster C, Shafer OT, Wülbeck C, Grieshaber E, Rieger D et al. 2007. Development and morphology of the clock-gene-expressing lateral neurons of Drosophila melanogaster. J. Comp. Neurol 500:47–70
    [Google Scholar]
  30. Horne JA, Langille C, McLin S, Wiederman M, Lu Z et al. 2018. A resource for the Drosophila antennal lobe provided by the connectome of glomerulus VA1v. eLife 7:e37550 https://doi.org/10.7554/eLife.37550
    [Crossref] [Google Scholar]
  31. Ito K, Shinomiya K, Ito M, Armstrong JD, Boyan G et al. 2014. A systematic nomenclature for the insect brain. Neuron 81:755–65 https://doi.org/10.1016/j.neuron.2013.12.017
    [Crossref] [Google Scholar]
  32. Jarrell TA, Wang Y, Bloniarz AE, Brittin CA, Xu M et al. 2012. The connectome of a decision-making neural network. Science 337:437–44 https://doi.org/10.1126/science.1221762
    [Crossref] [Google Scholar]
  33. Kaiser M. 2015. Neuroanatomy: Connectome connects fly and mammalian brain networks. Curr. Biol. 25:R416–18 https://doi.org/10.1016/j.cub.2015.03.039
    [Crossref] [Google Scholar]
  34. Kitamoto T. 2001. Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. J. Neurobiol. 47:81–92
    [Google Scholar]
  35. Knott G, Marchman H, Wall D, Lich B 2008. Serial section scanning electron microscopy of adult brain tissue using focused ion beam milling. J. Neurosci. 28:2959–64
    [Google Scholar]
  36. Lee T, Luo L. 1999. Mosaic analysis with a repressible cell marker for studies of gene function in neuronal morphogenesis. Neuron 22:451–61
    [Google Scholar]
  37. Llinás RR. 2003. The contribution of Santiago Ramón y Cajal to functional neuroscience. Nat. Rev. Neurosci. 4:77–80
    [Google Scholar]
  38. Lu Z, Hayworth KJ, Xu S, Rivlin PK, Meinertzhagen IA 2018. Optimal preparation of Drosophila brain samples for FIB-SEM Poster presented at Microscopy and Microanalysis Meeting Baltimore, MD: Aug. 8
  39. Luan H, Peabody NC, Vinson CR, White BH 2006. Refined spatial manipulation of neuronal function by combinatorial restriction of transgene expression. Neuron 52:425–36
    [Google Scholar]
  40. Matsuo E, Seki H, Asai T, Morimoto T, Miyakawa H et al. 2016. Organization of projection neurons and local neurons of the primary auditory center in the fruit fly Drosophila melanogaster. J. Comp. Neurol 524:1099–164 https://doi.org/10.1002/cne.23955
    [Crossref] [Google Scholar]
  41. Meinertzhagen IA. 2018. Of what use is connectomics? A personal perspective on the Drosophila connectome. J. Exp. Biol. 221:jeb164954 https://doi.org/10.1242/jeb.164954
    [Crossref] [Google Scholar]
  42. Meinertzhagen IA, O'Neil SD. 1991. Synaptic organization of columnar elements in the lamina of the wild type in Drosophila melanogaster. J. Comp. Neurol 305:232–63
    [Google Scholar]
  43. Merriam-Webster 1987. Merriam-Webster's Collegiate Dictionary Springfield, MO: Merriam-Webster. , 9th ed..
  44. Milo R, Shen-Orr S, Itzkovitz S, Kashtan N, Chklovskii D 2002. Network motifs: simple building blocks of complex networks. Science 298:824–27
    [Google Scholar]
  45. Namiki S, Dickinson MH, Wong AM, Korff W, Card GM 2018. The functional organization of descending sensory-motor pathways in Drosophila. eLife 7:e34272 https://doi.org/10.7554/eLife.34272
    [Crossref] [Google Scholar]
  46. Nern A, Pfeiffer BD, Rubin GM 2015. Optimized tools for multicolor stochastic labeling reveal diverse stereotyped cell arrangements in the fly visual system. PNAS 112:E2967–76 https://doi.org/10.1073/pnas.1506763112
    [Crossref] [Google Scholar]
  47. Nusbaum MP, Blitz DM, Marder E 2017. Functional consequences of neuropeptide and small-molecule co-transmission. Nat. Rev. Neurosci. 18:389–403
    [Google Scholar]
  48. Nusbaum MP, Blitz DM, Swensen AM, Wood D, Marder E 2001. The roles of co-transmission in neural network modulation. Trends Neurosci 24:146–54
    [Google Scholar]
  49. Ohyama T, Schneider-Mizell CM, Fetter RD, Aleman JV, Franconville R et al. 2015. A multilevel multimodal circuit enhances action selection in Drosophila. Nature 520:633–39 https://doi.org/10.1038/nature14297
    [Crossref] [Google Scholar]
  50. Pascual A, Huang KL, Neveu J, Préat T 2004. Neuroanatomy: brain asymmetry and long-term memory. Nature 427:605–6 https://doi.org/10.1038/427605a
    [Crossref] [Google Scholar]
  51. Pipkin JE, Bushong EA, Ellisman MH, Kristan WB Jr. 2016. Patterns and distribution of presynaptic and postsynaptic elements within serial electron microscopic reconstructions of neuronal arbors from the medicinal leech Hirudo verbana. J. Comp. Neurol 524:3677–95 https://doi.org/10.1002/cne.24120
    [Crossref] [Google Scholar]
  52. Randel N, Asadulina A, Bezares-Calderón LA, Verasztó C, Williams EA 2014. Neuronal connectome of a sensory-motor circuit for visual navigation. eLife 3:e02730 https://doi.org/10.7554/eLife.02730
    [Crossref] [Google Scholar]
  53. Randel N, Shahidi R, Verasztó C, Bezares-Calderón LA, Schmidt S, Jékely G 2015. Inter-individual stereotypy of the Platynereis larval visual connectome. eLife 4:e08069 https://doi.org/10.7554/eLife.08069
    [Crossref] [Google Scholar]
  54. de Reus MA, van den Heuvel MP 2013. Rich club organization and intermodule communication in the cat connectome. J. Neurosci. 33:3212929–39 https://doi.org/10.1523/JNEUROSCI.1448-13.2013
    [Crossref] [Google Scholar]
  55. Ryan K, Lu Z, Meinertzhagen IA 2016. The CNS connectome of a tadpole larva of Ciona intestinalis highlights sidedness in the brain of a chordate sibling. eLife 5:e16962
    [Google Scholar]
  56. Schwabe T, Neuert H, Clandinin TR 2013. A network of cadherin-mediated interactions polarizes growth cones to determine targeting specificity. Cell 154:351–64 https://doi.org/10.1016/j.cell.2013.06.011
    [Crossref] [Google Scholar]
  57. Shih CT, Sporns O, Yuan SL, Su TS, Lin YJ et al. 2015. Connectomics-based analysis of information flow in the Drosophila brain. Curr. Biol. 25:1249–58
    [Google Scholar]
  58. Shinomiya K, Huang G, Lu Z, Parag T, Xu SC et al. 2019. Comparative connectivity analysis of the ON- and OFF-edge motion pathways in the Drosophila brain. eLife 8:e40025
    [Google Scholar]
  59. Shinomiya K, Matsuda K, Oishi T, Otsuna H, Ito K 2011. Flybrain neuron database: a comprehensive database system of the Drosophila brain neurons. J. Comp. Neurol. 519:807–33 https://doi.org/10.1002/cne.22540
    [Crossref] [Google Scholar]
  60. Simpson JH. 2009. Mapping and manipulating neural circuits in the fly brain. Adv. Genet. 65:79–143
    [Google Scholar]
  61. Strausfeld NJ, Campos-Ortega JA. 1977. Vision in insects: pathways possibly underlying neural adaptation and lateral inhibition. Science 195:894–97
    [Google Scholar]
  62. Takemura SY, Aso Y, Hige T, Wong A, Lu Z et al. 2017a. A connectome of a learning and memory center in the adult Drosophila brain. eLife 6:e26975 https://doi.org/10.7554/eLife.26975
    [Crossref] [Google Scholar]
  63. Takemura S, Bharioke A, Lu Z, Nern A, Vitaladevuni S et al. 2013. A visual motion detection circuit suggested by Drosophila connectomics. Nature 500:175–81
    [Google Scholar]
  64. Takemura S, Lu Z, Meinertzhagen IA 2008. Synaptic circuits of the Drosophila optic lobe: the input terminals to the medulla. J. Comp. Neurol. 509:493–513
    [Google Scholar]
  65. Takemura S, Nern A, Plaza S, Chklovskii DB, Scheffer LK et al. 2017b. The comprehensive connectome of a neural substrate for ‘ON’ motion detection in Drosophila. eLife 6:e24394 https://doi.org/10.7554/eLife.24394
    [Crossref] [Google Scholar]
  66. Takemura S, Xu CS, Lu Z, Rivlin PK, Olbris DJ et al. 2015. Multi-column synaptic circuits and an analysis of their variations in the visual system of Drosophila. PNAS 112:13711–16
    [Google Scholar]
  67. Tanaka NK, Endo K, Ito K 2012. Organization of antennal lobe–associated neurons in adult Drosophila melanogaster brain. J. Comp. Neurol. 520:4067–130 https://doi.org/10.1002/cne.23142
    [Crossref] [Google Scholar]
  68. Tosches MA. 2017. Developmental and genetic mechanisms of neural circuit evolution. Dev. Biol. 431:16–25 https://doi.org/10.1016/j.ydbio.2017.06.016
    [Crossref] [Google Scholar]
  69. van den Heuvel MP, de Reus MA 2014. Chasing the dreams of early connectionists. ACS Chem. Neurosci. 5:491–93
    [Google Scholar]
  70. Venken KJ, Simpson JH, Bellen HJ 2011. Genetic manipulation of genes and cells in the nervous system of the fruit fly. Neuron 72:202–30 https://doi.org/10.1016/j.neuron.2011.09.021
    [Crossref] [Google Scholar]
  71. Watts DJ, Strogatz SH. 1998. Collective dynamics of ‘small-world’ networks. Nature 393:440–42
    [Google Scholar]
  72. White JG, Southgate E, Thomson JN, Brenner S 1986. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos. Trans. R. Soc. B Biol. Sci 314:1–340
    [Google Scholar]
  73. Wolff T, Iyer NA, Rubin GM 2015. Neuroarchitecture and neuroanatomy of the Drosophila central complex: a GAL4-based dissection of protocerebral bridge neurons and circuits. J. Comp. Neurol. 523:997–1037 https://doi.org/10.1002/cne.23705
    [Crossref] [Google Scholar]
  74. Wolff T, Rubin GM. 2018. Neuroarchitecture of the Drosophila central complex: a catalog of nodulus and asymmetrical body neurons and a revision of the protocerebral bridge catalog. J. Comp. Neurol. 526:2585–611 https://doi.org/10.1002/cne.24512
    [Crossref] [Google Scholar]
  75. Wong AM, Wang JW, Axel R 2002. Spatial representation of the glomerular map in the Drosophila protocerebrum. Cell 109:229–41
    [Google Scholar]
  76. Yellman C, Tao H, He B, Hirsh J 1997. Conserved and sexually dimorphic behavioral responses to biogenic amines in decapitated Drosophila. PNAS 94:84131–36
    [Google Scholar]
  77. Zheng Z, Lauritzen JS, Perlman E, Robinson CG, Nichols M 2018. A complete electron microscopy volume of the brain of adult Drosophila melanogaster. Cell 174:730–43.e22 https://doi.org/10.1016/j.cell.2018.06.019
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100818-125444
Loading
/content/journals/10.1146/annurev-cellbio-100818-125444
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error