COPII vesicles mediate export of secretory cargo from the endoplasmic reticulum (ER). However, a standard COPII vesicle with a diameter of 60–90 nm is too small to export collagens that are composed of rigid triple helices of up to 400 nm in length. How do cells pack and secrete such bulky molecules? This issue is fundamentally important, as collagens constitute approximately 25% of our dry body weight and are essential for almost all cell-cell interactions. Recently, a potential mechanism for the biogenesis of mega-transport carriers was identified, involving packing collagens and increasing the size of COPII coats. Packing is mediated by TANGO1, which binds procollagen VII in the lumen and interacts with the COPII proteins Sec23/Sec24 on the cytoplasmic side of the ER. Cullin3, an E3 ligase, and its specific adaptor protein, KLHL12, ubiquitinate Sec31, which could increase the size of COPII coats. Recruitment of these proteins and their specific interactors into COPII-mediated vesicle biogenesis may be all that is needed for the export of bulky collagens from the ER. Nonetheless, we present an alternative pathway in which TANGO1 and COPII cooperate to export collagens without generating a mega-transport carrier.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Anitei M, Hoflack B. 2011. Exit from the trans-Golgi network: from molecules to mechanisms. Curr. Opin. Cell Biol. 23:4443–51 [Google Scholar]
  2. Bard F, Casano L, Mallabiabarrena A, Wallace E, Saito K. et al. 2006. Functional genomics reveals genes involved in protein secretion and Golgi organization. Nature 439:7076604–7 [Google Scholar]
  3. Bard F, Malhotra V. 2006. The formation of TGN-to-plasma-membrane transport carriers. Annu. Rev. Cell Dev. Biol. 22:439–55 [Google Scholar]
  4. Beznoussenko GV, Parashuraman S, Rizzo R, Polishchuk R, Martella O. et al. 2014. Transport of soluble proteins through the Golgi occurs by diffusion via continuities across cisternae. eLife 3:e02009 [Google Scholar]
  5. Bharucha N, Liu Y, Papanikou E, McMahon C, Esaki M. et al. 2013. Sec16 influences transitional ER sites by regulating rather than organizing COPII. Mol. Biol. Cell 24:213406–19 [Google Scholar]
  6. Bonfanti L, Mironov AA, Martínez-Menárguez JA, Martella O, Fusella A. et al. 1998. Procollagen traverses the Golgi stack without leaving the lumen of cisternae: evidence for cisternal maturation. Cell 95:7993–1003 [Google Scholar]
  7. Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:12786–801 [Google Scholar]
  8. Bönnemann CG. 2011. The collagen VI-related myopathies: muscle meets its matrix. Nat. Rev. Neurol. 7:7379–90 [Google Scholar]
  9. Bosserhoff AK, Moser M, Buettner R. 2004. Characterization and expression pattern of the novel MIA homolog TANGO. Gene Expr. Patterns 4:4473–79 [Google Scholar]
  10. Boyadjiev SA, Kim S-D, Hata A, Haldeman-Englert C, Zackai EH. et al. 2011. Cranio-lenticulo-sutural dysplasia associated with defects in collagen secretion. Clin. Genet. 80:2169–76 [Google Scholar]
  11. Brodsky B, Persikov AV. 2005. Molecular structure of the collagen triple helix. Adv. Protein Chem. 70:301–39 [Google Scholar]
  12. Bruckner-Tuderman L, Has C. 2014. Disorders of the cutaneous basement membrane zone—the paradigm of epidermolysis bullosa. Matrix Biol. 33:29–34 [Google Scholar]
  13. Byers PH, Pyott SM. 2012. Recessively inherited forms of osteogenesis imperfecta. Annu. Rev. Genet. 46:475–97 [Google Scholar]
  14. D'Arcangelo JG, Stahmer KR, Miller EA. 2013. Vesicle-mediated export from the ER: COPII coat function and regulation. Biochim. Biophys. Acta 1833:112464–72 [Google Scholar]
  15. Dassah M, Almeida D, Hahn R, Bonaldo P, Worgall S, Hajjar KA. 2014. Annexin A2 mediates secretion of collagen VI, pulmonary elasticity and apoptosis of bronchial epithelial cells. J. Cell Sci. 127:4828–44 [Google Scholar]
  16. De Paepe A, Malfait F. 2012. The Ehlers-Danlos syndrome, a disorder with many faces. Clin. Genet. 82:11–11 [Google Scholar]
  17. Emr S, Glick BS, Linstedt AD, Lippincott-Schwartz J, Luini A. et al. 2009. Journeys through the Golgi—taking stock in a new era. J. Cell Biol. 187:4449–53 [Google Scholar]
  18. Faini M, Beck R, Wieland FT, Briggs JAG. 2013. Vesicle coats: structure, function, and general principles of assembly. Trends Cell Biol. 23:6279–88 [Google Scholar]
  19. Farquhar MG, Palade GE. 1981. The Golgi apparatus (complex)—(1954–1981)—from artifact to center stage. J. Cell Biol. 91:177s–103s [Google Scholar]
  20. Glick BS, Luini A. 2011. Models for Golgi traffic: a critical assessment. Cold Spring Harb. Perspect. Biol. 3:11a005215 [Google Scholar]
  21. Glick BS, Malhotra V. 1998. The curious status of the Golgi apparatus. Cell 95:7883–89 [Google Scholar]
  22. Glick BS, Nakano A. 2009. Membrane traffic within the Golgi apparatus. Annu. Rev. Cell Dev. Biol. 25:113–32 [Google Scholar]
  23. Heckel D, Brass N, Fischer U, Blin N, Steudel I. et al. 1997. cDNA cloning and chromosomal mapping of a predicted coiled-coil proline-rich protein immunogenic in meningioma patients. Hum. Mol. Genet. 6:122031–41 [Google Scholar]
  24. Heinonen S, Männikkö M, Klement JF, Whitaker-Menezes D, Murphy GF, Uitto J. 1999. Targeted inactivation of the type VII collagen gene (Col7a1) in mice results in severe blistering phenotype: a model for recessive dystrophic epidermolysis bullosa. J. Cell Sci. 112:213641–48 [Google Scholar]
  25. Hudson DM, Eyre DR. 2013. Collagen prolyl 3-hydroxylation: a major role for a minor post-translational modification?. Connect. Tissue Res. 54:4–5245–51 [Google Scholar]
  26. Jensen D, Schekman R. 2011. COPII-mediated vesicle formation at a glance. J. Cell Sci. 124:11–4 [Google Scholar]
  27. Jimenez S, Harsch M, Rosenbloom J. 1973. Hydroxyproline stabilizes the triple helix of chick tendon collagen. Biochem. Biophys. Res. Commun. 52:1106–14 [Google Scholar]
  28. Jin L, Pahuja KB, Wickliffe KE, Gorur A, Baumgärtel C. et al. 2012. Ubiquitin-dependent regulation of COPII coat size and function. Nature 482:7386495–500 [Google Scholar]
  29. Kadler KE, Baldock C, Bella J, Boot-Handford RP. 2007. Collagens at a glance. J. Cell Sci. 120:121955–58 [Google Scholar]
  30. Kontusaari S, Tromp G, Kuivaniemi H, Romanic AM, Prockop DJ. 1990. A mutation in the gene for type III procollagen (COL3A1) in a family with aortic aneurysms. J. Clin. Invest. 86:51465–73 [Google Scholar]
  31. Kruegel J, Rubel D, Gross O. 2013. Alport syndrome—insights from basic and clinical research. Nat. Rev. Nephrol. 9:3170–78 [Google Scholar]
  32. Kung LF, Pagant S, Futai E, D'Arcangelo JG, Buchanan R. et al. 2012. Sec24p and Sec16p cooperate to regulate the GTP cycle of the COPII coat. EMBO J. 31:41014–27 [Google Scholar]
  33. Kurokawa K, Okamoto M, Nakano A. 2014. Contact of cis-Golgi with ER exit sites executes cargo capture and delivery from the ER. Nat. Commun. 5:3653 [Google Scholar]
  34. Lamande SR, Bateman JF. 1999. Procollagen folding and assembly: the role of endoplasmic reticulum enzymes and molecular chaperones. Semin. Cell Dev. Biol. 10:5455–64 [Google Scholar]
  35. Lavieu G, Zheng H, Rothman JE. 2013. Stapled Golgi cisternae remain in place as cargo passes through the stack. eLife 2:e00558 [Google Scholar]
  36. Lengfeld J, Wang Q, Zohlman A, Salvarezza S, Morgan S. et al. 2012. Protein kinase C δ regulates the release of collagen type I from vascular smooth muscle cells via regulation of Cdc42. Mol. Biol. Cell 23:101955–63 [Google Scholar]
  37. Lerner DW, McCoy D, Isabella AJ, Mahowald AP, Gerlach GF. et al. 2013. A Rab10-dependent mechanism for polarized basement membrane secretion during organ morphogenesis. Dev. Cell 24:2159–68 [Google Scholar]
  38. Li L, Shen Y, Ding Y, Liu Y, Su D, Liang X. 2014. Hrd1 participates in the regulation of collagen I synthesis in renal fibrosis. Mol. Cell Biochem. 386:1–235–44 [Google Scholar]
  39. Malhotra V. 2012. COPII vesicles get supersized by ubiquitin. Cell 149:120–21 [Google Scholar]
  40. Mironov AA, Mironov AA, Beznoussenko GV, Trucco A, Lupetti P. et al. 2003. ER-to-Golgi carriers arise through direct en bloc protrusion and multistage maturation of specialized ER exit domains. Dev. Cell 5:4583–94 [Google Scholar]
  41. Myllyharju J, Kivirikko KI. 2004. Collagens, modifying enzymes and their mutations in humans, flies and worms. Trends Genet. 20:133–43 [Google Scholar]
  42. Nogueira C, Erlmann P, Villeneuve J, Santos AJ, Martínez-Alonso E. et al. 2014. SLY1 and Syntaxin 18 specify a distinct pathway for procollagen VII export from the endoplasmic reticulum. Elife 3:e02784 [Google Scholar]
  43. Palade GE. 1992. Intracellular aspects of the process of protein secretion. Nobel Lectures, Physiology or Medicine 1971–1980 J Lindsten 177–206 Singapore: World Sci. [Google Scholar]
  44. Pastor-Pareja JC, Xu T. 2011. Shaping cells and organs in Drosophila by opposing roles of fat body–secreted Collagen IV and perlecan. Dev. Cell 21:2245–56 [Google Scholar]
  45. Pitman JL, Bonnet DJ, Curtiss LK, Gekakis N. 2011. Reduced cholesterol and triglycerides in mice with a mutation in Mia2, a liver protein that localizes to ER exit sites. J. Lipid Res. 52:101775–86 [Google Scholar]
  46. Rothman JE. 2010. The future of Golgi research. Mol. Biol. Cell 21:223776–80 [Google Scholar]
  47. Saito K, Chen M, Bard F, Chen S, Zhou H. et al. 2009. TANGO1 facilitates cargo loading at endoplasmic reticulum exit sites. Cell 136:5891–902 [Google Scholar]
  48. Saito K, Yamashiro K, Ichikawa Y, Erlmann P, Kontani K. et al. 2011. cTAGE5 mediates collagen secretion through interaction with TANGO1 at endoplasmic reticulum exit sites. Mol. Biol. Cell 22:132301–8 [Google Scholar]
  49. Saito K, Yamashiro K, Shimazu N, Tanabe T, Kontani K, Katada T. 2014. Concentration of Sec12 at ER exit sites via interaction with cTAGE5 is required for collagen export. J. Cell Biol. 206:6751–62 [Google Scholar]
  50. Sarmah S, Barrallo-Gimeno A, Melville DB, Topczewski J, Solnica-Krezel L, Knapik EW. 2010. Sec24D-dependent transport of extracellular matrix proteins is required for zebrafish skeletal morphogenesis. PLOS ONE 5:4e10367 [Google Scholar]
  51. Schnieke A, Harbers K, Jaenisch R. 1983. Embryonic lethal mutation in mice induced by retrovirus insertion into the α1(I) collagen gene. Nature 304:5924315–20 [Google Scholar]
  52. Seppinen L, Pihlajaniemi T. 2011. The multiple functions of collagen XVIII in development and disease. Matrix Biol. 30:283–92 [Google Scholar]
  53. Spranger J, Winterpacht A, Zabel B. 1994. The type II collagenopathies: a spectrum of chondrodysplasias. Eur. J. Pediatr. 153:256–65 [Google Scholar]
  54. Sricholpech M, Perdivara I, Yokoyama M, Nagaoka H, Terajima M. et al. 2012. Lysyl hydroxylase 3-mediated glucosylation in type I collagen: molecular loci and biological significance. J. Biol. Chem. 287:2722998–99 [Google Scholar]
  55. Steegmaier M, Oorschot V, Klumperman J, Scheller RH. 2000. Syntaxin 17 is abundant in steroidogenic cells and implicated in smooth endoplasmic reticulum membrane dynamics. Mol. Biol. Cell 11:82719–31 [Google Scholar]
  56. Townley AK, Feng Y, Schmidt K, Carter DA, Porter R. et al. 2008. Efficient coupling of Sec23-Sec24 to Sec13-Sec31 drives COPII-dependent collagen secretion and is essential for normal craniofacial development. J. Cell Sci. 121:183025–34 [Google Scholar]
  57. Venditti R, Scanu T, Santoro M, Di Tullio G, Spaar A. et al. 2012. Sedlin controls the ER export of procollagen by regulating the Sar1 cycle. Science 337:61021668–72 [Google Scholar]
  58. Von Blume J, Alleaume A-M, Kienzle C, Carreras-Sureda A, Valverde M, Malhotra V. 2012. Cab45 is required for Ca2+-dependent secretory cargo sorting at the trans-Golgi network. J. Cell Biol. 199:71057–66 [Google Scholar]
  59. Von Blume J, Duran JM, Forlanelli E, Alleaume A-M, Egorov M. et al. 2009. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J. Cell Biol. 187:71055–69 [Google Scholar]
  60. Wilson D, Phamluong K, Li L, Sun M, Cao T. et al. 2011. Global defects in collagen secretion in a Mia3/TANGO1 knockout mouse. J. Cell Biol. 193:5935–51 [Google Scholar]
  61. Yamaguchi T, Dulubova I, Min S-W, Chen X, Rizo J, Südhof TC. 2002. Sly1 binds to Golgi and ER syntaxins via a conserved N-terminal peptide motif. Dev. Cell 2:3295–305 [Google Scholar]
  62. Zeisberg M, Kalluri R. 2013. Cellular mechanisms of tissue fibrosis. 1. Common and organ-specific mechanisms associated with tissue fibrosis. Am. J. Physiol. Cell Physiol. 304:3C216–25 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error