The nervous system is populated by numerous types of neurons, each bearing a dendritic arbor with a characteristic morphology. These type-specific features influence many aspects of a neuron's function, including the number and identity of presynaptic inputs and how inputs are integrated to determine firing properties. Here, we review the mechanisms that regulate the construction of cell type–specific dendrite patterns during development. We focus on four aspects of dendrite patterning that are particularly important in determining the function of the mature neuron: () dendrite shape, including branching pattern and geometry of the arbor; () dendritic arbor size; () targeting of dendrites to particular locations; and () subdivision of dendrites into compartments with unique electrical properties or synaptic inputs.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Baas PW, Deitch JS, Black MM, Banker GA. 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. PNAS 85:218335–39 [Google Scholar]
  2. Baier H. 2013. Synaptic laminae in the visual system: molecular mechanisms forming layers of perception. Annu. Rev. Cell Dev. Biol. 29:385–416 [Google Scholar]
  3. Barlow GM, Micales B, Chen X-N, Lyons GE, Korenberg JR. 2002. Mammalian DSCAMs: roles in the development of the spinal cord, cortex, and cerebellum?. Biochem. Biophys. Res. Commun. 293:3881–91 [Google Scholar]
  4. Blackshaw SE, Nicholls JG, Parnas I. 1982. Expanded receptive fields of cutaneous mechanoreceptor cells after single neurone deletion in leech central nervous system. J. Physiol. 326:261–68 [Google Scholar]
  5. Bleckert A, Schwartz GW, Turner MH, Rieke F, Wong ROL. 2014. Visual space is represented by nonmatching topographies of distinct mouse retinal ganglion cell types. Curr. Biol. 24:3310–15 [Google Scholar]
  6. Bodnarenko SR, Jeyarasasingam G, Chalupa LM. 1995. Development and regulation of dendritic stratification in retinal ganglion cells by glutamate-mediated afferent activity. J. Neurosci. 15:117037–45 [Google Scholar]
  7. Brierley DJ, Blanc E, Reddy OV, Vijayraghavan K, Williams DW. 2009. Dendritic targeting in the leg neuropil of Drosophila: the role of midline signalling molecules in generating a myotopic map. PLOS Biol. 7:9e1000199 [Google Scholar]
  8. Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22:1183–92 [Google Scholar]
  9. Cheng P, Poo M. 2012. Early events in axon/dendrite polarization. Annu. Rev. Neurosci. 35:181–201 [Google Scholar]
  10. Cherry TJ, Trimarchi JM, Stadler MB, Cepko CL. 2009. Development and diversification of retinal amacrine interneurons at single cell resolution. PNAS 106:239495–500 [Google Scholar]
  11. Cherry TJ, Wang S, Bormuth I, Schwab M, Olson J, Cepko CL. 2011. NeuroD factors regulate cell fate and neurite stratification in the developing retina. J. Neurosci. 31:207365–79 [Google Scholar]
  12. Choi J-H, Law M-Y, Chien C-B, Link BA, Wong ROL. 2010. In vivo development of dendritic orientation in wild-type and mislocalized retinal ganglion cells. Neural Dev. 5:29 [Google Scholar]
  13. Cline H, Haas K. 2008. The regulation of dendritic arbor development and plasticity by glutamatergic synaptic input: a review of the synaptotrophic hypothesis. J. Physiol. 586:61509–17 [Google Scholar]
  14. Conde C, Cáceres A. 2009. Microtubule assembly, organization and dynamics in axons and dendrites. Nat. Rev. Neurosci. 10:5319–32 [Google Scholar]
  15. Cubelos B, Briz CG, Esteban-Ortega GM, Nieto M. 2014. Cux1 and Cux2 selectively target basal and apical dendritic compartments of layer II–III cortical neurons. Dev. Neurobiol. 75:2163–72 [Google Scholar]
  16. Cubelos B, Sebastián-Serrano A, Beccari L, Calcagnotto ME, Cisneros E. et al. 2010. Cux1 and Cux2 regulate dendritic branching, spine morphology, and synapses of the upper layer neurons of the cortex. Neuron 66:4523–35 [Google Scholar]
  17. Cui-Wang T, Hanus C, Cui T, Helton T, Bourne J. et al. 2012. Local zones of endoplasmic reticulum complexity confine cargo in neuronal dendrites. Cell 148:1–2309–21 [Google Scholar]
  18. Cuntz H, Mathy A, Häusser M. 2012. A scaling law derived from optimal dendritic wiring. PNAS 109:2711014–18 [Google Scholar]
  19. Dacey DM. 1993. The mosaic of midget ganglion cells in the human retina. J. Neurosci. 13:125334–55 [Google Scholar]
  20. De la Huerta I, Kim I-J, Voinescu PE, Sanes JR. 2012. Direction-selective retinal ganglion cells arise from molecularly specified multipotential progenitors. PNAS 109:4317663–68 [Google Scholar]
  21. Deans MR, Krol A, Abraira VE, Copley CO, Tucker AF, Goodrich LV. 2011. Control of neuronal morphology by the atypical cadherin Fat3. Neuron 71:5820–32 [Google Scholar]
  22. Deitch JS, Rubel EW. 1984. Afferent influences on brain stem auditory nuclei of the chicken: time course and specificity of dendritic atrophy following deafferentation. J. Comp. Neurol. 229:166–79 [Google Scholar]
  23. DeNardo LA, de Wit J, Otto-Hitt S, Ghosh A. 2012. NGL-2 regulates input-specific synapse development in CA1 pyramidal neurons. Neuron 76:4762–75 [Google Scholar]
  24. Devaud J-M, Acebes A, Ramaswami M, Ferrús A. 2003. Structural and functional changes in the olfactory pathway of adult Drosophila take place at a critical age. J. Neurobiol. 56:113–23 [Google Scholar]
  25. Dierssen M, Ramakers GJA. 2006. Dendritic pathology in mental retardation: from molecular genetics to neurobiology. Genes Brain Behav. 5:Suppl. 248–60 [Google Scholar]
  26. Dong X, Liu OW, Howell AS, Shen K. 2013. An extracellular adhesion molecule complex patterns dendritic branching and morphogenesis. Cell 155:2296–307 [Google Scholar]
  27. Drenhaus U, Morino P, Veh RW. 2003. On the development of the stratification of the inner plexiform layer in the chick retina. J. Comp. Neurol. 460:11–12 [Google Scholar]
  28. Engert F, Tao HW, Zhang LI, Poo M. 2002. Moving visual stimuli rapidly induce direction sensitivity of developing tectal neurons. Nature 419:6906470–75 [Google Scholar]
  29. Ertürk A, Wang Y, Sheng M. 2014. Local pruning of dendrites and spines by caspase-3-dependent and proteasome-limited mechanisms. J. Neurosci. 34:51672–88 [Google Scholar]
  30. Espinosa JS, Wheeler DG, Tsien RW, Luo L. 2009. Uncoupling dendrite growth and patterning: single-cell knockout analysis of NMDA receptor 2B. Neuron 62:2205–17 [Google Scholar]
  31. Eysel UT, Peichl L, Wässle H. 1985. Dendritic plasticity in the early postnatal feline retina: quantitative characteristics and sensitive period. J. Comp. Neurol. 242:1134–45 [Google Scholar]
  32. Famiglietti EV Jr, Kolb H. 1976. Structural basis for ON-and OFF-center responses in retinal ganglion cells. Science 194:4261193–95 [Google Scholar]
  33. Fuerst PG, Koizumi A, Masland RH, Burgess RW. 2008. Neurite arborization and mosaic spacing in the mouse retina require DSCAM. Nature 451:7177470–74 [Google Scholar]
  34. Galli-Resta L, Novelli E, Kryger Z, Jacobs GH, Reese BE. 1999. Modelling the mosaic organization of rod and cone photoreceptors with a minimal-spacing rule. Eur. J. Neurosci. 11:41461–69 [Google Scholar]
  35. Galli-Resta L, Novelli E, Viegi A. 2002. Dynamic microtubule-dependent interactions position homotypic neurones in regular monolayered arrays during retinal development. Development 129:163803–14 [Google Scholar]
  36. Galli-Resta L, Resta G, Tan SS, Reese BE. 1997. Mosaics of Islet-1–expressing amacrine cells assembled by short-range cellular interactions. J. Neurosci. 17:207831–38 [Google Scholar]
  37. Gibson DA, Tymanskyj S, Yuan RC, Leung HC, Lefebvre JL. et al. 2014. Dendrite self-avoidance requires cell-autonomous Slit/Robo signaling in cerebellar Purkinje cells. Neuron 81:51040–56 [Google Scholar]
  38. Godinho L, Mumm JS, Williams PR, Schroeter EH, Koerber A. et al. 2005. Targeting of amacrine cell neurites to appropriate synaptic laminae in the developing zebrafish retina. Development 132:225069–79 [Google Scholar]
  39. Grueber WB, Jan LY, Jan YN. 2002. Tiling of the Drosophila epidermis by multidendritic sensory neurons. Development 129:122867–78 [Google Scholar]
  40. Grueber WB, Jan LY, Jan YN. 2003a. Different levels of the homeodomain protein cut regulate distinct dendrite branching patterns of Drosophila multidendritic neurons. Cell 112:6805–18 [Google Scholar]
  41. Grueber WB, Sagasti A. 2010. Self-avoidance and tiling: mechanisms of dendrite and axon spacing. Cold Spring Harb. Perspect. Biol. 2:9a001750 [Google Scholar]
  42. Grueber WB, Ye B, Moore AW, Jan LY, Jan YN. 2003b. Dendrites of distinct classes of Drosophila sensory neurons show different capacities for homotypic repulsion. Curr. Biol. 13:8618–26 [Google Scholar]
  43. Han C, Song Y, Xiao H, Wang D, Franc NC. et al. 2014. Epidermal cells are the primary phagocytes in the fragmentation and clearance of degenerating dendrites in Drosophila. Neuron 81:3544–60 [Google Scholar]
  44. Han C, Wang D, Soba P, Zhu S, Lin X. et al. 2012. Integrins regulate repulsion-mediated dendritic patterning of Drosophila sensory neurons by restricting dendrites in a 2D space. Neuron 73:164–78 [Google Scholar]
  45. Hasselmo ME, Schnell E. 1994. Laminar selectivity of the cholinergic suppression of synaptic transmission in rat hippocampal region CA1: computational modeling and brain slice physiology. J. Neurosci. 14:63898–914 [Google Scholar]
  46. Hattori D, Demir E, Kim HW, Viragh E, Zipursky SL, Dickson BJ. 2007. Dscam diversity is essential for neuronal wiring and self-recognition. Nature 449:7159223–27 [Google Scholar]
  47. Hattori Y, Usui T, Satoh D, Moriyama S, Shimono K. et al. 2013. Sensory-neuron subtype-specific transcriptional programs controlling dendrite morphogenesis: genome-wide analysis of Abrupt and Knot/Collier. Dev. Cell 27:5530–44 [Google Scholar]
  48. Heiman MG, Shaham S. 2009. DEX-1 and DYF-7 establish sensory dendrite length by anchoring dendritic tips during cell migration. Cell 137:2344–55 [Google Scholar]
  49. Helmstaedter M, Briggman KL, Turaga SC, Jain V, Seung HS, Denk W. 2013. Connectomic reconstruction of the inner plexiform layer in the mouse retina. Nature 500:7461168–74 [Google Scholar]
  50. Hinds JW, Hinds PL. 1978. Early development of amacrine cells in the mouse retina: an electron microscopic, serial section analysis. J. Comp. Neurol. 179:2277–300 [Google Scholar]
  51. Hong W, Luo L. 2014. Genetic control of wiring specificity in the fly olfactory system. Genetics 196:117–29 [Google Scholar]
  52. Hong W, Mosca TJ, Luo L. 2012. Teneurins instruct synaptic partner matching in an olfactory map. Nature 484:7393201–7 [Google Scholar]
  53. Hong W, Zhu H, Potter CJ, Barsh G, Kurusu M. et al. 2009. Leucine-rich repeat transmembrane proteins instruct discrete dendrite targeting in an olfactory map. Nat. Neurosci. 12:121542–50 [Google Scholar]
  54. Hong YK, Kim I-J, Sanes JR. 2011. Stereotyped axonal arbors of retinal ganglion cell subsets in the mouse superior colliculus. J. Comp. Neurol. 519:91691–711 [Google Scholar]
  55. Horton AC, Rácz B, Monson EE, Lin AL, Weinberg RJ, Ehlers MD. 2005. Polarized secretory trafficking directs cargo for asymmetric dendrite growth and morphogenesis. Neuron 48:5757–71 [Google Scholar]
  56. Hoy RR, Nolen TG, Casaday GC. 1985. Dendritic sprouting and compensatory synaptogenesis in an identified interneuron follow auditory deprivation in a cricket. PNAS 82:227772–76 [Google Scholar]
  57. Huckfeldt RM, Schubert T, Morgan JL, Godinho L, Di Cristo G. et al. 2009. Transient neurites of retinal horizontal cells exhibit columnar tiling via homotypic interactions. Nat. Neurosci. 12:135–43 [Google Scholar]
  58. Hwang RY, Zhong L, Xu Y, Johnson T, Zhang F. et al. 2007. Nociceptive neurons protect Drosophila larvae from parasitoid wasps. Curr. Biol. 17:242105–16 [Google Scholar]
  59. Imai T, Sakano H, Vosshall LB. 2010. Topographic mapping—the olfactory system. Cold Spring Harb. Perspect. Biol. 2:8a001776 [Google Scholar]
  60. Iyer SC, Iyer EPR, Meduri R, Rubaharan M, Kuntimaddi A. et al. 2013. Cut, via CrebA, transcriptionally regulates the COPII secretory pathway to direct dendrite development in Drosophila. J. Cell Sci. 126:204732–45 [Google Scholar]
  61. Jan YN, Jan LY. 2010. Branching out: mechanisms of dendritic arborization. Nat. Rev. Neurosci. 11:5316–28 [Google Scholar]
  62. Jefferis GS, Marin EC, Stocker RF, Luo L. 2001. Target neuron prespecification in the olfactory map of Drosophila. Nature 414:6860204–8 [Google Scholar]
  63. Jefferis GSXE, Vyas RM, Berdnik D, Ramaekers A, Stocker RF. et al. 2004. Developmental origin of wiring specificity in the olfactory system of Drosophila. Development 131:1117–30 [Google Scholar]
  64. Jiang N, Soba P, Parker E, Kim CC, Parrish JZ. 2014. The microRNA bantam regulates a developmental transition in epithelial cells that restricts sensory dendrite growth. Development 141:132657–68 [Google Scholar]
  65. Jinushi-Nakao S, Arvind R, Amikura R, Kinameri E, Liu AW, Moore AW. 2007. Knot/Collier and Cut control different aspects of dendrite cytoskeleton and synergize to define final arbor shape. Neuron 56:6963–78 [Google Scholar]
  66. Joo W, Hippenmeyer S, Luo L. 2014. Neurodevelopment. Dendrite morphogenesis depends on relative levels of NT-3/TrkC signaling. Science 346:6209626–29 [Google Scholar]
  67. Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K. 2013. Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340:61391475–78 [Google Scholar]
  68. Kaneko M, Yamaguchi K, Eiraku M, Sato M, Takata N. et al. 2011. Remodeling of monoplanar Purkinje cell dendrites during cerebellar circuit formation. PLOS ONE 6:5e20108 [Google Scholar]
  69. Kaneko R, Kato H, Kawamura Y, Esumi S, Hirayama T. et al. 2006. Allelic gene regulation of Pcdh-α and Pcdh-γ clusters involving both monoallelic and biallelic expression in single Purkinje cells. J. Biol. Chem. 281:4130551–60 [Google Scholar]
  70. Kay JN, Chu MW, Sanes JR. 2012. MEGF10 and MEGF11 mediate homotypic interactions required for mosaic spacing of retinal neurons. Nature 483:7390465–69 [Google Scholar]
  71. Kay JN, Roeser T, Mumm JS, Godinho L, Mrejeru A. et al. 2004. Transient requirement for ganglion cells during assembly of retinal synaptic layers. Development 131:61331–42 [Google Scholar]
  72. Kay JN, Sanes JR. 2013. Development of retinal arbors and synapses. The New Visual Neurosciences JS Werner, LM Chalupa 1291–304 Cambridge, MA: MIT Press [Google Scholar]
  73. Kay JN, Voinescu PE, Chu MW, Sanes JR. 2011. Neurod6 expression defines new retinal amacrine cell subtypes and regulates their fate. Nat. Neurosci. 14:8965–72 [Google Scholar]
  74. Kerschensteiner D, Morgan JL, Parker ED, Lewis RM, Wong ROL. 2009. Neurotransmission selectively regulates synapse formation in parallel circuits in vivo. Nature 460:72581016–20 [Google Scholar]
  75. Kim I-J, Zhang Y, Yamagata M, Meister M, Sanes JR. 2008. Molecular identification of a retinal cell type that responds to upward motion. Nature 452:7186478–82 [Google Scholar]
  76. Kim MD, Wen Y, Jan YN. 2009. Patterning and organization of motor neuron dendrites in the Drosophila larva. Dev. Biol. 336:2213–21 [Google Scholar]
  77. Kim ME, Shrestha BR, Blazeski R, Mason CA, Grueber WB. 2012. Integrins establish dendrite-substrate relationships that promote dendritic self-avoidance and patterning in Drosophila sensory neurons. Neuron 73:179–91 [Google Scholar]
  78. Kim S, Burette A, Chung HS, Kwon S-K, Woo J. et al. 2006. NGL family PSD-95–interacting adhesion molecules regulate excitatory synapse formation. Nat. Neurosci. 9:101294–301 [Google Scholar]
  79. Kohmura N, Senzaki K, Hamada S, Kai N, Yasuda R. et al. 1998. Diversity revealed by a novel family of cadherins expressed in neurons at a synaptic complex. Neuron 20:61137–51 [Google Scholar]
  80. Kolb H, Marshak D. 2003. The midget pathways of the primate retina. Doc. Ophthalmol. 106:167–81 [Google Scholar]
  81. Komiyama T, Johnson WA, Luo L, Jefferis GSXE. 2003. From lineage to wiring specificity. POU domain transcription factors control precise connections of Drosophila olfactory projection neurons. Cell 112:2157–67 [Google Scholar]
  82. Komiyama T, Sweeney LB, Schuldiner O, Garcia KC, Luo L. 2007. Graded expression of Semaphorin-1a cell-autonomously directs dendritic targeting of olfactory projection neurons. Cell 128:2399–410 [Google Scholar]
  83. Kostadinov D, Sanes JR. 2015. Protocadherin-dependent dendritic self-avoidance regulates neural connectivity and circuit function. eLife 4:e08964 [Google Scholar]
  84. Krey JF, Pasca SP, Shcheglovitov A, Yazawa M, Schwemberger R. et al. 2013. Timothy syndrome is associated with activity-dependent dendritic retraction in rodent and human neurons. Nat. Neurosci. 16:2201–9 [Google Scholar]
  85. Kulkarni VA, Firestein BL. 2012. The dendritic tree and brain disorders. Mol. Cell. Neurosci. 50:110–20 [Google Scholar]
  86. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. 2006. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51:3283–90 [Google Scholar]
  87. Kupferman JV, Basu J, Russo MJ, Guevarra J, Cheung SK, Siegelbaum SA. 2014. Reelin signaling specifies the molecular identity of the pyramidal neuron distal dendritic compartment. Cell 158:61335–47 [Google Scholar]
  88. Lah GJ, Li JSS, Millard SS. 2014. Cell-specific alternative splicing of Drosophila Dscam2 is crucial for proper neuronal wiring. Neuron 83:61376–88 [Google Scholar]
  89. Landgraf M, Jeffrey V, Fujioka M, Jaynes JB, Bate M. 2003. Embryonic origins of a motor system: motor dendrites form a myotopic map in Drosophila. PLOS Biol. 1:2E41 [Google Scholar]
  90. Lefebvre JL, Kostadinov D, Chen WV, Maniatis T, Sanes JR. 2012. Protocadherins mediate dendritic self-avoidance in the mammalian nervous system. Nature 488:7412517–21 [Google Scholar]
  91. Li W, Wang F, Menut L, Gao F-B. 2004. BTB/POZ-zinc finger protein Abrupt suppresses dendritic branching in a neuronal subtype–specific and dosage-dependent manner. Neuron 43:6823–34 [Google Scholar]
  92. Lin B, Wang SW, Masland RH. 2004. Retinal ganglion cell type, size, and spacing can be specified independent of homotypic dendritic contacts. Neuron 43:4475–85 [Google Scholar]
  93. Lin DM, Wang F, Lowe G, Gold GH, Axel R. et al. 2000. Formation of precise connections in the olfactory bulb occurs in the absence of odorant-evoked neuronal activity. Neuron 26:169–80 [Google Scholar]
  94. Liu X, Robinson ML, Schreiber AM, Wu V, Lavail MM. et al. 2009. Regulation of neonatal development of retinal ganglion cell dendrites by neurotrophin-3 overexpression. J. Comp. Neurol. 514:5449–58 [Google Scholar]
  95. Lohmann C, Bonhoeffer T. 2008. A role for local calcium signaling in rapid synaptic partner selection by dendritic filopodia. Neuron 59:2253–60 [Google Scholar]
  96. Lohmann C, Myhr KL, Wong ROL. 2002. Transmitter-evoked local calcium release stabilizes developing dendrites. Nature 418:6894177–81 [Google Scholar]
  97. Lohmann C, Wong ROL. 2001. Cell-type specific dendritic contacts between retinal ganglion cells during development. J. Neurobiol. 48:2150–62 [Google Scholar]
  98. Lohmann C, Wong ROL. 2005. Regulation of dendritic growth and plasticity by local and global calcium dynamics. Cell Calcium 37:5403–9 [Google Scholar]
  99. Lom B, Cohen-Cory S. 1999. Brain-derived neurotrophic factor differentially regulates retinal ganglion cell dendritic and axonal arborization in vivo. J. Neurosci. 19:229928–38 [Google Scholar]
  100. London M, Häusser M. 2005. Dendritic computation. Annu. Rev. Neurosci. 28:503–32 [Google Scholar]
  101. Lörincz A, Notomi T, Tamás G, Shigemoto R, Nusser Z. 2002. Polarized and compartment-dependent distribution of HCN1 in pyramidal cell dendrites. Nat. Neurosci. 5:111185–93 [Google Scholar]
  102. Malun D, Brunjes PC. 1996. Development of olfactory glomeruli: temporal and spatial interactions between olfactory receptor axons and mitral cells in opossums and rats. J. Comp. Neurol. 368:11–16 [Google Scholar]
  103. Matsui A, Tran M, Yoshida AC, Kikuchi SS, U M. et al. 2013. BTBD3 controls dendrite orientation toward active axons in mammalian neocortex. Science 342:61621114–18 [Google Scholar]
  104. Matsukawa H, Akiyoshi-Nishimura Q, Zhang Q, Lujan R, Yamaguchi K. et al. 2014. Netrin-G/NGL complexes encode functional synaptic diversification. J. Neurosci. 34:4715779–92 [Google Scholar]
  105. Matsuoka RL, Chivatakarn O, Badea TC, Samuels IS, Cahill H. et al. 2011a. Class 5 transmembrane semaphorins control selective mammalian retinal lamination and function. Neuron 71:3460–73 [Google Scholar]
  106. Matsuoka RL, Nguyen-Ba-Charvet KT, Parray A, Badea TC, Chédotal A, Kolodkin AL. 2011b. Transmembrane semaphorin signalling controls laminar stratification in the mammalian retina. Nature 470:7333259–63 [Google Scholar]
  107. Mauss A, Tripodi M, Evers JF, Landgraf M. 2009. Midline signalling systems direct the formation of a neural map by dendritic targeting in the Drosophila motor system. PLOS Biol. 7:9e1000200 [Google Scholar]
  108. McAllister AK, Lo DC, Katz LC. 1995. Neurotrophins regulate dendritic growth in developing visual cortex. Neuron 15:4791–803 [Google Scholar]
  109. Megías M, Emri Z, Freund TF, Gulyás AI. 2001. Total number and distribution of inhibitory and excitatory synapses on hippocampal CA1 pyramidal cells. Neuroscience 102:3527–40 [Google Scholar]
  110. Miura SK, Martins A, Zhang KX, Graveley BR, Zipursky SL. 2013. Probabilistic splicing of Dscam1 establishes identity at the level of single neurons. Cell 155:51166–77 [Google Scholar]
  111. Mosca TJ, Luo L. 2014. Synaptic organization of the Drosophila antennal lobe and its regulation by the Teneurins. eLife 3:e03726 [Google Scholar]
  112. Mumm JS, Williams PR, Godinho L, Koerber A, Pittman AJ. et al. 2006. In vivo imaging reveals dendritic targeting of laminated afferents by zebrafish retinal ganglion cells. Neuron 52:4609–21 [Google Scholar]
  113. Nagel J, Delandre C, Zhang Y, Förstner F, Moore AW, Tavosanis G. 2012. Fascin controls neuronal class–specific dendrite arbor morphology. Development 139:162999–3009 [Google Scholar]
  114. Neves G, Zucker J, Daly M, Chess A. 2004. Stochastic yet biased expression of multiple Dscam splice variants by individual cells. Nat. Genet. 36:3240–46 [Google Scholar]
  115. Nicholson DA, Trana R, Katz Y, Kath WL, Spruston N, Geinisman Y. 2006. Distance-dependent differences in synapse number and AMPA receptor expression in hippocampal CA1 pyramidal neurons. Neuron 50:3431–42 [Google Scholar]
  116. Nishimura-Akiyoshi S, Niimi K, Nakashiba T, Itohara S. 2007. Axonal netrin-Gs transneuronally determine lamina-specific subdendritic segments. PNAS 104:3714801–6 [Google Scholar]
  117. Nolan MF, Malleret G, Dudman JT, Buhl DL, Santoro B. et al. 2004. A behavioral role for dendritic integration: HCN1 channels constrain spatial memory and plasticity at inputs to distal dendrites of CA1 pyramidal neurons. Cell 119:5719–32 [Google Scholar]
  118. Ogata K, Kosaka T. 2002. Structural and quantitative analysis of astrocytes in the mouse hippocampus. Neuroscience 113:1221–33 [Google Scholar]
  119. Okawa H, Della Santina L, Schwartz GW, Rieke F, Wong ROL. 2014. Interplay of cell-autonomous and nonautonomous mechanisms tailors synaptic connectivity of converging axons in vivo. Neuron 82:1125–37 [Google Scholar]
  120. Oren-Suissa M, Hall DH, Treinin M, Shemer G, Podbilewicz B. 2010. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328:59831285–88 [Google Scholar]
  121. Ori-McKenney KM, Jan LY, Jan YN. 2012. Golgi outposts shape dendrite morphology by functioning as sites of acentrosomal microtubule nucleation in neurons. Neuron 76:5921–30 [Google Scholar]
  122. Osório C, Chacón PJ, Kisiswa L, White M, Wyatt S. et al. 2013. Growth differentiation factor 5 is a key physiological regulator of dendrite growth during development. Development 140:234751–62 [Google Scholar]
  123. Osterhout JA, El-Danaf RN, Nguyen PL, Huberman AD. 2014. Birthdate and outgrowth timing predict cellular mechanisms of axon target matching in the developing visual pathway. Cell Rep. 8:41006–17 [Google Scholar]
  124. Parrish JZ, Kim MD, Jan LY, Jan YN. 2006. Genome-wide analyses identify transcription factors required for proper morphogenesis of Drosophila sensory neuron dendrites. Genes Dev. 20:7820–35 [Google Scholar]
  125. Parrish JZ, Xu P, Kim CC, Jan LY, Jan YN. 2009. The microRNA bantam functions in epithelial cells to regulate scaling growth of dendrite arbors in Drosophila sensory neurons. Neuron 63:6788–802 [Google Scholar]
  126. Peichl L. 1991. α ganglion cells in mammalian retinae: common properties, species differences, and some comments on other ganglion cells. Vis. Neurosci. 7:1–2155–69 [Google Scholar]
  127. Peichl L, Wässle H. 1983. The structural correlate of the receptive field centre of α ganglion cells in the cat retina. J. Physiol. 341:309–24 [Google Scholar]
  128. Perry VH, Linden R. 1982. Evidence for dendritic competition in the developing retina. Nature 297:5868683–85 [Google Scholar]
  129. Piskorowski R, Santoro B, Siegelbaum SA. 2011. TRIP8b splice forms act in concert to regulate the localization and expression of HCN1 channels in CA1 pyramidal neurons. Neuron 70:3495–509 [Google Scholar]
  130. Poché RA, Raven MA, Kwan KM, Furuta Y, Behringer RR, Reese BE. 2008. Somal positioning and dendritic growth of horizontal cells are regulated by interactions with homotypic neighbors. Eur. J. Neurosci. 27:71607–14 [Google Scholar]
  131. Polleux F, Morrow T, Ghosh A. 2000. Semaphorin 3A is a chemoattractant for cortical apical dendrites. Nature 404:6778567–73 [Google Scholar]
  132. Puram SV, Bonni A. 2013. Cell-intrinsic drivers of dendrite morphogenesis. Development 140:234657–71 [Google Scholar]
  133. Ramón y Cajal S. 1893. La rétine des vertébrés. Cellule 9:121–255 [Google Scholar]
  134. Ramón y Cajal S. 1909. Histologie du Système Nerveux de L'homme & des Vertébrés Paris: Maloine
  135. Rockhill RL, Euler T, Masland RH. 2000. Spatial order within but not between types of retinal neurons. PNAS 97:52303–7 [Google Scholar]
  136. Sagasti A, Guido MR, Raible DW, Schier AF. 2005. Repulsive interactions shape the morphologies and functional arrangement of zebrafish peripheral sensory arbors. Curr. Biol. 15:9804–14 [Google Scholar]
  137. Salzberg Y, Díaz-Balzac CA, Ramirez-Suarez NJ, Attreed M, Tecle E. et al. 2013. Skin-derived cues control arborization of sensory dendrites in Caenorhabditis elegans. Cell 155:2308–20 [Google Scholar]
  138. Sanes DH, Chokshi P. 1992. Glycinergic transmission influences the development of dendrite shape. NeuroReport 3:4323–26 [Google Scholar]
  139. Sanes JR, Zipursky SL. 2010. Design principles of insect and vertebrate visual systems. Neuron 66:115–36 [Google Scholar]
  140. Sawaya MR, Wojtowicz WM, Andre I, Qian B, Wu W. et al. 2008. A double S shape provides the structural basis for the extraordinary binding specificity of Dscam isoforms. Cell 134:61007–18 [Google Scholar]
  141. Schmucker D, Clemens JC, Shu H, Worby CA, Xiao J. et al. 2000. Drosophila Dscam is an axon guidance receptor exhibiting extraordinary molecular diversity. Cell 101:6671–84 [Google Scholar]
  142. Schreiner D, Weiner JA. 2010. Combinatorial homophilic interaction between γ-protocadherin multimers greatly expands the molecular diversity of cell adhesion. PNAS 107:3314893–98 [Google Scholar]
  143. Schulte D, Bumsted-O'Brien KM. 2008. Molecular mechanisms of vertebrate retina development: implications for ganglion cell and photoreceptor patterning. Brain Res. 1192:151–64 [Google Scholar]
  144. Shen W, Da Silva JS, He H, Cline HT. 2009. Type A GABA-receptor–dependent synaptic transmission sculpts dendritic arbor structure in Xenopus tadpoles in vivo. J. Neurosci. 29:155032–43 [Google Scholar]
  145. Siegert S, Scherf BG, Del Punta K, Didkovsky N, Heintz N, Roska B. 2009. Genetic address book for retinal cell types. Nat. Neurosci. 12:91197–204 [Google Scholar]
  146. Sin WC, Haas K, Ruthazer ES, Cline HT. 2002. Dendrite growth increased by visual activity requires NMDA receptor and Rho GTPases. Nature 419:6906475–80 [Google Scholar]
  147. Šišková Z, Justus D, Kaneko H, Friedrichs D, Henneberg N. et al. 2014. Dendritic structural degeneration is functionally linked to cellular hyperexcitability in a mouse model of Alzheimer's disease. Neuron 84:51023–33 [Google Scholar]
  148. Smith CJ, O'Brien T, Chatzigeorgiou M, Spencer WC, Feingold-Link E. et al. 2013. Sensory neuron fates are distinguished by a transcriptional switch that regulates dendrite branch stabilization. Neuron 79:2266–80 [Google Scholar]
  149. Smith CJ, Watson JD, VanHoven MK, Colón-Ramos DA, Miller DM. 2012. Netrin (UNC-6) mediates dendritic self-avoidance. Nat. Neurosci. 15:5731–37 [Google Scholar]
  150. Snider J, Pillai A, Stevens CF. 2010. A universal property of axonal and dendritic arbors. Neuron 66:145–56 [Google Scholar]
  151. Sorensen SA, Rubel EW. 2006. The level and integrity of synaptic input regulates dendrite structure. J. Neurosci. 26:51539–50 [Google Scholar]
  152. Sorensen SA, Rubel EW. 2011. Relative input strength rapidly regulates dendritic structure of chick auditory brainstem neurons. J. Comp. Neurol. 519:142838–51 [Google Scholar]
  153. Spruston N. 2008. Pyramidal neurons: dendritic structure and synaptic integration. Nat. Rev. Neurosci. 9:3206–21 [Google Scholar]
  154. Stiefel KM, Sejnowski TJ. 2007. Mapping function onto neuronal morphology. J. Neurophysiol. 98:1513–26 [Google Scholar]
  155. Sugimura K, Satoh D, Estes P, Crews S, Uemura T. 2004. Development of morphological diversity of dendrites in Drosophila by the BTB-zinc finger protein Abrupt. Neuron 43:6809–22 [Google Scholar]
  156. Sugimura K, Yamamoto M, Niwa R, Satoh D, Goto S. et al. 2003. Distinct developmental modes and lesion-induced reactions of dendrites of two classes of Drosophila sensory neurons. J. Neurosci. 23:93752–60 [Google Scholar]
  157. Sulkowski MJ, Iyer SC, Kurosawa MS, Iyer EPR, Cox DN. 2011. Turtle functions downstream of Cut in differentially regulating class specific dendrite morphogenesis in Drosophila. PLOS ONE 6:7e22611 [Google Scholar]
  158. Sun LO, Jiang Z, Rivlin-Etzion M, Hand R, Brady CM. et al. 2013. On and off retinal circuit assembly by divergent molecular mechanisms. Science 342:61581241974 [Google Scholar]
  159. Suto F, Tsuboi M, Kamiya H, Mizuno H, Kiyama Y. et al. 2007. Interactions between Plexin-A2, Plexin-A4, and Semaphorin 6A control lamina-restricted projection of hippocampal mossy fibers. Neuron 53:4535–47 [Google Scholar]
  160. Sweeney LB, Chou Y-H, Wu Z, Joo W, Komiyama T. et al. 2011. Secreted semaphorins from degenerating larval ORN axons direct adult projection neuron dendrite targeting. Neuron 72:5734–47 [Google Scholar]
  161. Takahashi H, Craig AM. 2013. Protein tyrosine phosphatases PTPδ, PTPσ, and LAR: presynaptic hubs for synapse organization. Trends Neurosci. 36:9522–34 [Google Scholar]
  162. Tasic B, Nabholz CE, Baldwin KK, Kim Y, Rueckert EH. et al. 2002. Promoter choice determines splice site selection in protocadherin α and γ pre-mRNA splicing. Mol. Cell 10:21–33 [Google Scholar]
  163. Thu CA, Chen WV, Rubinstein R, Chevee M, Wolcott HN. et al. 2014. Single-cell identity generated by combinatorial homophilic interactions between α, β, and γ protocadherins. Cell 158:51045–59 [Google Scholar]
  164. Tian N, Copenhagen DR. 2003. Visual stimulation is required for refinement of ON and OFF pathways in postnatal retina. Neuron 39:185–96 [Google Scholar]
  165. Ting C-Y, McQueen PG, Pandya N, Lin T-Y, Yang M. et al. 2014. Photoreceptor-derived activin promotes dendritic termination and restricts the receptive fields of first-order interneurons in Drosophila. Neuron 81:4830–46 [Google Scholar]
  166. Toyoda S, Kawaguchi M, Kobayashi T, Tarusawa E, Toyama T. et al. 2014. Developmental epigenetic modification regulates stochastic expression of clustered protocadherin genes, generating single neuron diversity. Neuron 82:194–108 [Google Scholar]
  167. Tran TS, Rubio ME, Clem RL, Johnson D, Case L. et al. 2009. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:72761065–69 [Google Scholar]
  168. Tripodi M, Evers JF, Mauss A, Bate M, Landgraf M. 2008. Structural homeostasis: compensatory adjustments of dendritic arbor geometry in response to variations of synaptic input. PLOS Biol. 6:10e260 [Google Scholar]
  169. Van Elburg RAJ, van Ooyen A. 2010. Impact of dendritic size and dendritic topology on burst firing in pyramidal cells. PLOS Comput. Biol. 6:5e1000781 [Google Scholar]
  170. Vaney DI. 1994. Territorial organization of direction-selective ganglion cells in rabbit retina. J. Neurosci. 14:11 Pt. 16301–16 [Google Scholar]
  171. Voinescu PE, Kay JN, Sanes JR. 2009. Birthdays of retinal amacrine cell subtypes are systematically related to their molecular identity and soma position. J. Comp. Neurol. 517:5737–50 [Google Scholar]
  172. Wang X, Su H, Bradley A. 2002a. Molecular mechanisms governing Pcdh-γ gene expression: evidence for a multiple promoter and cis-alternative splicing model. Genes Dev. 16:151890–905 [Google Scholar]
  173. Wang X, Weiner JA, Levi S, Craig AM, Bradley A, Sanes JR. 2002b. Gamma protocadherins are required for survival of spinal interneurons. Neuron 36:5843–54 [Google Scholar]
  174. Wang Y, Rubel EW. 2012. In vivo reversible regulation of dendritic patterning by afferent input in bipolar auditory neurons. J. Neurosci. 32:3311495–504 [Google Scholar]
  175. Ward A, Hong W, Favaloro V, Luo L. 2015. Toll receptors instruct axon and dendrite targeting and participate in synaptic partner matching in a Drosophila olfactory circuit. Neuron 85:51013–28 [Google Scholar]
  176. Wässle H. 2004. Parallel processing in the mammalian retina. Nat. Rev. Neurosci. 5:10747–57 [Google Scholar]
  177. Wässle H, Peichl L, Boycott BB. 1981. Dendritic territories of cat retinal ganglion cells. Nature 292:5821344–45 [Google Scholar]
  178. Wässle H, Puller C, Müller F, Haverkamp S. 2009. Cone contacts, mosaics, and territories of bipolar cells in the mouse retina. J. Neurosci. 29:1106–17 [Google Scholar]
  179. Wässle H, Riemann HJ. 1978. The mosaic of nerve cells in the mammalian retina. Proc. R. Soc. Lond. B 200:1141441–61 [Google Scholar]
  180. Wen Q, Stepanyants A, Elston GN, Grosberg AY, Chklovskii DB. 2009. Maximization of the connectivity repertoire as a statistical principle governing the shapes of dendritic arbors. PNAS 106:3012536–41 [Google Scholar]
  181. Williams DW, Truman JW. 2005. Cellular mechanisms of dendrite pruning in Drosophila: insights from in vivo time-lapse of remodeling dendritic arborizing sensory neurons. Development 132:163631–42 [Google Scholar]
  182. Williams ME, Wilke SA, Daggett A, Davis E, Otto S. et al. 2011. Cadherin-9 regulates synapse-specific differentiation in the developing hippocampus. Neuron 71:4640–55 [Google Scholar]
  183. Wojtowicz WM, Wu W, Andre I, Qian B, Baker D, Zipursky SL. 2007. A vast repertoire of Dscam binding specificities arises from modular interactions of variable Ig domains. Cell 130:61134–45 [Google Scholar]
  184. Wu Q, Maniatis T. 1999. A striking organization of a large family of human neural cadherin-like cell adhesion genes. Cell 97:6779–90 [Google Scholar]
  185. Wu Y, Helt J-C, Wexler E, Petrova IM, Noordermeer JN. et al. 2014. Wnt5 and Drl/Ryk gradients pattern the Drosophila olfactory dendritic map. J. Neurosci. 34:4514961–72 [Google Scholar]
  186. Yamagata M, Sanes JR. 2008. Dscam and Sidekick proteins direct lamina-specific synaptic connections in vertebrate retina. Nature 451:7177465–69 [Google Scholar]
  187. Yamagata M, Sanes JR. 2012. Expanding the Ig superfamily code for laminar specificity in retina: expression and role of contactins. J. Neurosci. 32:4114402–14 [Google Scholar]
  188. Yamagata M, Weiner JA, Sanes JR. 2002. Sidekicks: synaptic adhesion molecules that promote lamina-specific connectivity in the retina. Cell 110:5649–60 [Google Scholar]
  189. Yan Z, Zhang W, He Y, Gorczyca D, Xiang Y. et al. 2013. Drosophila NOMPC is a mechanotransduction channel subunit for gentle-touch sensation. Nature 493:7431221–25 [Google Scholar]
  190. Ye B, Zhang Y, Song W, Younger SH, Jan LY, Jan YN. 2007. Growing dendrites and axons differ in their reliance on the secretory pathway. Cell 130:4717–29 [Google Scholar]
  191. Yuste R. 2013. Electrical compartmentalization in dendritic spines. Annu. Rev. Neurosci. 36:429–49 [Google Scholar]
  192. Yuste R, Bonhoeffer T. 2004. Genesis of dendritic spines: insights from ultrastructural and imaging studies. Nat. Rev. Neurosci. 5:124–34 [Google Scholar]
  193. Zhu H, Hummel T, Clemens JC, Berdnik D, Zipursky SL, Luo L. 2006. Dendritic patterning by Dscam and synaptic partner matching in the Drosophila antennal lobe. Nat. Neurosci. 9:3349–55 [Google Scholar]
  194. Zhu H, Luo L. 2004. Diverse functions of N-cadherin in dendritic and axonal terminal arborization of olfactory projection neurons. Neuron 42:163–75 [Google Scholar]
  195. Zipursky SL, Grueber WB. 2013. The molecular basis of self-avoidance. Annu. Rev. Neurosci. 36:547–68 [Google Scholar]
  196. Zoghbi HY, Bear MF. 2012. Synaptic dysfunction in neurodevelopmental disorders associated with autism and intellectual disabilities. Cold Spring Harb. Perspect. Biol. 4:3pii:a009886 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error