1932

Abstract

The -Golgi network (TGN) is an important cargo sorting station within the cell where newly synthesized proteins are packaged into distinct transport carriers that are targeted to various destinations. To maintain the fidelity of protein transport, elaborate protein sorting machinery is employed to mediate sorting of specific cargo proteins into distinct transport carriers. Protein sorting requires assembly of the cytosolic sorting machinery onto the TGN membrane and capture of cargo proteins. We review the cytosolic and transmembrane sorting machinery that function at the TGN and describe molecular interactions and regulatory mechanisms that enable accurate protein sorting. In addition, we highlight the importance of TGN sorting in physiology and disease.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013012
2014-10-06
2024-06-20
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013012.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013012&mimeType=html&fmt=ahah

Literature Cited

  1. Andersen OM, Reiche J, Schmidt V, Gotthardt M, Spoelgen R. et al. 2005. Neuronal sorting protein-related receptor sorLA/LR11 regulates processing of the amyloid precursor protein. Proc. Natl. Acad. Sci. USA 102:13461–66 [Google Scholar]
  2. Andersen OM, Schmidt V, Spoelgen R, Gliemann J, Behlke J. et al. 2006. Molecular dissection of the interaction between amyloid precursor protein and its neuronal trafficking receptor SorLA/LR11. Biochemistry 45:2618–28 [Google Scholar]
  3. Aridor M, Bannykh SI, Rowe T, Balch WE. 1999. Cargo can modulate COPII vesicle formation from the endoplasmic reticulum. J. Biol. Chem. 274:4389–99 [Google Scholar]
  4. Asensio CS, Sirkis DW, Edwards RH. 2010. RNAi screen identifies a role for adaptor protein AP-3 in sorting to the regulated secretory pathway. J. Cell Biol. 191:1173–87 [Google Scholar]
  5. Asensio CS, Sirkis DW, Maas JW Jr, Egami K, To TL. et al. 2013. Self-assembly of VPS41 promotes sorting required for biogenesis of the regulated secretory pathway. Dev. Cell 27:425–37 [Google Scholar]
  6. Banziger C, Soldini D, Schutt C, Zipperlen P, Hausmann G, Basler K. 2006. Wntless, a conserved membrane protein dedicated to the secretion of Wnt proteins from signaling cells. Cell 125:509–22 [Google Scholar]
  7. Barfield RM, Fromme JC, Schekman R. 2009. The exomer coat complex transports Fus1p to the plasma membrane via a novel plasma membrane sorting signal in yeast. Mol. Biol. Cell 20:4985–96 [Google Scholar]
  8. Bartscherer K, Pelte N, Ingelfinger D, Boutros M. 2006. Secretion of Wnt ligands requires Evi, a conserved transmembrane protein. Cell 125:523–33 [Google Scholar]
  9. Barylko B, Mao YS, Wlodarski P, Jung G, Binns DD. et al. 2009. Palmitoylation controls the catalytic activity and subcellular distribution of phosphatidylinositol 4-kinase IIα. J. Biol. Chem. 284:9994–10003 [Google Scholar]
  10. Benhra N, Lallet S, Cotton M, Le Bras S, Dussert A, Le Borgne R. 2011. AP-1 controls the trafficking of Notch and Sanpodo toward E-cadherin junctions in sensory organ precursors. Curr. Biol. 21:87–95 [Google Scholar]
  11. Berkovic SF, Dibbens LM, Oshlack A, Silver JD, Katerelos M. et al. 2008. Array-based gene discovery with three unrelated subjects shows SCARB2/LIMP-2 deficiency causes myoclonus epilepsy and glomerulosclerosis. Am. J. Hum. Genet. 82:673–84 [Google Scholar]
  12. Bohnsack RN, Song X, Olson LJ, Kudo M, Gotschall RR. et al. 2009. Cation-independent mannose 6-phosphate receptor: a composite of distinct phosphomannosyl binding sites. J. Biol. Chem. 284:35215–26 [Google Scholar]
  13. Bonifacino JS. 2004. The GGA proteins: adaptors on the move. Nat. Rev. Mol. Cell Biol. 5:23–32 [Google Scholar]
  14. Bonifacino JS. 2014. Adaptor proteins involved in polarized sorting. J. Cell Biol. 204:7–17 [Google Scholar]
  15. Bonifacino JS, Traub LM. 2003. Signals for sorting of transmembrane proteins to endosomes and lysosomes. Annu. Rev. Biochem. 72:395–447 [Google Scholar]
  16. Boonen M, Vogel P, Platt KA, Dahms N, Kornfeld S. 2009. Mice lacking mannose 6-phosphate uncovering enzyme activity have a milder phenotype than mice deficient for N-acetylglucosamine-1-phosphotransferase activity. Mol. Biol. Cell 20:4381–89 [Google Scholar]
  17. Braulke T, Bonifacino JS. 2009. Sorting of lysosomal proteins. Biochim. Biophys. Acta 1793:605–14 [Google Scholar]
  18. Brett TJ, Traub LM, Fremont DH. 2002. Accessory protein recruitment motifs in clathrin-mediated endocytosis. Structure 10:797–809 [Google Scholar]
  19. Brewer CF, Miceli MC, Baum LG. 2002. Clusters, bundles, arrays and lattices: novel mechanisms for lectin-saccharide-mediated cellular interactions. Curr. Opin. Struct. Biol. 12:616–23 [Google Scholar]
  20. Briguglio JS, Kumar S, Turkewitz AP. 2013. Lysosomal sorting receptors are essential for secretory granule biogenesis in Tetrahymena. J. Cell Biol. 203:537–50 [Google Scholar]
  21. Burgess J, Jauregui M, Tan J, Rollins J, Lallet S. et al. 2011. AP-1 and clathrin are essential for secretory granule biogenesis in Drosophila. Mol. Biol. Cell 22:2094–105 [Google Scholar]
  22. Burgos PV, Mardones GA, Rojas AL, daSilva LLP, Prabhu Y. et al. 2010. Sorting of the Alzheimer's disease amyloid precursor protein mediated by the AP-4 complex. Dev. Cell 18:425–36 [Google Scholar]
  23. Canuel M, Korkidakis A, Konnyu K, Morales CR. 2008. Sortilin mediates the lysosomal targeting of cathepsins D and H. Biochem. Biophys. Res. Commun. 373:292–97 [Google Scholar]
  24. Cao M, Mao Z, Kam C, Xiao N, Cao X. et al. 2013. PICK1 and ICA69 control insulin granule trafficking and their deficiencies lead to impaired glucose tolerance. PLOS Biol. 11:e1001541 [Google Scholar]
  25. Cao X, Coskun U, Rossle M, Buschhorn SB, Grzybek M. et al. 2009. Golgi protein FAPP2 tubulates membranes. Proc. Natl. Acad. Sci. USA 106:21121–25 [Google Scholar]
  26. Cao X, Surma MA, Simons K. 2012. Polarized sorting and trafficking in epithelial cells. Cell Res. 22:793–805 [Google Scholar]
  27. Carvajal-Gonzalez JM, Gravotta D, Mattera R, Diaz F, Perez Bay A. et al. 2012. Basolateral sorting of the coxsackie and adenovirus receptor through interaction of a canonical YXXΦ motif with the clathrin adaptors AP-1A and AP-1B. Proc. Natl. Acad. Sci. USA 109:3820–25 [Google Scholar]
  28. Caster AH, Sztul E, Kahn RA. 2013. A role for cargo in Arf-dependent adaptor recruitment. J. Biol. Chem. 288:14788–804 [Google Scholar]
  29. Castillon GA, Michon L, Watanabe R. 2013. Apical sorting of lysoGPI-anchored proteins occurs independent of association with detergent-resistant membranes but dependent on their N-glycosylation. Mol. Biol. Cell 24:2021–33 [Google Scholar]
  30. Chaudhuri R, Lindwasser OW, Smith WJ, Hurley JH, Bonifacino JS. 2007. Downregulation of CD4 by human immunodeficiency virus type 1 Nef is dependent on clathrin and involves direct interaction of Nef with the AP2 clathrin adaptor. J. Virol. 81:3877–90 [Google Scholar]
  31. Chavez CA, Bohnsack RN, Kudo M, Gotschall RR, Canfield WM, Dahms NM. 2007. Domain 5 of the cation-independent mannose 6-phosphate receptor preferentially binds phosphodiesters (mannose 6-phosphate N-acetylglucosamine ester). Biochemistry 46:12604–17 [Google Scholar]
  32. Chen ZY, Ieraci A, Teng H, Dall H, Meng CX. et al. 2005. Sortilin controls intracellular sorting of brain-derived neurotrophic factor to the regulated secretory pathway. J. Neurosci. 25:6156–66 [Google Scholar]
  33. Chidambaram S, Müllers N, Wiederhold K, Haucke V, von Mollard GF. 2004. Specific interaction between SNAREs and epsin N-terminal homology (ENTH) domains of epsin-related proteins in trans-Golgi network to endosome transport. J. Biol. Chem. 279:4175–79 [Google Scholar]
  34. Chidambaram S, Zimmermann J, von Mollard GF. 2008. ENTH domain proteins are cargo adaptors for multiple SNARE proteins at the TGN endosome. J. Cell Sci. 121:329–38 [Google Scholar]
  35. Choy RW, Cheng Z, Schekman R. 2012. Amyloid precursor protein (APP) traffics from the cell surface via endosomes for amyloid β (Aβ) production in the trans-Golgi network. Proc. Natl. Acad. Sci. USA 109:E2077–82 [Google Scholar]
  36. Christis C, Munro S. 2012. The small G protein Arl1 directs the trans-Golgi-specific targeting of the Arf1 exchange factors BIG1 and BIG2. J. Cell Biol. 196:327–35 [Google Scholar]
  37. Chuang JS, Schekman RW. 1996. Differential trafficking and timed localization of two chitin synthase proteins, Chs2p and Chs3p. J. Cell Biol. 135:597–610 [Google Scholar]
  38. Chuang JZ, Sung CH. 1998. The cytoplasmic tail of rhodopsin acts as a novel apical sorting signal in polarized MDCK cells. J. Cell Biol. 142:1245–56 [Google Scholar]
  39. Clemens Grisham R, Kindt K, Finger-Baier K, Schmid B, Nicolson T. 2013. Mutations in ap1b1 cause mistargeting of the Na+/K+-ATPase pump in sensory hair cells. PLOS ONE 8:e60866 [Google Scholar]
  40. Cohen LA, Honda A, Varnai P, Brown FD, Balla T, Donaldson JG. 2007. Active Arf6 recruits ARNO/cytohesin GEFs to the PM by binding their PH domains. Mol. Biol. Cell 18:2244–53 [Google Scholar]
  41. Cooper AA, Stevens TH. 1996. Vps10p cycles between the late-Golgi and prevacuolar compartments in its function as the sorting receptor for multiple yeast vacuolar hydrolases. J. Cell Biol. 133:529–41 [Google Scholar]
  42. Copic A, Starr TL, Schekman R. 2007. Ent3p and Ent5p exhibit cargo-specific functions in trafficking proteins between the trans-Golgi network and the endosomes in yeast. Mol. Biol. Cell 18:1803–15 [Google Scholar]
  43. Costaguta G, Duncan MC, Fernández GE, Huang GH, Payne GS. 2006. Distinct roles for TGN/endosome epsin-like adaptors Ent3p and Ent5p. Mol. Biol. Cell 17:3907–20 [Google Scholar]
  44. Cowles CR, Odorizzi G, Payne GS, Emr SD. 1997. The AP-3 adaptor complex is essential for cargo-selective transport to the yeast vacuole. Cell 91:109–18 [Google Scholar]
  45. Cramer JF, Gustafsen C, Behrens MA, Oliveira CL, Pedersen JS. et al. 2010. GGA autoinhibition revisited. Traffic 11:259–73 [Google Scholar]
  46. Crottet P, Meyer DM, Rohrer J, Spiess M. 2002. ARF1·GTP, tyrosine-based signals, and phosphatidylinositol 4,5-bisphosphate constitute a minimal machinery to recruit the AP-1 clathrin adaptor to membranes. Mol. Biol. Cell 13:3672–82 [Google Scholar]
  47. Cruz-Garcia D, Ortega-Bellido M, Scarpa M, Villeneuve J, Jovic M. et al. 2013. Recruitment of arfaptins to the trans-Golgi network by PI(4)P and their involvement in cargo export. EMBO J. 32:1717–29 [Google Scholar]
  48. Curwin AJ, von Blume J, Malhotra V. 2012. Cofilin-mediated sorting and export of specific cargo from the Golgi apparatus in yeast. Mol. Biol. Cell 23:2327–38 [Google Scholar]
  49. Daboussi L, Costaguta G, Payne GS. 2012. Phosphoinositide-mediated clathrin adaptor progression at the trans-Golgi network. Nat. Cell Biol. 14:239–48 [Google Scholar]
  50. De M, Abazeed ME, Fuller RS. 2013. Direct binding of the Kex2p cytosolic tail to the VHS domain of yeast Gga2p facilitates TGN to prevacuolar compartment transport and is regulated by phosphorylation. Mol. Biol. Cell 24:495–509 [Google Scholar]
  51. De Matteis MA, Di Campli A, Godi A. 2005. The role of the phosphoinositides at the Golgi complex. Biochim. Biophys. Acta 1744:396–405 [Google Scholar]
  52. Matteis MA, Luini A. De 2008. Exiting the Golgi complex. Nat. Rev. Mol. Cell Biol. 9:273–84 [Google Scholar]
  53. Deborde S, Perret E, Gravotta D, Deora A, Salvarezza S. et al. 2008. Clathrin is a key regulator of basolateral polarity. Nature 452:719–23 [Google Scholar]
  54. Delacour D, Cramm-Behrens CI, Drobecq H, Le Bivic A, Naim HY, Jacob R. 2006. Requirement for galectin-3 in apical protein sorting. Curr. Biol. 16:408–14 [Google Scholar]
  55. Delacour D, Gouyer V, Zanetta JP, Drobecq H, Leteurtre E. et al. 2005. Galectin-4 and sulfatides in apical membrane trafficking in enterocyte-like cells. J. Cell Biol. 169:491–501 [Google Scholar]
  56. Delacour D, Greb C, Koch A, Salomonsson E, Leffler H. et al. 2007. Apical sorting by galectin-3-dependent glycoprotein clustering. Traffic 8:379–88 [Google Scholar]
  57. Dell'Angelica EC. 2009. AP-3-dependent trafficking and disease: the first decade. Curr. Opin. Cell Biol. 21:552–59 [Google Scholar]
  58. Dell'Angelica EC, Shotelersuk V, Aguilar RC, Gahl WA, Bonifacino JS. 1999. Altered trafficking of lysosomal proteins in Hermansky-Pudlak syndrome due to mutations in the β3A subunit of the AP-3 adaptor. Mol. Cell 3:11–21 [Google Scholar]
  59. Demmel L, Gravert M, Ercan E, Habermann B, Müller-Reichert T. et al. 2008. The clathrin adaptor Gga2p is a phosphatidylinositol 4-phosphate effector at the Golgi exit. Mol. Biol. Cell 19:1991–2002 [Google Scholar]
  60. Deretic D, Schmerl S, Hargrave PA, Arendt A, McDowell JH. 1998. Regulation of sorting and post-Golgi trafficking of rhodopsin by its C-terminal sequence QVS(A)PA. Proc. Natl. Acad. Sci. USA 95:10620–25 [Google Scholar]
  61. Deretic D, Williams AH, Ransom N, Morel V, Hargrave PA, Arendt A. 2005. Rhodopsin C terminus, the site of mutations causing retinal disease, regulates trafficking by binding to ADP-ribosylation factor 4 (ARF4). Proc. Natl. Acad. Sci. USA 102:3301–6 [Google Scholar]
  62. DiNitto JP, Delprato A, Gabe Lee MT, Cronin TC, Huang S. et al. 2007. Structural basis and mechanism of autoregulation in 3-phosphoinositide-dependent Grp1 family Arf GTPase exchange factors. Mol. Cell 28:569–83 [Google Scholar]
  63. Donaldson JG, Jackson CL. 2011. ARF family G proteins and their regulators: roles in membrane transport, development and disease. Nat. Rev. Mol. Cell Biol. 12:362–75 [Google Scholar]
  64. Doray B, Bruns K, Ghosh P, Kornfeld SA. 2002a. Autoinhibition of the ligand-binding site of GGA1/3 VHS domains by an internal acidic cluster-dileucine motif. Proc. Natl. Acad. Sci. USA 99:8072–77 [Google Scholar]
  65. Doray B, Ghosh P, Griffith J, Geuze HJ, Kornfeld S. 2002b. Cooperation of GGAs and AP-1 in packaging MPRs at the trans-Golgi network. Science 297:1700–3 [Google Scholar]
  66. Doray B, Lee I, Knisely J, Bu G, Kornfeld S. 2007. The γ/σ1 and α/σ2 hemicomplexes of clathrin adaptors AP-1 and AP-2 harbor the dileucine recognition site. Mol. Biol. Cell 18:1887–96 [Google Scholar]
  67. Doray B, Misra S, Qian Y, Brett TJ, Kornfeld S. 2012. Do GGA adaptors bind internal DXXLL motifs?. Traffic 13:1315–25 [Google Scholar]
  68. Dube M, Roy BB, Guiot-Guillain P, Binette J, Mercier J. et al. 2010. Antagonism of tetherin restriction of HIV-1 release by Vpu involves binding and sequestration of the restriction factor in a perinuclear compartment. PLOS Pathog. 6:e1000856 [Google Scholar]
  69. Duncan MC, Costaguta G, Payne GS. 2003. Yeast epsin-related proteins required for Golgi-endosome traffic define a γ-adaptin ear-binding motif. Nat. Cell Biol. 5:77–81 [Google Scholar]
  70. Eissenberg JC, Ilvarsonn AM, Sly WS, Waheed A, Krzyzanek V. et al. 2011. Drosophila GGA model: an ultimate gateway to GGA analysis. Traffic 12:1821–38 [Google Scholar]
  71. Fairn GD, Schieber NL, Ariotti N, Murphy S, Kuerschner L. et al. 2011. High-resolution mapping reveals topologically distinct cellular pools of phosphatidylserine. J. Cell Biol. 194:257–75 [Google Scholar]
  72. Farias GG, Cuitino L, Guo X, Ren X, Jarnik M. et al. 2012. Signal-mediated, AP-1/clathrin-dependent sorting of transmembrane receptors to the somatodendritic domain of hippocampal neurons. Neuron 75:810–23 [Google Scholar]
  73. Faulhammer F, Kanjilal-Kolar S, Knödler A, Lo J, Lee Y. et al. 2007. Growth control of Golgi phosphoinositides by reciprocal localization of Sac1 lipid phosphatase and Pik1 4-kinase. Traffic 8:1554–67 [Google Scholar]
  74. Faulhammer F, Konrad G, Brankatschk B, Tahirovic S, Knödler A, Mayinger P. 2005. Cell growth-dependent coordination of lipid signaling and glycosylation is mediated by interactions between Sac1p and Dpm1p. J. Cell Biol. 168:185–91 [Google Scholar]
  75. Feng L, Seymour AB, Jiang S, To A, Peden AA. et al. 1999. The β3A subunit gene (Ap3B1) of the AP-3 adaptor complex is altered in the mouse hypopigmentation mutant pearl, a model for Hermansky-Pudlak syndrome and night blindness. Hum. Mol. Genet. 8:323–30 [Google Scholar]
  76. Ford MG, Mills IG, Peter BJ, Vallis Y, Praefcke GJ. et al. 2002. Curvature of clathrin-coated pits driven by epsin. Nature 419:361–66 [Google Scholar]
  77. Friant S, Pécheur EI, Eugster A, Michel F, Lefkir Y. et al. 2003. Ent3p is a PtdIns(3,5)P2 effector required for protein sorting to the multivesicular body. Dev. Cell 5:499–511 [Google Scholar]
  78. Fujita H, Saeki M, Yasunaga K, Ueda T, Imoto T, Himeno M. 1999. In vitro binding study of adaptor protein complex (AP-1) to lysosomal targeting motif (LI-motif). Biochem. Biophys. Res. Commun. 255:54–58 [Google Scholar]
  79. Gamp AC, Tanaka Y, Lüllmann-Rauch R, Wittke D, D'Hooge R. et al. 2003. LIMP-2/LGP85 deficiency causes ureteric pelvic junction obstruction, deafness and peripheral neuropathy in mice. Hum. Mol. Genet. 12:631–46 [Google Scholar]
  80. Gariano G, Guarienti M, Bresciani R, Borsani G, Carola G. et al. 2014. Analysis of three μ1-AP1 subunits during zebrafish development. Dev. Dyn. 243:299–314 [Google Scholar]
  81. Gasnereau I, Herr P, Chia PZ, Basler K, Gleeson PA. 2011. Identification of an endocytosis motif in an intracellular loop of Wntless protein, essential for its recycling and the control of Wnt protein signaling. J. Biol. Chem. 286:43324–33 [Google Scholar]
  82. Gehart H, Goginashvili A, Beck R, Morvan J, Erbs E. et al. 2012. The BAR domain protein Arfaptin-1 controls secretory granule biogenesis at the trans-Golgi network. Dev. Cell 23:756–68 [Google Scholar]
  83. Gelling CL, Dawes IW, Perlmutter DH, Fisher EA, Brodsky JL. 2012. The endosomal protein-sorting receptor sortilin has a role in trafficking α-1 antitrypsin. Genetics 192:889–903 [Google Scholar]
  84. Gillingham AK, Munro S. 2007. The small G proteins of the Arf family and their regulators. Annu. Rev. Cell Dev. Biol. 23:579–611 [Google Scholar]
  85. Glyvuk N, Tsytsyura Y, Geumann C, D'Hooge R, Huve J. et al. 2010. AP-1/σ1B-adaptin mediates endosomal synaptic vesicle recycling, learning and memory. EMBO J. 29:1318–30 [Google Scholar]
  86. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G. et al. 1999. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1:280–87 [Google Scholar]
  87. Gonzalez A, Valeiras M, Sidransky E, Tayebi N. 2013. Lysosomal integral membrane protein-2: a new player in lysosome-related pathology. Mol. Genet. Metab. 111:84–91 [Google Scholar]
  88. Goodman RM, Thombre S, Firtina Z, Gray D, Betts D. et al. 2006. Sprinter: a novel transmembrane protein required for Wg secretion and signaling. Development 133:4901–11 [Google Scholar]
  89. Govero J, Doray B, Bai H, Kornfeld S. 2012. Analysis of Gga null mice demonstrates a non-redundant role for mammalian GGA2 during development. PLOS ONE 7:e30184 [Google Scholar]
  90. Gravotta D, Carvajal-Gonzalez JM, Mattera R, Deborde S, Banfelder JR. et al. 2012. The clathrin adaptor AP-1A mediates basolateral polarity. Dev. Cell 22:811–23 [Google Scholar]
  91. Guo X, Mattera R, Ren X, Chen Y, Retamal C. et al. 2013a. The adaptor protein-1 μ1B subunit expands the repertoire of basolateral sorting signal recognition in epithelial cells. Dev. Cell 27:353–66 [Google Scholar]
  92. Guo Y, Au WC, Shakoury-Elizeh M, Protchenko O, Basrai M. et al. 2010. Phosphatidylserine is involved in the ferrichrome-induced plasma membrane trafficking of Arn1 in Saccharomyces cerevisiae. J. Biol. Chem. 285:39564–73 [Google Scholar]
  93. Guo Y, Zanetti G, Schekman R. 2013b. A novel GTP-binding protein-adaptor protein complex responsible for export of Vangl2 from the trans Golgi network. eLife 2:e00160 [Google Scholar]
  94. Gustafsen C, Kjolby M, Nyegaard M, Mattheisen M, Lundhede J. et al. 2014. The hypercholesterolemia-risk gene SORT1 facilitates PCSK9 secretion. Cell Metab. 19:310–18 [Google Scholar]
  95. Hancock MK, Yammani RD, Dahms NM. 2002. Localization of the carbohydrate recognition sites of the insulin-like growth factor II/mannose 6-phosphate receptor to domains 3 and 9 of the extracytoplasmic region. J. Biol. Chem. 277:47205–12 [Google Scholar]
  96. Harterink M, Korswagen HC. 2012. Dissecting the Wnt secretion pathway: key questions on the modification and intracellular trafficking of Wnt proteins. Acta Physiol. 204:8–16 [Google Scholar]
  97. Hase K, Nakatsu F, Ohmae M, Sugihara K, Shioda N. et al. 2013. AP-1B-mediated protein sorting regulates polarity and proliferation of intestinal epithelial cells in mice. Gastroenterology 145:625–35 [Google Scholar]
  98. Hausser A, Link G, Hoene M, Russo C, Selchow O, Pfizenmaier K. 2006. Phospho-specific binding of 14–3–3 proteins to phosphatidylinositol 4-kinase III β protects from dephosphorylation and stabilizes lipid kinase activity. J. Cell Sci. 119:3613–21 [Google Scholar]
  99. Hauser H, Lopez LA, Yang SJ, Oldenburg JE, Exline CM. et al. 2010. HIV-1 Vpu and HIV-2 Env counteract BST-2/tetherin by sequestration in a perinuclear compartment. Retrovirology 7:51 [Google Scholar]
  100. Hausser A, Storz P, Märtens S, Link G, Toker A, Pfizenmaier K. 2005. Protein kinase D regulates vesicular transport by phosphorylating and activating phosphatidylinositol-4 kinase IIIβ at the Golgi complex. Nat. Cell Biol. 7:880–86 [Google Scholar]
  101. Haynes LP, Thomas GMH, Burgoyne RD. 2005. Interaction of neuronal calcium sensor-1 and ADP-ribosylation factor 1 allows bidirectional control of phosphatidylinositol 4-kinase β and trans-Golgi network-plasma membrane traffic. J. Biol. Chem. 280:6047–54 [Google Scholar]
  102. Heldwein EE, Macia E, Wang J, Yin HL, Kirchhausen T, Harrison SC. 2004. Crystal structure of the clathrin adaptor protein 1 core. Proc. Natl. Acad. Sci. USA 101:14108–13 [Google Scholar]
  103. Hendricks KB, Wang BQ, Schnieders EA, Thorner J. 1999. Yeast homologue of neuronal frequenin is a regulator of phosphatidylinositol-4-OH kinase. Nat. Cell Biol. 1:234–41 [Google Scholar]
  104. Hermann GJ, Schroeder LK, Hieb CA, Kershner AM, Rabbitts BM. et al. 2005. Genetic analysis of lysosomal trafficking in Caenorhabditis elegans. Mol. Biol. Cell 16:3273–88 [Google Scholar]
  105. Herr P, Basler K. 2012. Porcupine-mediated lipidation is required for Wnt recognition by Wls. Dev. Biol. 361:392–402 [Google Scholar]
  106. Hesse D, Hommel A, Jaschke A, Moser M, Bernhardt U. et al. 2010. Altered GLUT4 trafficking in adipocytes in the absence of the GTPase Arfrp1. Biochem. Biophys. Res. Commun. 394:896–903 [Google Scholar]
  107. Hesse D, Jaschke A, Kanzleiter T, Witte N, Augustin R. et al. 2012. GTPase ARFRP1 is essential for normal hepatic glycogen storage and insulin-like growth factor 1 secretion. Mol. Cell. Biol. 32:4363–74 [Google Scholar]
  108. Hirst J, Borner GH, Antrobus R, Peden AA, Hodson NA. et al. 2012. Distinct and overlapping roles for AP-1 and GGAs revealed by the “knocksideways” system. Curr. Biol. 22:1711–16 [Google Scholar]
  109. Hirst J, Carmichael J. 2011. A potential role for the clathrin adaptor GGA in Drosophila spermatogenesis. BMC Cell Biol. 12:22 [Google Scholar]
  110. Hirst J, Irving C, Borner GH. 2013. Adaptor protein complexes AP-4 and AP-5: new players in endosomal trafficking and progressive spastic paraplegia. Traffic 14:153–64 [Google Scholar]
  111. Hirst J, Miller SE, Taylor MJ, von Mollard GF, Robinson MS. 2004. EpsinR is an adaptor for the SNARE protein Vti1b. Mol. Biol. Cell 15:5593–602 [Google Scholar]
  112. Hirst J, Sahlender DA, Choma M, Sinka R, Harbour ME. et al. 2009. Spatial and functional relationship of GGAs and AP-1 in Drosophila and HeLa cells. Traffic 10:1696–710 [Google Scholar]
  113. Hofmann I, Thompson A, Sanderson CM, Munro S. 2007. The Arl4 family of small G proteins can recruit the cytohesin Arf6 exchange factors to the plasma membrane. Curr. Biol. 17:711–16 [Google Scholar]
  114. Holst B, Madsen KL, Jansen AM, Jin C, Rickhag M. et al. 2013. PICK1 deficiency impairs secretory vesicle biogenesis and leads to growth retardation and decreased glucose tolerance. PLOS Biol. 11:e1001542 [Google Scholar]
  115. Hommel A, Hesse D, Völker W, Jaschke A, Moser M. et al. 2010. The ARF-like GTPase ARFRP1 is essential for lipid droplet growth and is involved in the regulation of lipolysis. Mol. Cell. Biol. 30:1231–42 [Google Scholar]
  116. Honing S, Sandoval IV, von Figura K. 1998. A di-leucine-based motif in the cytoplasmic tail of LIMP-II and tyrosinase mediates selective binding of AP-3. EMBO J. 17:1304–14 [Google Scholar]
  117. Hung CW, Aoh QL, Joglekar AP, Payne GS, Duncan MC. 2012. Adaptor autoregulation promotes coordinated binding within clathrin coats. J. Biol. Chem. 287:17398–407 [Google Scholar]
  118. Imjeti NS, Lebreton S, Paladino S, de la Fuente E, Gonzalez A, Zurzolo C. 2011. N-glycosylation instead of cholesterol mediates oligomerization and apical sorting of GPI-APs in FRT cells. Mol. Biol. Cell 22:4621–34 [Google Scholar]
  119. Jackson LP, Kelly BT, McCoy AJ, Gaffry T, James LC. et al. 2010. A large-scale conformational change couples membrane recruitment to cargo binding in the AP2 clathrin adaptor complex. Cell 141:1220–29 [Google Scholar]
  120. Jacobsen L, Madsen P, Jacobsen C, Nielsen MS, Gliemann J, Petersen CM. 2001. Activation and functional characterization of the mosaic receptor SorLA/LR11. J. Biol. Chem. 276:22788–96 [Google Scholar]
  121. Janvier K, Kato Y, Boehm M, Rose JR, Martina JA. et al. 2003. Recognition of dileucine-based sorting signals from HIV-1 Nef and LIMP-II by the AP-1 γ-σ1 and AP-3 δ-σ3 hemicomplexes. J. Cell Biol. 163:1281–90 [Google Scholar]
  122. Jia X, Singh R, Homann S, Yang H, Guatelli J, Xiong Y. 2012. Structural basis of evasion of cellular adaptive immunity by HIV-1 Nef. Nat. Struct. Mol. Biol. 19:701–6 [Google Scholar]
  123. Jia X, Weber E, Tokarev A, Lewinski M, Rizk M. et al. 2014. Structural basis of HIV-1 Vpu-mediated BST2 antagonism via hijacking of the clathrin adaptor protein complex 1. eLife 3:e02362 [Google Scholar]
  124. Kametaka S, Kametaka A, Yonekura S, Haruta M, Takenoshita S. et al. 2012. AP-1 clathrin adaptor and CG8538/Aftiphilin are involved in Notch signaling during eye development in Drosophila melanogaster. J. Cell Sci. 125:634–48 [Google Scholar]
  125. Kanoh H, Williger BT, Exton JH. 1997. Arfaptin 1, a putative cytosolic target protein of ADP-ribosylation factor, is recruited to Golgi membranes. J. Biol. Chem. 272:5421–29 [Google Scholar]
  126. Kantheti P, Qiao X, Diaz ME, Peden AA, Meyer GE. et al. 1998. Mutation in AP-3 δ in the mocha mouse links endosomal transport to storage deficiency in platelets, melanosomes, and synaptic vesicles. Neuron 21:111–22 [Google Scholar]
  127. Kaplan OI, Molla-Herman A, Cevik S, Ghossoub R, Kida K. et al. 2010. The AP-1 clathrin adaptor facilitates cilium formation and functions with RAB-8 in C. elegans ciliary membrane transport. J. Cell Sci. 123:3966–77 [Google Scholar]
  128. Kato Y, Misra S, Puertollano R, Hurley JH, Bonifacino JS. 2002. Phosphoregulation of sorting signal-VHS domain interactions by a direct electrostatic mechanism. Nat. Struct. Biol. 9:532–36 [Google Scholar]
  129. Keller P, Toomre D, Diaz E, White J, Simons K. 2001. Multicolour imaging of post-Golgi sorting and trafficking in live cells. Nat. Cell Biol. 3:140–49 [Google Scholar]
  130. Kelly BT, McCoy AJ, Spate K, Miller SE, Evans PR. et al. 2008. A structural explanation for the binding of endocytic dileucine motifs by the AP2 complex. Nature 456:976–79 [Google Scholar]
  131. Kent HM, McMahon HT, Evans PR, Benmerah A, Owen DJ. 2002. γ-Adaptin appendage domain: structure and binding site for Eps15 and γ-synergin. Structure 10:1139–48 [Google Scholar]
  132. Kjolby M, Andersen OM, Breiderhoff T, Fjorback AW, Pedersen KM. et al. 2010. Sort1, encoded by the cardiovascular risk locus 1p13.3, is a regulator of hepatic lipoprotein export. Cell Metab. 12:213–23 [Google Scholar]
  133. Klein TJ, Mlodzik M. 2005. Planar cell polarization: An emerging model points in the right direction. Annu. Rev. Cell Dev. Biol. 21:155–76 [Google Scholar]
  134. Klemm RW, Ejsing CS, Surma MA, Kaiser HJ, Gerl MJ. et al. 2009. Segregation of sphingolipids and sterols during formation of secretory vesicles at the trans-Golgi network. J. Cell Biol. 185:601–12 [Google Scholar]
  135. Klinger SC, Glerup S, Raarup MK, Mari MC, Nyegaard M. et al. 2011. SorLA regulates the activity of lipoprotein lipase by intracellular trafficking. J. Cell Sci. 124:1095–105 [Google Scholar]
  136. Klumperman J. 2011. Architecture of the mammalian Golgi. Cold Spring Harb. Perspect. Biol. 3:a005181 [Google Scholar]
  137. Knipper M, Claussen C, Rüttiger L, Zimmermann U, Lüllmann-Rauch R. et al. 2006. Deafness in LIMP2-deficient mice due to early loss of the potassium channel KCNQ1/KCNE1 in marginal cells of the stria vascularis. J. Physiol. 576:73–86 [Google Scholar]
  138. Koster A, Saftig P, Matzner U, von Figura K, Peters C, Pohlmann R. 1993. Targeted disruption of the M(r) 46,000 mannose 6-phosphate receptor gene in mice results in misrouting of lysosomal proteins. EMBO J. 12:5219–23 [Google Scholar]
  139. Kundu A, Avalos RT, Sanderson CM, Nayak DP. 1996. Transmembrane domain of influenza virus neuraminidase, a type II protein, possesses an apical sorting signal in polarized MDCK cells. J. Virol. 70:6508–15 [Google Scholar]
  140. Kwon S, Christian JL. 2011. Sortilin associates with transforming growth factor-β family proteins to enhance lysosome-mediated degradation. J. Biol. Chem. 286:21876–85 [Google Scholar]
  141. Ladinsky MS, Mastronarde DN, McIntosh JR, Howell KE, Staehelin LA. 1999. Golgi structure in three dimensions: functional insights from the normal rat kidney cell. J. Cell Biol. 144:1135–49 [Google Scholar]
  142. Ladinsky MS, Wu CC, McIntosh S, McIntosh JR, Howell KE. 2002. Structure of the Golgi and distribution of reporter molecules at 20 degrees C reveals the complexity of the exit compartments. Mol. Biol. Cell 13:2810–25 [Google Scholar]
  143. Le Gall S, Erdtmann L, Benichou S, Berlioz-Torrent C, Liu L. et al. 1998. Nef interacts with the μ subunit of clathrin adaptor complexes and reveals a cryptic sorting signal in MHC I molecules. Immunity 8:483–95 [Google Scholar]
  144. Lebreton S, Paladino S, Zurzolo C. 2008. Selective roles for cholesterol and actin in compartmentalization of different proteins in the Golgi and plasma membrane of polarized cells. J. Biol. Chem. 283:29545–53 [Google Scholar]
  145. Lee J, Jongeward GD, Sternberg PW. 1994. unc-101, a gene required for many aspects of Caenorhabditis elegans development and behavior, encodes a clathrin-associated protein. Genes Dev. 8:60–73 [Google Scholar]
  146. Lee C, Goldberg J. 2010. Structure of coatomer cage proteins and the relationship among COPI, COPII, and clathrin vesicle coats. Cell 142:123–32 [Google Scholar]
  147. Lee I, Doray B, Govero J, Kornfeld S. 2008a. Binding of cargo sorting signals to AP-1 enhances its association with ADP ribosylation factor 1-GTP. J. Cell Biol. 180:467–72 [Google Scholar]
  148. Lee I, Drake MT, Traub LM, Kornfeld S. 2008b. Cargo-sorting signals promote polymerization of adaptor protein-1 in an Arf-1·GTP-independent manner. Arch. Biochem. Biophys. 479:63–68 [Google Scholar]
  149. Lee JH, Fischer JA. 2012. Drosophila Tel2 is expressed as a translational fusion with EpsinR and is a regulator of wingless signaling. PLOS ONE 7:e46357 [Google Scholar]
  150. Lee JH, Overstreet E, Fitch E, Fleenor S, Fischer JA. 2009. Drosophila liquid facets-Related encodes Golgi epsin and is an essential gene required for cell proliferation, growth, and patterning. Dev. Biol. 331:1–13 [Google Scholar]
  151. Leventis PA, Da Sylva TR, Rajwans N, Wasiak S, McPherson PS, Boulianne GL. 2011. Liquid facets-related (lqfR) is required for egg chamber morphogenesis during Drosophila oogenesis. PLOS ONE 6:e25466 [Google Scholar]
  152. Li H, Waites CL, Staal RG, Dobryy Y, Park J. et al. 2005. Sorting of vesicular monoamine transporter 2 to the regulated secretory pathway confers the somatodendritic exocytosis of monoamines. Neuron 48:619–33 [Google Scholar]
  153. Ludwig T, Munier-Lehmann H, Bauer U, Hollinshead M, Ovitt C. et al. 1994. Differential sorting of lysosomal enzymes in mannose 6-phosphate receptor-deficient fibroblasts. EMBO J. 13:3430–37 [Google Scholar]
  154. Ludwig T, Ovitt CE, Bauer U, Hollinshead M, Remmler J. et al. 1993. Targeted disruption of the mouse cation-dependent mannose 6-phosphate receptor results in partial missorting of multiple lysosomal enzymes. EMBO J. 12:5225–35 [Google Scholar]
  155. Ma D, Taneja TK, Hagen BM, Kim BY, Ortega B. et al. 2011. Golgi export of the Kir2.1 channel is driven by a trafficking signal located within its tertiary structure. Cell 145:1102–15 [Google Scholar]
  156. Magal LG, Yaffe Y, Shepshelovich J, Aranda JF, del Carmen de Marco M. et al. 2009. Clustering and lateral concentration of raft lipids by the MAL protein. Mol. Biol. Cell 20:3751–62 [Google Scholar]
  157. Man Z, Kondo Y, Koga H, Umino H, Nakayama K, Shin HW. 2011. Arfaptins are localized to the trans-Golgi by interaction with Arl1, but not Arfs. J. Biol. Chem. 286:11569–78 [Google Scholar]
  158. Mancias JD, Goldberg J. 2007. The transport signal on Sec22 for packaging into COPII-coated vesicles is a conformational epitope. Mol. Cell 26:403–14 [Google Scholar]
  159. Manolea F, Chun J, Chen DW, Clarke I, Summerfeldt N. et al. 2010. Arf3 is activated uniquely at the trans-Golgi network by brefeldin A-inhibited guanine nucleotide exchange factors. Mol. Biol. Cell 21:1836–49 [Google Scholar]
  160. Marcusson EG, Horazdovsky BF, Cereghino JL, Gharakhanian E, Emr SD. 1994. The sorting receptor for yeast vacuolar carboxypeptidase Y is encoded by the VPS10 gene. Cell 77:579–86 [Google Scholar]
  161. Mardones GA, Burgos PV, Lin Y, Kloer DP, Magadan JG. et al. 2013. Structural basis for the recognition of tyrosine-based sorting signals by the mu3A subunit of the AP-3 adaptor complex. J. Biol. Chem. 288:9563–71 [Google Scholar]
  162. Martín-García R, de León N, Sharifmoghadam MR, Curto MA, Hoya M. et al. 2011. The FN3 and BRCT motifs in the exomer component Chs5p define a conserved module that is necessary and sufficient for its function. Cell. Mol. Life Sci. 68:2907–17 [Google Scholar]
  163. Matsuda S, Miura E, Matsuda K, Kakegawa W, Kohda K. et al. 2008. Accumulation of AMPA receptors in autophagosomes in neuronal axons lacking adaptor protein AP-4. Neuron 57:730–45 [Google Scholar]
  164. Matsuda S, Yuzaki M. 2008. AP-4: autophagy-four mislocalized proteins in axons. Autophagy 4:815–16 [Google Scholar]
  165. Mattera R, Boehm M, Chaudhuri R, Prabhu Y, Bonifacino JS. 2011. Conservation and diversification of dileucine signal recognition by adaptor protein (AP) complex variants. J. Biol. Chem. 286:2022–30 [Google Scholar]
  166. Mazelova J, Astuto-Gribble L, Inoue H, Tam BM, Schonteich E. et al. 2009. Ciliary targeting motif VxPx directs assembly of a trafficking module through Arf4. EMBO J. 28:183–92 [Google Scholar]
  167. Meyer DM, Crottet P, Maco B, Degtyar E, Cassel D, Spiess M. 2005. Oligomerization and dissociation of AP-1 adaptors are regulated by cargo signals and by ArfGAP1-induced GTP hydrolysis. Mol. Biol. Cell 16:4745–54 [Google Scholar]
  168. Meyer C, Zizioli D, Lausmann S, Eskelinen EL, Hamann J. et al. 2000. μ1A-adaptin-deficient mice: lethality, loss of AP-1 binding and rerouting of mannose 6-phosphate receptors. EMBO J. 19:2193–203 [Google Scholar]
  169. Miller GJ, Mattera R, Bonifacino JS, Hurley JH. 2003. Recognition of accessory protein motifs by the γ-adaptin ear domain of GGA3. Nat. Struct. Biol. 10:599–606 [Google Scholar]
  170. Miller SE, Collins BM, McCoy AJ, Robinson MS, Owen DJ. 2007. A SNARE-adaptor interaction is a new mode of cargo recognition in clathrin-coated vesicles. Nature 450:570–74 [Google Scholar]
  171. Mills IG, Praefcke GJ, Vallis Y, Peter BJ, Olesen LE. et al. 2003. EpsinR: an AP1/clathrin interacting protein involved in vesicle trafficking. J. Cell Biol. 160:213–22 [Google Scholar]
  172. Misra S, Puertollano R, Kato Y, Bonifacino JS, Hurley JH. 2002. Structural basis for acidic-cluster-dileucine sorting-signal recognition by VHS domains. Nature 415:933–37 [Google Scholar]
  173. Mo D, Costa SA, Ihrke G, Youker RT, Pastor-Soler N. et al. 2012. Sialylation of N-linked glycans mediates apical delivery of endolyn in MDCK cells via a galectin-9-dependent mechanism. Mol. Biol. Cell 23:3636–46 [Google Scholar]
  174. Mogelsvang S, Marsh BJ, Ladinsky MS, Howell KE. 2004. Predicting function from structure: 3D structure studies of the mammalian Golgi complex. Traffic 5:338–45 [Google Scholar]
  175. Montpetit A, Cote S, Brustein E, Drouin CA, Lapointe L. et al. 2008. Disruption of AP1S1, causing a novel neurocutaneous syndrome, perturbs development of the skin and spinal cord. PLOS Genet. 4:e1000296 [Google Scholar]
  176. Motoi Y, Aizawa T, Haga S, Nakamura S, Namba Y, Ikeda K. 1999. Neuronal localization of a novel mosaic apolipoprotein E receptor, LR11, in rat and human brain. Brain Res. 833:209–15 [Google Scholar]
  177. Munier-Lehmann H, Mauxion F, Bauer U, Lobel P, Hoflack B. 1996. Re-expression of the mannose 6-phosphate receptors in receptor-deficient fibroblasts. Complementary function of the two mannose 6-phosphate receptors in lysosomal enzyme targeting. J. Biol. Chem. 271:15166–74 [Google Scholar]
  178. Nakatsu F, Okada M, Mori F, Kumazawa N, Iwasa H. et al. 2004. Defective function of GABA-containing synaptic vesicles in mice lacking the AP-3B clathrin adaptor. J. Cell Biol. 167:293–302 [Google Scholar]
  179. Natarajan P, Liu K, Patil DV, Sciorra VA, Jackson CL, Graham TR. 2009. Regulation of a Golgi flippase by phosphoinositides and an ArfGEF. Nat. Cell Biol. 11:1421–26 [Google Scholar]
  180. Neculai D, Schwake M, Ravichandran M, Zunke F, Collins RF. et al. 2013. Structure of LIMP-2 provides functional insights with implications for SR-BI and CD36. Nature 504:172–76 [Google Scholar]
  181. Newell-Litwa K, Seong E, Burmeister M, Faundez V. 2007. Neuronal and non-neuronal functions of the AP-3 sorting machinery. J. Cell Sci. 120:531–41 [Google Scholar]
  182. Nishimoto-Morita K, Shin HW, Mitsuhashi H, Kitamura M, Zhang Q. et al. 2009. Differential effects of depletion of ARL1 and ARFRP1 on membrane trafficking between the trans-Golgi network and endosomes. J. Biol. Chem. 284:10583–92 [Google Scholar]
  183. Offe K, Dodson SE, Shoemaker JT, Fritz JJ, Gearing M. et al. 2006. The lipoprotein receptor LR11 regulates amyloid β production and amyloid precursor protein traffic in endosomal compartments. J. Neurosci. 26:1596–603 [Google Scholar]
  184. Ogata S, Fukuda M. 1994. Lysosomal targeting of Limp II membrane glycoprotein requires a novel Leu-Ile motif at a particular position in its cytoplasmic tail. J. Biol. Chem. 269:5210–17 [Google Scholar]
  185. Ohno H. 2006. Physiological roles of clathrin adaptor AP complexes: lessons from mutant animals. J. Biochem. 139:943–48 [Google Scholar]
  186. Ohno H, Aguilar RC, Yeh D, Taura D, Saito T, Bonifacino JS. 1998. The medium subunits of adaptor complexes recognize distinct but overlapping sets of tyrosine-based sorting signals. J. Biol. Chem. 273:25915–21 [Google Scholar]
  187. Ohno H, Fournier MC, Poy G, Bonifacino JS. 1996. Structural determinants of interaction of tyrosine-based sorting signals with the adaptor medium chains. J. Biol. Chem. 271:29009–15 [Google Scholar]
  188. Olson LJ, Peterson FC, Castonguay A, Bohnsack RN, Kudo M. et al. 2010. Structural basis for recognition of phosphodiester-containing lysosomal enzymes by the cation-independent mannose 6-phosphate receptor. Proc. Natl. Acad. Sci. USA 107:12493–98 [Google Scholar]
  189. Orci L, Ravazzola M, Amherdt M, Perrelet A, Powell SK. et al. 1987. The trans-most cisternae of the Golgi complex: a compartment for sorting of secretory and plasma membrane proteins. Cell 51:1039–51 [Google Scholar]
  190. Owen DJ, Collins BM, Evans PR. 2004. Adaptors for clathrin coats: structure and function. Annu. Rev. Cell Dev. Biol. 20:153–91 [Google Scholar]
  191. Owen DJ, Evans PR. 1998. A structural explanation for the recognition of tyrosine-based endocytotic signals. Science 282:1327–32 [Google Scholar]
  192. Paczkowski JE, Richardson BC, Strassner AM, Fromme JC. 2012. The exomer cargo adaptor structure reveals a novel GTPase-binding domain. EMBO J. 31:4191–203 [Google Scholar]
  193. Paladino S, Lebreton S, Tivodar S, Campana V, Tempre R, Zurzolo C. 2008. Different GPI-attachment signals affect the oligomerisation of GPI-anchored proteins and their apical sorting. J. Cell Sci. 121:4001–7 [Google Scholar]
  194. Paladino S, Sarnataro D, Pillich R, Tivodar S, Nitsch L, Zurzolo C. 2004. Protein oligomerization modulates raft partitioning and apical sorting of GPI-anchored proteins. J. Cell Biol. 167:699–709 [Google Scholar]
  195. Panic B, Whyte JR, Munro S. 2003. The ARF-like GTPases Arl1p and Arl3p act in a pathway that interacts with vesicle-tethering factors at the Golgi apparatus. Curr. Biol. 13:405–10 [Google Scholar]
  196. Petersen CM, Nielsen MS, Jacobsen C, Tauris J, Jacobsen L. et al. 1999. Propeptide cleavage conditions sortilin/neurotensin receptor-3 for ligand binding. EMBO J. 18:595–604 [Google Scholar]
  197. Phelan JP, Millson SH, Parker PJ, Piper PW, Cooke FT. 2006. . Fab1p and AP-1 are required for trafficking of endogenously ubiquitylated cargoes to the vacuole lumen in S. cerevisiae. J. Cell Sci. 119:4225–34 [Google Scholar]
  198. Pieper U, Webb BM, Barkan DT, Schneidman-Duhovny D, Schlessinger A. et al. 2011. ModBase, a database of annotated comparative protein structure models, and associated resources. Nucleic Acids Res. 39:D465–74 [Google Scholar]
  199. Pryor PR, Jackson L, Gray SR, Edeling MA, Thompson A. et al. 2008. Molecular basis for the sorting of the SNARE VAMP7 into endocytic clathrin-coated vesicles by the ArfGAP Hrb. Cell 134:817–27 [Google Scholar]
  200. Puertollano R, Bonifacino JS. 2004. Interactions of GGA3 with the ubiquitin sorting machinery. Nat. Cell Biol. 6:244–51 [Google Scholar]
  201. Puthenveedu MA, von Zastrow M. 2006. Cargo regulates clathrin-coated pit dynamics. Cell 127:113–24 [Google Scholar]
  202. Qian M, Sleat DE, Zheng H, Moore D, Lobel P. 2008. Proteomics analysis of serum from mutant mice reveals lysosomal proteins selectively transported by each of the two mannose 6-phosphate receptors. Mol. Cell. Proteomics 7:58–70 [Google Scholar]
  203. Quistgaard EM, Madsen P, Grøftehauge MK, Nissen P, Petersen CM, Thirup SS. 2009. Ligands bind to Sortilin in the tunnel of a ten-bladed β-propeller domain. Nat. Struct. Mol. Biol. 16:96–98 [Google Scholar]
  204. Reczek D, Schwake M, Schröder J, Hughes H, Blanz J. et al. 2007. LIMP-2 is a receptor for lysosomal mannose-6-phosphate-independent targeting of β-glucocerebrosidase. Cell 131:770–83 [Google Scholar]
  205. Ren X, Farias GG, Canagarajah BJ, Bonifacino JS, Hurley JH. 2013. Structural basis for recruitment and activation of the AP-1 clathrin adaptor complex by Arf1. Cell 152:755–67 [Google Scholar]
  206. Richardson BC, Fromme JC. 2013. The exomer cargo adaptor features a flexible hinge domain. Structure 21:486–92 [Google Scholar]
  207. Richardson BC, McDonold CM, Fromme JC. 2012. The Sec7 Arf-GEF is recruited to the trans-Golgi network by positive feedback. Dev. Cell 22:799–810 [Google Scholar]
  208. Rodriguez-Boulan E, Kreitzer G, Müsch A. 2005. Organization of vesicular trafficking in epithelia. Nat. Rev. Mol. Cell Biol. 6:233–47 [Google Scholar]
  209. Roeth JF, Williams M, Kasper MR, Filzen TM, Collins KL. 2004. HIV-1 Nef disrupts MHC-I trafficking by recruiting AP-1 to the MHC-I cytoplasmic tail. J. Cell Biol. 167:903–13 [Google Scholar]
  210. Rogaeva E, Meng Y, Lee JH, Gu Y, Kawarai T. et al. 2007. The neuronal sortilin-related receptor SORL1 is genetically associated with Alzheimer disease. Nat. Genet. 39:168–77 [Google Scholar]
  211. Rous BA, Reaves BJ, Ihrke G, Briggs JA, Gray SR. et al. 2002. Role of adaptor complex AP-3 in targeting wild-type and mutated CD63 to lysosomes. Mol. Biol. Cell 13:1071–82 [Google Scholar]
  212. Saillour Y, Zanni G, Des Portes V, Heron D, Guibaud L. et al. 2007. Mutations in the AP1S2 gene encoding the sigma 2 subunit of the adaptor protein 1 complex are associated with syndromic X-linked mental retardation with hydrocephalus and calcifications in basal ganglia. J. Med. Genet. 44:739–44 [Google Scholar]
  213. Saint-Pol A, Yelamos B, Amessou M, Mills IG, Dugast M. et al. 2004. Clathrin adaptor epsinR is required for retrograde sorting on early endosomal membranes. Dev. Cell 6:525–38 [Google Scholar]
  214. Sanchatjate S, Schekman R. 2006. Chs5/6 complex: a multiprotein complex that interacts with and conveys chitin synthase III from the trans-Golgi network to the cell surface. Mol. Biol. Cell 17:4157–66 [Google Scholar]
  215. Santos B, Snyder M. 2003. Specific protein targeting during cell differentiation: polarized localization of Fus1p during mating depends on Chs5p in Saccharomyces cerevisiae. Eukaryot. Cell 2:821–25 [Google Scholar]
  216. Scheiffele P, Roth MG, Simons K. 1997. Interaction of influenza virus haemagglutinin with sphingolipid-cholesterol membrane domains via its transmembrane domain. EMBO J. 16:5501–8 [Google Scholar]
  217. Schmidt S, Fritz JV, Bitzegeio J, Fackler OT, Keppler OT. 2011. HIV-1 Vpu blocks recycling and biosynthetic transport of the intrinsic immunity factor CD317/tetherin to overcome the virion release restriction. mBio 2:e00036–11 [Google Scholar]
  218. Schuck S, Simons K. 2004. Polarized sorting in epithelial cells: raft clustering and the biogenesis of the apical membrane. J. Cell Sci. 117:5955–64 [Google Scholar]
  219. Scott PM, Bilodeau PS, Zhdankina O, Winistorfer SC, Hauglund MJ. et al. 2004. GGA proteins bind ubiquitin to facilitate sorting at the trans-Golgi network. Nat. Cell Biol. 6:252–59 [Google Scholar]
  220. Sebastian TT, Baldridge RD, Xu P, Graham TR. 2012. Phospholipid flippases: building asymmetric membranes and transport vesicles. Biochim. Biophys. Acta 1821:1068–77 [Google Scholar]
  221. Seong E, Wainer BH, Hughes ED, Saunders TL, Burmeister M, Faundez V. 2005. Genetic analysis of the neuronal and ubiquitous AP-3 adaptor complexes reveals divergent functions in brain. Mol. Biol. Cell 16:128–40 [Google Scholar]
  222. Shafaq-Zadah M, Brocard L, Solari F, Michaux G. 2012. AP-1 is required for the maintenance of apico-basal polarity in the C. elegans intestine. Development 139:2061–70 [Google Scholar]
  223. Shiba T, Takatsu H, Nogi T, Matsugaki N, Kawasaki M. et al. 2002. Structural basis for recognition of acidic-cluster dileucine sequence by GGA1. Nature 415:937–41 [Google Scholar]
  224. Shiba Y, Katoh Y, Shiba T, Yoshino K, Takatsu H. et al. 2004. GAT (GGA and Tom1) domain responsible for ubiquitin binding and ubiquitination. J. Biol. Chem. 279:7105–11 [Google Scholar]
  225. Shim J, Lee J. 2005. The AP-3 clathrin-associated complex is essential for embryonic and larval development in Caenorhabditis elegans. Mol. Cells 19:452–57 [Google Scholar]
  226. Shim J, Sternberg PW, Lee J. 2000. Distinct and redundant functions of μ1 medium chains of the AP-1 clathrin-associated protein complex in the nematode Caenorhabditis elegans. Mol. Biol. Cell 11:2743–56 [Google Scholar]
  227. Shimada Y, Yonemura S, Ohkura H, Strutt D, Uemura T. 2006. Polarized transport of Frizzled along the planar microtubule arrays in Drosophila wing epithelium. Dev. Cell 10:209–22 [Google Scholar]
  228. Shin HW, Kobayashi H, Kitamura M, Waguri S, Suganuma T. et al. 2005. Roles of ARFRP1 (ADP-ribosylation factor-related protein 1) in post-Golgi membrane trafficking. J. Cell Sci. 118:4039–48 [Google Scholar]
  229. Siman R, Velji J. 2003. Localization of presenilin-nicastrin complexes and γ-secretase activity to the trans-Golgi network. J. Neurochem. 84:1143–53 [Google Scholar]
  230. Simmen T, Honing S, Icking A, Tikkanen R, Hunziker W. 2002. AP-4 binds basolateral signals and participates in basolateral sorting in epithelial MDCK cells. Nat. Cell Biol. 4:154–59 [Google Scholar]
  231. Sirkis DW, Edwards RH, Asensio CS. 2013. Widespread dysregulation of peptide hormone release in mice lacking adaptor protein AP-3. PLOS Genet. 9:e1003812 [Google Scholar]
  232. Sohar I, Sleat D, Gong Liu C, Ludwig T, Lobel P. 1998. Mouse mutants lacking the cation-independent mannose 6-phosphate/insulin-like growth factor II receptor are impaired in lysosomal enzyme transport: comparison of cation-independent and cation-dependent mannose 6-phosphate receptor-deficient mice. Biochem. J. 330:Pt. 2903–8 [Google Scholar]
  233. Stalder D, Barelli H, Gautier R, Macia E, Jackson CL, Antonny B. 2011. Kinetic studies of the Arf activator Arno on model membranes in the presence of Arf effectors suggest control by a positive feedback loop. J. Biol. Chem. 286:3873–83 [Google Scholar]
  234. Starr TL, Pagant S, Wang CW, Schekman R. 2012. Sorting signals that mediate traffic of chitin synthase III between the TGN/endosomes and to the plasma membrane in yeast. PLOS ONE 7:e46386 [Google Scholar]
  235. Stechly L, Morelle W, Dessein AF, André S, Grard G. et al. 2009. Galectin-4-regulated delivery of glycoproteins to the brush border membrane of enterocyte-like cells. Traffic 10:438–50 [Google Scholar]
  236. Stepp JD, Huang K, Lemmon SK. 1997. The yeast adaptor protein complex, AP-3, is essential for the efficient delivery of alkaline phosphatase by the alternate pathway to the vacuole. J. Cell Biol. 139:1761–74 [Google Scholar]
  237. Stockklausner C, Klocker N. 2003. Surface expression of inward rectifier potassium channels is controlled by selective Golgi export. J. Biol. Chem. 278:17000–5 [Google Scholar]
  238. Strong A, Ding Q, Edmondson AC, Millar JS, Sachs KV. et al. 2012. Hepatic sortilin regulates both apolipoprotein B secretion and LDL catabolism. J. Clin. Investig. 122:2807–16 [Google Scholar]
  239. Szentpetery Z, Varnai P, Balla T. 2010. Acute manipulation of Golgi phosphoinositides to assess their importance in cellular trafficking and signaling. Proc. Natl. Acad. Sci. USA 107:8225–30 [Google Scholar]
  240. Taira K, Bujo H, Hirayama S, Yamazaki H, Kanaki T. et al. 2001. LR11, a mosaic LDL receptor family member, mediates the uptake of ApoE-rich lipoproteins in vitro. Arterioscler. Thromb. Vasc. Biol. 21:1501–6 [Google Scholar]
  241. Takahashi D, Hase K, Kimura S, Nakatsu F, Ohmae M. et al. 2011. The epithelia-specific membrane trafficking factor AP-1B controls gut immune homeostasis in mice. Gastroenterology 141:621–32 [Google Scholar]
  242. Tarpey PS, Stevens C, Teague J, Edkins S, O'Meara S. et al. 2006. Mutations in the gene encoding the sigma 2 subunit of the adaptor protein 1 complex, AP1S2, cause X-linked mental retardation. Am. J. Hum. Genet. 79:1119–24 [Google Scholar]
  243. Torii S, Saito N, Kawano A, Zhao S, Izumi T, Takeuchi T. 2005. Cytoplasmic transport signal is involved in phogrin targeting and localization to secretory granules. Traffic 6:1213–24 [Google Scholar]
  244. Trautwein M, Schindler C, Gauss R, Dengjel J, Hartmann E, Spang A. 2006. Arf1p, Chs5p and the ChAPs are required for export of specialized cargo from the Golgi. EMBO J. 25:943–54 [Google Scholar]
  245. Vaegter CB, Jansen P, Fjorback AW, Glerup S, Skeldal S. et al. 2011. Sortilin associates with Trk receptors to enhance anterograde transport and neurotrophin signaling. Nat. Neurosci. 14:54–61 [Google Scholar]
  246. Valdivia RH, Baggott D, Chuang JS, Schekman RW. 2002. The yeast clathrin adaptor protein complex 1 is required for the efficient retention of a subset of late Golgi membrane proteins. Dev. Cell 2:283–94 [Google Scholar]
  247. Velayati A, DePaolo J, Gupta N, Choi JH, Moaven N. et al. 2011. A mutation in SCARB2 is a modifier in Gaucher disease. Hum. Mutat. 32:1232–38 [Google Scholar]
  248. Volpicelli-Daley LA, Li Y, Zhang CJ, Kahn RA. 2005. Isoform-selective effects of the depletion of ADP-ribosylation factors 1–5 on membrane traffic. Mol. Biol. Cell 16:4495–508 [Google Scholar]
  249. von Blume J, Alleaume AM, Cantero-Recasens G, Curwin A, Carreras-Sureda A. et al. 2011. ADF/cofilin regulates secretory cargo sorting at the TGN via the Ca2+ ATPase SPCA1. Dev. Cell 20:652–62 [Google Scholar]
  250. von Blume J, Duran JM, Forlanelli E, Alleaume AM, Egorov M. et al. 2009. Actin remodeling by ADF/cofilin is required for cargo sorting at the trans-Golgi network. J. Cell Biol. 187:1055–69 [Google Scholar]
  251. Wang CW, Hamamoto S, Orci L, Schekman R. 2006. Exomer: a coat complex for transport of select membrane proteins from the trans-Golgi network to the plasma membrane in yeast. J. Cell Biol. 174:973–83 [Google Scholar]
  252. Wang J, Gossing M, Fang P, Zimmermann J, Li X. et al. 2011. Epsin N-terminal homology domains bind on opposite sides of two SNAREs. Proc. Natl. Acad. Sci. USA 108:12277–82 [Google Scholar]
  253. Wang J, Morita Y, Mazelova J, Deretic D. 2012. The Arf GAP ASAP1 provides a platform to regulate Arf4- and Rab11-Rab8-mediated ciliary receptor targeting. EMBO J. 31:4057–71 [Google Scholar]
  254. Wang J, Sun HQ, Macia E, Kirchhausen T, Watson H. et al. 2007. PI4P promotes the recruitment of the GGA adaptor proteins to the trans-Golgi network and regulates their recognition of the ubiquitin sorting signal. Mol. Biol. Cell 18:2646–55 [Google Scholar]
  255. Wang YJ, Wang J, Sun HQ, Martinez M, Sun YX. et al. 2003. Phosphatidylinositol 4 phosphate regulates targeting of clathrin adaptor AP-1 complexes to the Golgi. Cell 114:299–310 [Google Scholar]
  256. Weisz OA, Rodriguez-Boulan E. 2009. Apical trafficking in epithelial cells: signals, clusters and motors. J. Cell Sci. 122:4253–66 [Google Scholar]
  257. Westergaard UB, Sorensen ES, Hermey G, Nielsen MS, Nykjaer A. et al. 2004. Functional organization of the sortilin Vps10p domain. J. Biol. Chem. 279:50221–29 [Google Scholar]
  258. Willnow TE, Andersen OM. 2013. Sorting receptor SORLA—a trafficking path to avoid Alzheimer disease. J. Cell Sci. 126:2751–60 [Google Scholar]
  259. Xu H, Sweeney D, Wang R, Thinakaran G, Lo AC. et al. 1997. Generation of Alzheimer β-amyloid protein in the trans-Golgi network in the apparent absence of vesicle formation. Proc. Natl. Acad. Sci. USA 94:3748–52 [Google Scholar]
  260. Yamayoshi S, Iizuka S, Yamashita T, Minagawa H, Mizuta K. et al. 2012. Human SCARB2-dependent infection by coxsackievirus A7, A14, and A16 and enterovirus 71. J. Virol. 86:5686–96 [Google Scholar]
  261. Yamayoshi S, Koike S. 2011. Identification of a human SCARB2 region that is important for enterovirus 71 binding and infection. J. Virol. 85:4937–46 [Google Scholar]
  262. Yamayoshi S, Yamashita Y, Li J, Hanagata N, Minowa T. et al. 2009. Scavenger receptor B2 is a cellular receptor for enterovirus 71. Nat. Med. 15:798–801 [Google Scholar]
  263. Yang W, Li C, Ward DM, Kaplan J, Mansour SL. 2000. Defective organellar membrane protein trafficking in Ap3b1-deficient cells. J. Cell Sci. 113:Pt. 224077–86 [Google Scholar]
  264. Zachos C, Blanz J, Saftig P, Schwake M. 2012. A critical histidine residue within LIMP-2 mediates pH sensitive binding to its ligand β-glucocerebrosidase. Traffic 13:1113–23 [Google Scholar]
  265. Zahn C, Jaschke A, Weiske J, Hommel A, Hesse D. et al. 2008. ADP-ribosylation factor-like GTPase ARFRP1 is required for trans-Golgi to plasma membrane trafficking of E-cadherin. J. Biol. Chem. 283:27179–88 [Google Scholar]
  266. Zanolari B, Rockenbauch U, Trautwein M, Clay L, Barral Y, Spang A. 2011. Transport to the plasma membrane is regulated differently early and late in the cell cycle in Saccharomyces cerevisiae. J. Cell Sci. 124:1055–66 [Google Scholar]
  267. Zhu G, Zhai P, He X, Terzyan S, Zhang R. et al. 2003. Crystal structure of the human GGA1 GAT domain. Biochemistry 42:6392–99 [Google Scholar]
  268. Zhu Y, Drake MT, Kornfeld S. 1999. ADP-ribosylation factor 1 dependent clathrin-coat assembly on synthetic liposomes. Proc. Natl. Acad. Sci. USA 96:5013–18 [Google Scholar]
  269. Zizioli D, Forlanelli E, Guarienti M, Nicoli S, Fanzani A. et al. 2010. Characterization of the AP-1 μ1A and μ1B adaptins in zebrafish (Danio rerio). Dev. Dyn. 239:2404–12 [Google Scholar]
  270. Zizioli D, Meyer C, Guhde G, Saftig P, von Figura K, Schu P. 1999. Early embryonic death of mice deficient in γ-adaptin. J. Biol. Chem. 274:5385–90 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013012
Loading
/content/journals/10.1146/annurev-cellbio-100913-013012
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error