Regulation of gene expression is central to many biological processes. Although reconstruction of regulatory circuits from genomic data alone is therefore desirable, this remains a major computational challenge. Comparative approaches that examine the conservation and divergence of circuits and their components across strains and species can help reconstruct circuits as well as provide insights into the evolution of gene regulatory processes and their adaptive contribution. In recent years, advances in genomic and computational tools have led to a wealth of methods for such analysis at the sequence, expression, pathway, module, and entire network level. Here, we review computational methods developed to study transcriptional regulatory networks using comparative genomics, from sequence to functional data. We highlight how these methods use evolutionary conservation and divergence to reliably detect regulatory components as well as estimate the extent and rate of divergence. Finally, we discuss the promise and open challenges in linking regulatory divergence to phenotypic divergence and adaptation.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Amit I, Garber M, Chevrier N, Leite AP, Donner Y. et al. 2009. Unbiased reconstruction of a mammalian transcriptional network mediating pathogen responses. Science 326:5950257–63 [Google Scholar]
  2. Anholt RRH, Mackay TFC. 2004. Quantitative genetic analyses of complex behaviours in Drosophila. Nat. Rev. Genet. 5:11838–49 [Google Scholar]
  3. Bailey TL. 2008. Discovering sequence motifs. Methods Mol. Biol. 452:231–51 [Google Scholar]
  4. Bais AS, Grossmann S, Vingron M. 2007. Simultaneous alignment and annotation of cis-regulatory regions. Bioinformatics 23:2e44–49 [Google Scholar]
  5. Baker CR, Booth LN, Sorrells TR, Johnson AD. 2012. Protein modularity, cooperative binding, and hybrid regulatory states underlie transcriptional network diversification. Cell 151:180–95 [Google Scholar]
  6. Ballester B, Medina-Rivera A, Schmidt D, Gonzàles-Porta M, Carlucci M. et al. 2014. Multi-species, multi-transcription factor binding highlights conserved control of tissue-specific biological pathways. eLife 3:e02626 [Google Scholar]
  7. Barbosa-Morais NL, Irimia M, Pan Q, Xiong HY, Gueroussov S. et al. 2012. The evolutionary landscape of alternative splicing in vertebrate species. Science 338:61141587–93 [Google Scholar]
  8. Bardet AF, He Q, Zeitlinger J, Stark A. 2012. A computational pipeline for comparative ChIP-seq analyses. Nat. Protoc. 7:145–61 [Google Scholar]
  9. Barski A, Cuddapah S, Cui K, Roh TY, Schones DE. et al. 2007. High-resolution profiling of histone methylations in the human genome. Cell 129:4823–37 [Google Scholar]
  10. Battle A, Mostafavi S, Zhu X, Potash JB, Weissman MM. et al. 2013. Characterizing the genetic basis of transcriptome diversity through RNA-sequencing of 922 individuals. Genome Res. 24:114–24 [Google Scholar]
  11. Bergmann S, Ihmels J, Barkai N. 2003. Similarities and differences in genome-wide expression data of six organisms. PLOS Biol. 2:1e9 [Google Scholar]
  12. Blanchette M, Tompa M. 2002. Discovery of regulatory elements by a computational method for phylogenetic footprinting. Genome Res. 12:5739–48 [Google Scholar]
  13. Blanco E, Messeguer X, Smith TF, Guigó R. 2006. Transcription factor map alignment of promoter regions. PLOS Comput. Biol. 2:5e49 [Google Scholar]
  14. Boekhorst J, van Breukelen B, Heck A Jr, Snel B. 2008. Comparative phosphoproteomics reveals evolutionary and functional conservation of phosphorylation across eukaryotes. Genome Biol. 9:10R144 [Google Scholar]
  15. Boffelli D, McAuliffe J, Ovcharenko D, Lewis KD, Ovcharenko I. et al. 2003. Phylogenetic shadowing of primate sequences to find functional regions of the human genome. Science 299:56111391–94 [Google Scholar]
  16. Bonneau R. 2008. Learning biological networks: from modules to dynamics. Nat. Chem. Biol. 4:11658–64 [Google Scholar]
  17. Borneman AR, Gianoulis TA, Zhang ZD, Yu H, Rozowsky J. et al. 2007. Divergence of transcription factor binding sites across related yeast species. Science 317:5839815–19 [Google Scholar]
  18. Bradley RK, Li XY, Trapnell C, Davidson S, Pachter L. et al. 2010. Binding site turnover produces pervasive quantitative changes in transcription factor binding between closely related Drosophila species. PLOS Biol. 8:3e1000343 [Google Scholar]
  19. Brawand D, Soumillon M, Necsulea A, Julien P, Csárdi G. et al. 2011. The evolution of gene expression levels in mammalian organs. Nature 478:7369343–48 [Google Scholar]
  20. Brawand D, Wagner CE, Li YI, Malinsky M, Keller I. et al. 2014. The genomic substrate for adaptive radiation in African cichlid fish. Nature 513:7518375–81 [Google Scholar]
  21. Brem RB. 2002. Genetic dissection of transcriptional regulation in budding yeast. Science 296:5568752–55 [Google Scholar]
  22. Brem RB. 2005. The landscape of genetic complexity across 5,700 gene expression traits in yeast. PNAS 102:51572–77 [Google Scholar]
  23. Brem RB, Storey JD, Whittle J, Kruglyak L. 2005. Genetic interactions between polymorphisms that affect gene expression in yeast. Nature 436:7051701–3 [Google Scholar]
  24. Bryois J, Buil A, Evans DM, Kemp JP, Montgomery SB. et al. 2014. Cis and trans effects of human genomic variants on gene expression. PLOS Genet. 10:7e1004461 [Google Scholar]
  25. Buenrostro JD, Giresi PG, Zaba LC, Chang HY, Greenleaf WJ. 2013. Transposition of native chromatin for fast and sensitive epigenomic profiling of open chromatin, DNA-binding proteins and nucleosome position. Nat. Methods 10:1213–18 [Google Scholar]
  26. Bulyk ML. 2003. Computational prediction of transcription-factor binding site locations. Genome Biol. 5:1201 [Google Scholar]
  27. Butler MA, King AA. 2004. Phylogenetic comparative analysis: a modeling approach for adaptive evolution. Am. Nat. 164:6683–95 [Google Scholar]
  28. Califano A, Butte AJ, Friend S, Ideker T, Schadt E. 2012. Leveraging models of cell regulation and GWAS data in integrative network-based association studies. Nat. Genet. 44:8841–47 [Google Scholar]
  29. Chan YF, Marks ME, Jones FC, Villarreal G Jr, Shapiro MS. et al. 2010. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science 327:5963302–5 [Google Scholar]
  30. Cheng C, Yan KK, Hwang W, Qian J, Bhardwaj N. et al. 2011. Construction and analysis of an integrated regulatory network derived from high-throughput sequencing data. PLOS Comput. Biol. 7:11e1002190 [Google Scholar]
  31. Cho D-Y, Kim Y-A, Przytycka TM. 2012. Chapter 5: Network biology approach to complex diseases. PLOS Comput. Biol. 8:12e1002820 [Google Scholar]
  32. Chua G, Morris QD, Sopko R, Robinson MD, Ryan O. et al. 2006. Identifying transcription factor functions and targets by phenotypic activation. PNAS 103:3212045–50 [Google Scholar]
  33. Ciofani M, Madar A, Galan C, Sellars M, Mace K. et al. 2012. A validated regulatory network for Th17 cell specification. Cell 151:2289–303 [Google Scholar]
  34. Clark C, Kalita J. 2014. A comparison of algorithms for the pairwise alignment of biological networks. Bioinformatics 30:162351–59 [Google Scholar]
  35. Cooper GM, Stone EA, Asimenos G. NISC Comp. Seq. Program, Green ED et al. 2005. Distribution and intensity of constraint in mammalian genomic sequence. Genome Res. 15:7901–13 [Google Scholar]
  36. Cotney J, Leng J, Yin J, Reilly SK, DeMare LE. et al. 2013. The evolution of lineage-specific regulatory activities in the human embryonic limb. Cell 154:1185–96 [Google Scholar]
  37. Daniel E, Newburger MLB. 2009. UniPROBE: an online database of protein binding microarray data on protein-DNA interactions. Nucleic Acids Res. 37:Database issueD77–82 [Google Scholar]
  38. de Jong H. 2002. Modeling and simulation of genetic regulatory systems: a literature review. J. Comput. Biol. 9:167–103 [Google Scholar]
  39. Denver DR, Morris K, Streelman JT, Kim SK, Lynch M, Thomas WK. 2005. The transcriptional consequences of mutation and natural selection in Caenorhabditis elegans. Nat. Genet. 37:5544–48 [Google Scholar]
  40. De Smet R, Marchal K. 2010. Advantages and limitations of current network inference methods. Nat. Rev. Microbiol. 8:10717–29 [Google Scholar]
  41. Dixon AL, Liang L, Moffatt MF, Chen W, Heath S. et al. 2007. A genome-wide association study of global gene expression. Nat. Genet. 39:101202–7 [Google Scholar]
  42. Dunn SJ, Martello G, Yordanov B, Emmott S, Smith AG. 2014. Defining an essential transcription factor program for naïve pluripotency. Science 344:61881156–60 [Google Scholar]
  43. Duque T, Samee MA, Kazemian M, Pham HN, Brodsky MH, Sinha S. 2014. Simulations of enhancer evolution provide mechanistic insights into gene regulation. Mol. Biol. Evol. 31:1184–200 [Google Scholar]
  44. Emerson JJ, Li W-H. 2010. The genetic basis of evolutionary change in gene expression levels. Philos. Trans. R. Soc. B 365:15522581–90 [Google Scholar]
  45. Emilsson V, Thorleifsson G, Zhang B, Leonardson AS, Zink F. et al. 2008. Genetics of gene expression and its effect on disease. Nature 452:7186423–28 [Google Scholar]
  46. Eng KH, Bravo HC, Keles S. 2009. A phylogenetic mixture model for the evolution of gene expression. Mol. Biol. Evol. 26:102363–72 [Google Scholar]
  47. Farh KK-H, Marson A, Zhu J, Kleinewietfeld M, Housley WJ. et al. 2015. Genetic and epigenetic fine mapping of causal autoimmune disease variants. Nature 518:337–43 [Google Scholar]
  48. Flannick J, Novak A, Srinivasan BS, McAdams HH, Batzoglou S. 2006. Graemlin: general and robust alignment of multiple large interaction networks. Genome Res. 16:91169–81 [Google Scholar]
  49. Fraser HB, Babak T, Tsang J, Zhou Y, Zhang B. et al. 2011. Systematic detection of polygenic cis-regulatory evolution. PLOS Genet. 7:3e1002023 [Google Scholar]
  50. Frazer KA, Elnitski L, Church DM, Dubchak I, Hardison RC. 2003. Cross-species sequence comparisons: a review of methods and available resources. Genome Res. 13:11–12 [Google Scholar]
  51. Freschi L, Osseni M, Landry CR. 2014. Functional divergence and evolutionary turnover in mammalian phosphoproteomes. PLOS Genet. 10:1e1004062 [Google Scholar]
  52. Friedman N. 2004. Inferring cellular networks using probabilistic graphical models. Science 303:799–805 [Google Scholar]
  53. Furey TS. 2012. ChIP-seq and beyond: new and improved methodologies to detect and characterize protein-DNA interactions. Sci. Transl. Med. 13:12840–52 [Google Scholar]
  54. Garber M, Guttman M, Clamp M, Zody MC, Friedman N, Xie X. 2009. Identifying novel constrained elements by exploiting biased substitution patterns. Bioinformatics 25:12i54–62 [Google Scholar]
  55. Gasch AP, Moses AM, Chiang DY, Fraser HB, Berardini M, Eisen MB. 2004. Conservation and evolution of cis-regulatory systems in ascomycete fungi. PLOS Biol. 2:12e398 [Google Scholar]
  56. Genissel A, McIntyre LM, Wayne ML, Nuzhdin SV. 2008. cis and trans regulatory effects contribute to natural variation in transcriptome of Drosophila melanogaster. Mol. Biol. Evol. 25:1101–10 [Google Scholar]
  57. Gibson TA, Goldberg DS. 2009. Reverse engineering the evolution of protein interaction networks. Pac. Symp. Biocomput. 2009:190–202 [Google Scholar]
  58. Giresi PG, Kim J, McDaniell RM, Iyer VR, Lieb JD. 2007. FAIRE (Formaldehyde-Assisted Isolation of Regulatory Elements) isolates active regulatory elements from human chromatin. Genome Res. 17:6877–85 [Google Scholar]
  59. González S, Montserrat-Sentís B, Sánchez F, Puiggròs M, Blanco E. et al. 2012. ReLA, a local alignment search tool for the identification of distal and proximal gene regulatory regions and their conserved transcription factor binding sites. Bioinformatics 28:6763–70 [Google Scholar]
  60. Gordân R, Narlikar L, Hartemink AJ. 2010. Finding regulatory DNA motifs using alignment-free evolutionary conservation information. Nucleic Acids Res. 38:6e90 [Google Scholar]
  61. Göring HHH, Curran JE, Johnson MP, Dyer TD, Charlesworth J. et al. 2007. Discovery of expression QTLs using large-scale transcriptional profiling in human lymphocytes. Nat. Cell Biol. 39:101208–16 [Google Scholar]
  62. Greenfield A, Hafemeister C, Bonneau R. 2013. Robust data-driven incorporation of prior knowledge into the inference of dynamic regulatory networks. Bioinformatics 29:81060–67 [Google Scholar]
  63. Grishkevich V, Ben-Elazar S, Hashimshony T, Schott DH, Hunter CP, Yanai I. 2012. A genomic bias for genotype-environment interactions in C. elegans. Mol. Syst. Biol. 8:1587 [Google Scholar]
  64. Habib N, Wapinski I, Margalit H, Regev A, Friedman N. 2012. A functional selection model explains evolutionary robustness despite plasticity in regulatory networks. Mol. Syst. Biol. 8:1619 [Google Scholar]
  65. Haerty W, Ponting CP. 2014. No gene in the genome makes sense except in the light of evolution. Annu. Rev. Genomics Hum. Genet. 15:71–92 [Google Scholar]
  66. Harbison CT, Gordon DB, Lee TI, Rinaldi NJ, Macisaac KD. et al. 2004. Transcriptional regulatory code of a eukaryotic genome. Nature 431:700499–104 [Google Scholar]
  67. Hardison RC, Taylor J. 2012. Genomic approaches towards finding cis-regulatory modules in animals. Nat. Rev. Genet. 13:7469–83 [Google Scholar]
  68. He Q, Bardet AF, Patton B, Purvis J, Johnston J. et al. 2011. High conservation of transcription factor binding and evidence for combinatorial regulation across six Drosophila species. Nat. Genet. 43:5414–20 [Google Scholar]
  69. He X, Ling X, Sinha S. 2009. Alignment and prediction of cis-regulatory modules based on a probabilistic model of evolution. PLOS Comput. Biol. 5:3e1000299 [Google Scholar]
  70. Ho JWK, Jung YL, Liu T, Alver BH, Lee S. et al. 2014. Comparative analysis of metazoan chromatin organization. Nature 512:7515449–52 [Google Scholar]
  71. Hoffman MM, Birney E. 2010. An effective model for natural selection in promoters. Genome Res. 20:5685–92 [Google Scholar]
  72. Hoheisel JD. 2006. Microarray technology: beyond transcript profiling and genotype analysis. Nat. Rev. Genet. 7:3200–10 [Google Scholar]
  73. Hsu PD, Lander ES, Zhang F. 2014. Development and applications of CRISPR-Cas9 for genome engineering. Cell 157:61262–78 [Google Scholar]
  74. Hu J, Reinert K. 2015. LocalAli: An evolutionary-based local alignment approach to identify functionally conserved modules in multiple networks. Bioinformatics 31:3363–72 [Google Scholar]
  75. Ichihashi Y, Aguilar-Martínez JA, Farhi M, Chitwood DH, Kumar R. et al. 2014. Evolutionary developmental transcriptomics reveals a gene network module regulating interspecific diversity in plant leaf shape. PNAS 111:25E2616–21 [Google Scholar]
  76. Jacob F, Monod J. 1961. Genetic regulatory mechanisms in the synthesis of proteins. J. Mol. Biol. 3:318–56 [Google Scholar]
  77. Jelier R, Semple JI, Garcia-Verdugo R, Lehner B. 2011. Predicting phenotypic variation in yeast from individual genome sequences. Nat. Genet. 43:121270–74 [Google Scholar]
  78. Jiménez-Guri E, Huerta-Cepas J, Cozzuto L, Wotton KR, Kang H. et al. 2013. Comparative transcriptomics of early dipteran development. BMC Genomics 14:1123 [Google Scholar]
  79. John S, Sabo PJ, Canfield TK, Lee K, Vong S. et al. 2013. Genome-scale mapping of DNase I hypersensitivity. Curr. Protocols Mol. Biol. Chapter 27:Unit 21.27 [Google Scholar]
  80. Johnson DS, Mortazavi A, Myers RM, Wold B. 2007. Genome-wide mapping of in vivo protein-DNA interactions. Science 316:58301497–502 [Google Scholar]
  81. Jones FC, Grabherr MG, Chan YF, Russell P, Mauceli E. et al. 2012. The genomic basis of adaptive evolution in threespine sticklebacks. Nature 484:739255–61 [Google Scholar]
  82. Jordan IK, Mariño-Ramírez L, Koonin EV. 2005. Evolutionary significance of gene expression divergence. Gene 345:1119–26 [Google Scholar]
  83. Kalaev M, Bafna V, Sharan R. 2009. Fast and accurate alignment of multiple protein networks. J. Comput. Biol. 16:8989–99 [Google Scholar]
  84. Kalinka AT, Varga KM, Gerrard DT, Preibisch S, Corcoran DL. et al. 2010. Gene expression divergence recapitulates the developmental hourglass model. Nature 468:7325811–14 [Google Scholar]
  85. Kelley BP, Yuan B, Lewitter F, Sharan R, Stockwell BR, Ideker T. 2004. PathBLAST: a tool for alignment of protein interaction networks. Nucleic Acids Res. 32:Web Server issueW83–88 [Google Scholar]
  86. Kemmeren P, Sameith K, van de Pasch LA, Benschop JJ, Lenstra TL. et al. 2014. Large-scale genetic perturbations reveal regulatory networks and an abundance of gene-specific repressors. Cell 157:3740–52 [Google Scholar]
  87. Khaitovich P, Enard W, Lachmann M, Pääbo S. 2006. Evolution of primate gene expression. Nat. Rev. Genet. 7:9693–702 [Google Scholar]
  88. Khaitovich P, Weiss G, Lachmann M, Hellmann I, Enard W. et al. 2004. A neutral model of transcriptome evolution. PLOS Biol. 2:5e132 [Google Scholar]
  89. Khan Z, Ford MJ, Cusanovich DA, Mitrano A, Pritchard JK, Gilad Y. 2013. Primate transcript and protein expression levels evolve under compensatory selection pressures. Science 342:61621100–4 [Google Scholar]
  90. Kheradpour P, Kellis M. 2014. Systematic discovery and characterization of regulatory motifs in ENCODE TF binding experiments. Nucleic Acids Res. 42:52976–87 [Google Scholar]
  91. Kim HD, Shay T, O'Shea EK, Regev A. 2009. Transcriptional regulatory circuits: predicting numbers from alphabets. Science 325:5939429–32 [Google Scholar]
  92. Kim J, He X, Sinha S. 2009. Evolution of regulatory sequences in 12 Drosophila species. PLOS Genet. 5:1e1000330 [Google Scholar]
  93. King MC, Wilson AC. 1975. Evolution at two levels in humans and chimpanzees. Science 188:4184107–16 [Google Scholar]
  94. Koonin EV. 2005. Orthologs, paralogs, and evolutionary genomics. Annu. Rev. Genet. 39:309–38 [Google Scholar]
  95. Kuo D, Tan K, Zinman G, Ravasi T, Bar-Joseph Z, Ideker T. 2010. Evolutionary divergence in the fungal response to fluconazole revealed by soft clustering. Genome Biol. 11:7R77 [Google Scholar]
  96. Kutter C, Brown GD, Gonçalves A, Wilson MD, Watt S. et al. 2011. Pol III binding in six mammals shows conservation among amino acid isotypes despite divergence among tRNA genes. Nat. Genet. 43:10948–55 [Google Scholar]
  97. Kuzniar A, van Ham RC, Pongor S, Leunissen JA. 2008. The quest for orthologs: finding the corresponding gene across genomes. Trends Genet. 24:11539–51 [Google Scholar]
  98. Kvitek DJ, Will JL, Gasch AP. 2008. Variations in stress sensitivity and genomic expression in diverse S. cerevisiae isolates. PLOS Genet. 4:10e1000223 [Google Scholar]
  99. Lasky JR, Des Marais DL, Lowry DB, Povolotskaya I, McKay JK. et al. 2014. Natural variation in abiotic stress responsive gene expression and local adaptation to climate in Arabidopsis thaliana. Mol. Biol. Evol. 31:92283–96 [Google Scholar]
  100. Lavoie H, Hogues H, Mallick J, Sellam A, Nantel A, Whiteway M. 2010. Evolutionary tinkering with conserved components of a transcriptional regulatory network. PLOS Biol. 8:3e1000329 [Google Scholar]
  101. Lee MN, Ye C, Villani AC, Raj T, Li W. et al. 2014. Common genetic variants modulate pathogen-sensing responses in human dendritic cells. Science 343:61751246980 [Google Scholar]
  102. Li H, Johnson AD. 2010. Evolution of transcription networks—lessons from yeasts. Curr. Biol. 20:17R746–53 [Google Scholar]
  103. Li X, Battle A, Karczewski KJ, Zappala Z, Knowles DA. et al. 2014. Transcriptome sequencing of a large human family identifies the impact of rare noncoding variants. Am. J. Hum. Genet. 95:3245–56 [Google Scholar]
  104. Li Y, Alvarez OA, Gutteling EW, Tijsterman M, Fu J. et al. 2006. Mapping determinants of gene expression plasticity by genetical genomics in C. elegans. PLOS Genet. 2:12e222 [Google Scholar]
  105. Liao C-S, Lu K, Baym M, Singh R, Berger B. 2009. IsoRankN: spectral methods for global alignment of multiple protein networks. Bioinformatics 25:12i253–58 [Google Scholar]
  106. Lindblad-Toh K, Garber M, Zuk O, Lin MF, Parker BJ. et al. 2011. A high-resolution map of human evolutionary constraint using 29 mammals. Nature 478:7370476–82 [Google Scholar]
  107. Lynch M. 2007. The evolution of genetic networks by non-adaptive processes. Nat. Rev. Genet. 8:10803–13 [Google Scholar]
  108. Maguire SL, Wang C, Holland LM, Brunel F, Neuvéglise C. et al. 2014. Zinc finger transcription factors displaced SREBP proteins as the major sterol regulators during Saccharomycotina evolution. PLOS Genet. 10:1e1004076 [Google Scholar]
  109. Majewski J, Pastinen T. 2011. The study of eQTL variations by RNA-seq: from SNPs to phenotypes. Trends Genet. 27:272–79 [Google Scholar]
  110. Marbach D, Roy S, Ay F, Meyer PE, Candeias R. et al. 2012. Predictive regulatory models in Drosophila melanogaster by integrative inference of transcriptional networks. Genome Res. 22:71334–49 [Google Scholar]
  111. Margulies EH, Blanchette M. NISC Comp. Seq. Program, Haussler D, Green ED 2003. Identification and characterization of multi-species conserved sequences. Genome Res. 13:122507–18 [Google Scholar]
  112. Markowetz F, Spang R. 2007. Inferring cellular networks—a review. BMC Bioinformat. 8:Suppl. 6S5 [Google Scholar]
  113. Mathelier A, Zhao X, Zhang AW, Parcy F, Worsley-Hunt R. et al. 2013. JASPAR 2014: an extensively expanded and updated open-access database of transcription factor binding profiles. Nucleic Acids Res. 42:Database issueD142–47 [Google Scholar]
  114. Maurano MT, Humbert R, Rynes E, Thurman RE, Haugen E. et al. 2012. Systematic localization of common disease-associated variation in regulatory DNA. Science 337:60991190–95 [Google Scholar]
  115. McAdams HH, Srinivasan B, Arkin AP. 2004. The evolution of genetic regulatory systems in bacteria. Nat. Rev. Genet. 5:3169–78 [Google Scholar]
  116. Merkin J, Russell C, Chen P, Burge CB. 2012. Evolutionary dynamics of gene and isoform regulation in mammalian tissues. Science 338:61141593–99 [Google Scholar]
  117. Mitra K, Carvunis AR, Ramesh SK, Ideker T. 2013. Integrative approaches for finding modular structure in biological networks. Nat. Rev. Genet. 14:10719–32 [Google Scholar]
  118. Molinelli EJ, Korkut A, Wang W, Miller ML, Gauthier NP. et al. 2013. Perturbation biology: inferring signaling networks in cellular systems. PLOS Comput. Biol. 9:12e1003290 [Google Scholar]
  119. Nagalakshmi U, Wang Z, Waern K, Shou C, Raha D. et al. 2008. The transcriptional landscape of the yeast genome defined by RNA sequencing. Science 320:58811344–49 [Google Scholar]
  120. Nakagami H, Sugiyama N, Mochida K, Daudi A, Yoshida Y. et al. 2010. Large-scale comparative phosphoproteomics identifies conserved phosphorylation sites in plants. Plant Physiol. 153:31161–74 [Google Scholar]
  121. Necsulea A, Kaessmann H. 2014. Evolutionary dynamics of coding and non-coding transcriptomes. Nat. Rev. Genet. 15:11734–48 [Google Scholar]
  122. Necsulea A, Soumillon M, Warnefors M, Liechti A, Daish T. et al. 2014. The evolution of lncRNA repertoires and expression patterns in tetrapods. Nature 505:7485635–40 [Google Scholar]
  123. Neph S, Vierstra J, Stergachis AB, Reynolds AP, Haugen E. et al. 2012. An expansive human regulatory lexicon encoded in transcription factor footprints. Nature 489:741483–90 [Google Scholar]
  124. Nishiyama A, Xin L, Sharov AA, Thomas M, Mowrer G. et al. 2009. Uncovering early response of gene regulatory networks in ESCs by systematic induction of transcription factors. Cell Stem Cell 5:4420–33 [Google Scholar]
  125. Novershtern N, Regev A, Friedman N. 2011a. Physical module networks: an integrative approach for reconstructing transcription regulation. Bioinformatics 27:13i177–85 [Google Scholar]
  126. Novershtern N, Subramanian A, Lawton LN, Mak RH, Haining WN. et al. 2011b. Densely interconnected transcriptional circuits control cell states in human hematopoiesis. Cell 144:2296–309 [Google Scholar]
  127. Ohno S. 1970. Evolution by Gene Duplication Berlin: Springer-Verlag [Google Scholar]
  128. Oleksiak MF, Churchill GA, Crawford DL. 2002. Variation in gene expression within and among natural populations. Nat. Genet. 32:2261–66 [Google Scholar]
  129. Otto W, Stadler PF, López-Giraldéz F, Townsend JP, Lynch VJ, Wagner GP. 2009. Measuring transcription factor–binding site turnover: a maximum likelihood approach using phylogenies. Genome Biol. Evol. 1:85–98 [Google Scholar]
  130. Paris M, Kaplan T, Li XY, Villalta JE, Lott SE, Eisen MB. 2013. Extensive divergence of transcription factor binding in Drosophila embryos with highly conserved gene expression. PLOS Genet. 9:9e1003748 [Google Scholar]
  131. Park PJ. 2009. ChIP-seq: advantages and challenges of a maturing technology. Nat. Rev. Genet. 10:10669–80 [Google Scholar]
  132. Patro R, Kingsford C. 2012. Global network alignment using multiscale spectral signatures. Bioinformatics 28:233105–14 [Google Scholar]
  133. Patro R, Sefer E, Malin J, Marçais G, Navlakha S, Kingsford C. 2012. Parsimonious reconstruction of network evolution. Algorithms Mol. Biol. 7:125 [Google Scholar]
  134. Pe'er D, Hacohen N. 2011. Principles and strategies for developing network models in cancer. Cell 144:6864–73 [Google Scholar]
  135. Peirce JL, Lu L, Gu J, Silver LM, Williams RW. 2004. A new set of BXD recombinant inbred lines from advanced intercross populations in mice. BMC Genet. 5:7 [Google Scholar]
  136. Perry GH, Melsted P, Marioni JC, Wang Y, Bainer R. et al. 2012. Comparative RNA sequencing reveals substantial genetic variation in endangered primates. Genome Res. 22:4602–10 [Google Scholar]
  137. Pinney JW, Amoutzias GD, Rattray M, Robertson DL. 2007. Reconstruction of ancestral protein interaction networks for the bZIP transcription factors. PNAS 104:5120449–53 [Google Scholar]
  138. Pique-Regi R, Degner JF, Pai AA, Gaffney DJ, Gilad Y, Pritchard JK. 2011. Accurate inference of transcription factor binding from DNA sequence and chromatin accessibility data. Genome Res. 21:3447–55 [Google Scholar]
  139. Presser A, Elowitz MB, Kellis M, Kishony R. 2008. The evolutionary dynamics of the Saccharomyces cerevisiae protein interaction network after duplication. PNAS 105:3950–54 [Google Scholar]
  140. Prud'homme B, Gompel N, Carroll SB. 2007. Emerging principles of regulatory evolution. PNAS 104:Suppl. 18605–12 [Google Scholar]
  141. Rockman MV, Kruglyak L. 2006. Genetics of global gene expression. Nat. Rev. Genet. 7:11862–72 [Google Scholar]
  142. Romero IG, Ruvinsky I, Gilad Y. 2012. Comparative studies of gene expression and the evolution of gene regulation. Nat. Rev. Genet. 13:7505–16 [Google Scholar]
  143. Roy S, Wapinski I, Pfiffner J, French C, Socha A. et al. 2013. Arboretum: reconstruction and analysis of the evolutionary history of condition-specific transcriptional modules. Genome Res. 23:61039–50 [Google Scholar]
  144. Sander JD, Joung JK. 2014. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotechnol. 32:4347–55 [Google Scholar]
  145. Schadt EE, Molony C, Chudin E, Hao K, Yang X. et al. 2008. Mapping the genetic architecture of gene expression in human liver. PLOS Biol. 6:5e107 [Google Scholar]
  146. Schmidt D, Schwalie PC, Wilson MD, Ballester B, Gonçalves A. et al. 2012. Waves of retrotransposon expansion remodel genome organization and CTCF binding in multiple mammalian lineages. Cell 148:1–2335–48 [Google Scholar]
  147. Schmidt D, Wilson MD, Ballester B, Schwalie PC, Brown GD. et al. 2010. Five-vertebrate ChIP-seq reveals the evolutionary dynamics of transcription factor binding. Science 328:59811036–40 [Google Scholar]
  148. Schraiber JG, Mostovoy Y, Hsu TY, Brem RB. 2013. Inferring evolutionary histories of pathway regulation from transcriptional profiling data. PLOS Comput. Biol. 9:10e1003255 [Google Scholar]
  149. Segal E, Pe'er D, Regev A, Koller D, Friedman N. 2005. Learning module networks. J. Mach. Learn. Res. 6:557–88 [Google Scholar]
  150. Segal E, Yelensky R, Koller D. 2003. Genome-wide discovery of transcriptional modules from DNA sequence and gene expression. Bioinformatics 19:Suppl. 1i273–82 [Google Scholar]
  151. Shay T, Jojic V, Zuk O, Rothamel K, Puyraimond-Zemmour D. et al. 2013. Conservation and divergence in the transcriptional programs of the human and mouse immune systems. PNAS 110:82946–51 [Google Scholar]
  152. Siddharthan R, Siggia ED, van Nimwegen E. 2005. PhyloGibbs: a Gibbs sampling motif finder that incorporates phylogeny. PLOS Comput. Biol. 1:7e67 [Google Scholar]
  153. Siepel A, Bejerano G, Pedersen JS, Hinrichs AS, Hou M, Rosenbloom K. et al. 2005. Evolutionarily conserved elements in vertebrate, insect, worm, and yeast genomes. Genome Res. 15:81034–50 [Google Scholar]
  154. Siepel A, Haussler D. 2004. Combining phylogenetic and hidden Markov models in biosequence analysis. J. Comput. Biol. 11:2–3413–28 [Google Scholar]
  155. Silver DH, Levin M, Yanai I. 2012. Identifying functional links between genes by evolutionary transcriptomics. Mol. Biosyst. 8:102585–92 [Google Scholar]
  156. Singh R, Xu J, Berger B. 2008. Global alignment of multiple protein interaction networks with application to functional orthology detection. PNAS 105:3512763–68 [Google Scholar]
  157. Sinha S, Blanchette M, Tompa M. 2004. PhyME: a probabilistic algorithm for finding motifs in sets of orthologous sequences. BMC Bioinform. 5:1170 [Google Scholar]
  158. Skipper M. 2004. The puzzling side of the human genome. Nat. Rev. Genet. 5:7482 [Google Scholar]
  159. Song L, Crawford GE. 2010. DNase-seq: a high-resolution technique for mapping active gene regulatory elements across the genome from mammalian cells. Cold Spring Harb. Protoc. 2010:2pdb.prot5384 [Google Scholar]
  160. Stark A, Lin MF, Kheradpour P, Pedersen JS, Parts L. et al. 2007. Discovery of functional elements in 12 Drosophila genomes using evolutionary signatures. Nature 450:7167219–32 [Google Scholar]
  161. Stefflova K, Thybert D, Wilson MD, Streeter I, Aleksic J. et al. 2013. Cooperativity and rapid evolution of cobound transcription factors in closely related mammals. Cell 154:3530–40 [Google Scholar]
  162. Stergachis AB, Neph S, Sandstrom R, Haugen E, Reynolds AP. et al. 2014. Conservation of trans-acting circuitry during mammalian regulatory evolution. Nature 515:7527365–70 [Google Scholar]
  163. Still AJ, Floyd BJ, Hebert AS, Bingman CA, Carson JJ. et al. 2013. Quantification of mitochondrial acetylation dynamics highlights prominent sites of metabolic regulation. J. Biol. Chem. 288:3626209–19 [Google Scholar]
  164. Stormo GD, Zhao Y. 2010. Determining the specificity of protein-DNA interactions. Nat. Rev. Genet. 11:11751–60 [Google Scholar]
  165. Stranger BE, Nica AC, Forrest MS, Dimas A, Bird CP. et al. 2007. Population genomics of human gene expression. Nat. Genet. 39:101217–24 [Google Scholar]
  166. Stranger BE, Raj T. 2013. Genetics of human gene expression. Curr. Opin. Genet. Dev. 23:6627–34 [Google Scholar]
  167. Tanay A, Gat-Viks I, Shamir R. 2004a. A global view of the selection forces in the evolution of yeast cis-regulation. Genome Res. 14:5829–34 [Google Scholar]
  168. Tanay A, Regev A, Shamir R. 2005. Conservation and evolvability in regulatory networks: the evolution of ribosomal regulation in yeast. PNAS 102:207203–8 [Google Scholar]
  169. Tanay A, Sharan R, Kupiec M, Shamir R. 2004b. Revealing modularity and organization in the yeast molecular network by integrated analysis of highly heterogeneous genomewide data. PNAS 101:92981–86 [Google Scholar]
  170. Taylor JS, Raes J. 2004. Duplication and divergence: the evolution of new genes and old ideas. Annu. Rev. Genet. 38:1615–43 [Google Scholar]
  171. Teichmann SA, Babu MM. 2004. Gene regulatory network growth by duplication. Nat. Genet. 36:5492–96 [Google Scholar]
  172. Thattai M, van Oudenaarden A. 2001. Intrinsic noise in gene regulatory networks. PNAS 98:158614–19 [Google Scholar]
  173. Thompson DA, Regev A. 2009. Fungal regulatory evolution: cis and trans in the balance. FEBS Lett. 583:243959–65 [Google Scholar]
  174. Thompson DA, Roy S, Chan M, Styczynsky MP, Pfiffner J. et al. 2013. Evolutionary principles of modular gene regulation in yeasts. eLife 2:e00603 [Google Scholar]
  175. Thurman RE, Rynes E, Humbert R, Vierstra J, Maurano MT. et al. 2012. The accessible chromatin landscape of the human genome. Nature 489:741475–82 [Google Scholar]
  176. Tirosh I, Barkai N. 2007. Comparative analysis indicates regulatory neofunctionalization of yeast duplicates. Genome Biol. 8:4R50 [Google Scholar]
  177. Tirosh I, Barkai N. 2011. Inferring regulatory mechanisms from patterns of evolutionary divergence. Mol. Syst. Biol. 7:530 [Google Scholar]
  178. Tirosh I, Weinberger A, Carmi M, Barkai N. 2006. A genetic signature of interspecies variations in gene expression. Nat. Genet. 38:7830–34 [Google Scholar]
  179. Tsankov A, Yanagisawa Y, Rhind N, Regev A, Rando OJ. 2011. Evolutionary divergence of intrinsic and trans-regulated nucleosome positioning sequences reveals plastic rules for chromatin organization. Genome Res. 21:111851–62 [Google Scholar]
  180. Tsankov AM, Thompson DA, Socha A, Regev A, Rando OJ. 2010. The role of nucleosome positioning in the evolution of gene regulation. PLOS Biol. 8:7e1000414 [Google Scholar]
  181. Tsuda ME, Kawata M. 2010. Evolution of gene regulatory networks by fluctuating selection and intrinsic constraints. PLOS Comput. Biol. 6:8e1000873 [Google Scholar]
  182. Tsui K, Dubuis S, Gebbia M, Morse RH, Barkai N. et al. 2011. Evolution of nucleosome occupancy: conservation of global properties and divergence of gene-specific patterns. Mol. Cell. Biol. 31:214348–55 [Google Scholar]
  183. Tuch BB, Galgoczy DJ, Hernday AD, Li H, Johnson AD. 2008. The evolution of combinatorial gene regulation in fungi. PLOS Biol. 6:2e38 [Google Scholar]
  184. Vierstra J, Rynes E, Sandstrom R, Zhang M, Canfield T. et al. 2014. Mouse regulatory DNA landscapes reveal global principles of cis-regulatory evolution. Science 346:62121007–12 [Google Scholar]
  185. Villar D, Berthelot C, Aldridge S, Rayner TF, Lukk M. et al. 2015. Enhancer evolution across 20 mammalian species. Cell 160:3554–66 [Google Scholar]
  186. Villar D, Flicek P, Odom DT. 2014. Evolution of transcription factor binding in metazoans—mechanisms and functional implications. Nat. Rev. Genet. 15:4221–33 [Google Scholar]
  187. von Luxburg U. 2007. A tutorial on spectral clustering. Stat. Comput. 17:4395–416 [Google Scholar]
  188. Walker E, Ohishi M, Davey RE, Zhang W, Cassar PA. et al. 2007. Prediction and testing of novel transcriptional networks regulating embryonic stem cell self-renewal and commitment. Cell Stem Cell 1:171–86 [Google Scholar]
  189. Waltman P, Kacmarczyk T, Bate AR, Kearns DB, Reiss DJ. et al. 2010. Multi-species integrative biclustering. Genome Biol. 11:9R96 [Google Scholar]
  190. Wang Z, Gerstein M, Snyder M. 2009. RNA-seq: a revolutionary tool for transcriptomics. Nat. Rev. Genet. 10:157–63 [Google Scholar]
  191. Ward LD, Kellis M. 2012a. Evidence of abundant purifying selection in humans for recently acquired regulatory functions. Science 337:61021675–78 [Google Scholar]
  192. Ward LD, Kellis M. 2012b. HaploReg: a resource for exploring chromatin states, conservation, and regulatory motif alterations within sets of genetically linked variants. Nucleic Acids Res. 40:Database issueD930–34 [Google Scholar]
  193. Weirauch MT, Hughes TR. 2010. Conserved expression without conserved regulatory sequence: the more things change, the more they stay the same. Trends Genet. 26:266–74 [Google Scholar]
  194. West MAL, Kim K, Kliebenstein DJ, van Leeuwen H, Michelmore RW. et al. 2007. Global eQTL mapping reveals the complex genetic architecture of transcript-level variation in Arabidopsis. Genetics 175:31441–50 [Google Scholar]
  195. Whitfield TW, Wang J, Collins PJ, Partridge EC, Aldred SF. et al. 2012. Functional analysis of transcription factor binding sites in human promoters. Genome Biol. 13:9R50 [Google Scholar]
  196. Wittkopp PJ. 2007. Variable gene expression in eukaryotes: a network perspective. J. Exp. Biol. 210:Pt. 91567–75 [Google Scholar]
  197. Wittkopp PJ, Haerum BK, Clark AG. 2008. Regulatory changes underlying expression differences within and between Drosophila species. Nat. Genet. 40:3346–50 [Google Scholar]
  198. Wohlbach DJ, Kuo A, Sato TK, Potts KM, Salamov AA. et al. 2011. Comparative genomics of xylose-fermenting fungi for enhanced biofuel production. PNAS 108:3213212–17 [Google Scholar]
  199. Wohlbach DJ, Thompson DA, Gasch AP, Regev A. 2009. From elements to modules: regulatory evolution in Ascomycota fungi. Curr. Opin. Genet. Dev. 19:6571–78 [Google Scholar]
  200. Wong ES, Thybert D, Schmitt BM, Stefflova K, Odom DT, Flicek P. 2014. Decoupling of evolutionary changes in transcription factor binding and gene expression in mammals. Genome Res. 25:2167–78 [Google Scholar]
  201. Wray GA. 2007. The evolutionary significance of cis-regulatory mutations. Nat. Rev. Genet. 8:3206–16 [Google Scholar]
  202. Wray GA, Hahn MW, Abouheif E, Balhoff JP, Pizer M. et al. 2003. The evolution of transcriptional regulation in eukaryotes. Mol. Biol. Evol. 20:91377–419 [Google Scholar]
  203. Xiao S, Xie D, Cao X, Yu P, Xing X. et al. 2012. Comparative epigenomic annotation of regulatory DNA. Cell 149:61381–92 [Google Scholar]
  204. Xie D, Cai J, Chia N-Y, Ng HH, Zhong S. 2008. Cross-species de novo identification of cis-regulatory modules with GibbsModule: application to gene regulation in embryonic stem cells. Genome Res. 18:1325–35 [Google Scholar]
  205. Xie D, Chen CC, He X, Cao X, Zhong S. 2011. Towards an evolutionary model of transcription networks. PLOS Comput. Biol. 7:6e1002064 [Google Scholar]
  206. Xie X, Lu J, Kulbokas EJ, Golub TR, Mootha V. et al. 2005. Systematic discovery of regulatory motifs in human promoters and 3′ UTRs by comparison of several mammals. Nature 434:7031338–45 [Google Scholar]
  207. Yanai I, Graur D, Ophir R. 2004. Incongruent expression profiles between human and mouse orthologous genes suggest widespread neutral evolution of transcription control. OMICS 8:115–24 [Google Scholar]
  208. Yanai I, Hunter CP. 2009. Comparison of diverse developmental transcriptomes reveals that coexpression of gene neighbors is not evolutionarily conserved. Genome Res. 19:122214–20 [Google Scholar]
  209. Yanai I, Peshkin L, Jorgensen P, Kirschner MW. 2011. Mapping gene expression in two Xenopus species: evolutionary constraints and developmental flexibility. Dev. Cell 20:4483–96 [Google Scholar]
  210. Yáñez-Cuna JO, Kvon EZ, Stark A. 2013. Deciphering the transcriptional cis-regulatory code. Trends Genet. 29:111–22 [Google Scholar]
  211. Ye CJ, Feng T, Kwon HK, Raj T, Wilson MT. et al. 2014. Intersection of population variation and autoimmunity genetics in human T cell activation. Science 345:62021254665 [Google Scholar]
  212. Zarrineh P, Fierro AC, Sánchez-Rodríguez A, De Moor B, Engelen K, Marchal K. 2011. COMODO: an adaptive coclustering strategy to identify conserved coexpression modules between organisms. Nucleic Acids Res. 39:7e41 [Google Scholar]
  213. Zhang X, Moret BME. 2008. Boosting the performance of inference algorithms for transcriptional regulatory networks using a phylogenetic approach. Algorithms in Bioinformatics KA Crandall, J Lagergren 245–58 Berlin: Springer [Google Scholar]
  214. Zhang X, Moret BME. 2012. Refining regulatory networks through phylogenetic transfer of information. IEEE/ACM Trans. Comput. Biol. Bioinform. 9:41032–45 [Google Scholar]
  215. Zheng W, Gianoulis TA, Karczewski KJ, Zhao H, Snyder M. 2011. Regulatory variation within and between species. Annu. Rev. Genomics Hum. Genet. 12:1327–46 [Google Scholar]
  216. Zheng W, Zhao H. 2013. Studying the evolution of transcription factor binding events using multi-species ChIP-Seq data. Stat. Appl. Genet. Mol. Biol. 12:11–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error