The assembly of functional neural circuits requires the combined action of progressive and regressive events. Regressive events encompass a variety of inhibitory developmental processes, including axon and dendrite pruning, which facilitate the removal of exuberant neuronal connections. Most axon pruning involves the removal of axons that had already made synaptic connections; thus, axon pruning is tightly associated with synapse elimination. In many instances, these developmental processes are regulated by the interplay between neurons and glial cells that act instructively during neural remodeling. Owing to the importance of axon and dendritic pruning, these remodeling events require precise spatial and temporal control, and this is achieved by a range of distinct molecular mechanisms. Disruption of these mechanisms results in abnormal pruning, which has been linked to brain dysfunction. Therefore, understanding the mechanisms of axon and dendritic pruning will be instrumental in advancing our knowledge of neural disease and mental disorders.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Altman J. 1972. Postnatal development of the cerebellar cortex in the rat. II. Phases in the maturation of Purkinje cells and of the molecular layer. J. Comp. Neurol. 145:399–463 [Google Scholar]
  2. Andersen E, Asuri N, Clay M, Halloran M. 2010. Live imaging of cell motility and actin cytoskeleton of individual neurons and neural crest cells in zebrafish embryos. J. Vis. Exp. 2010:361726 [Google Scholar]
  3. Andjus PR, Zhu L, Cesa R, Carulli D, Strata P. 2003. A change in the pattern of activity affects the developmental regression of the Purkinje cell polyinnervation by climbing fibers in the rat cerebellum. Neuroscience 121:563–72 [Google Scholar]
  4. Andreasen NC, Nopoulos P, Magnotta V, Pierson R, Ziebell S, Ho BC. 2011. Progressive brain change in schizophrenia: a prospective longitudinal study of first-episode schizophrenia. Biol. Psychiatry 70:672–79 [Google Scholar]
  5. Awasaki T, Huang Y, O'Connor MB, Lee T. 2011. Glia instruct developmental neuronal remodeling through TGF-β signaling. Nat. Neurosci. 14:821–23 [Google Scholar]
  6. Awasaki T, Ito K. 2004. Engulfing action of glial cells is required for programmed axon pruning during Drosophila metamorphosis. Curr. Biol. 14:668–77 [Google Scholar]
  7. Awasaki T, Tatsumi R, Takahashi K, Arai K, Nakanishi Y. et al. 2006. Essential role of the apoptotic cell engulfment genes draper and ced-6 in programmed axon pruning during Drosophila metamorphosis. Neuron 50:855–67 [Google Scholar]
  8. Baas PW, Deitch JS, Black MM, Banker GA. 1988. Polarity orientation of microtubules in hippocampal neurons: uniformity in the axon and nonuniformity in the dendrite. PNAS 85:8335–39 [Google Scholar]
  9. Babetto E, Beirowski B, Russler EV, Milbrandt J, DiAntonio A. 2013. The Phr1 ubiquitin ligase promotes injury-induced axon self-destruction. Cell Rep. 3:1422–29 [Google Scholar]
  10. Bagri A, Cheng HJ, Yaron A, Pleasure SJ, Tessier-Lavigne M. 2003. Stereotyped pruning of long hippocampal axon branches triggered by retraction inducers of the semaphorin family. Cell 113:285–99 [Google Scholar]
  11. Balice-Gordon RJ, Lichtman JW. 1994. Long-term synapse loss induced by focal blockade of postsynaptic receptors. Nature 372:519–24 [Google Scholar]
  12. Bashaw GJ, Klein R. 2010. Signaling from axon guidance receptors. Cold Spring Harb. Perspect. Biol. 2a001941 [Google Scholar]
  13. Bialas AR, Stevens B. 2013. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16:1773–82 [Google Scholar]
  14. Bishop DL, Misgeld T, Walsh MK, Gan WB, Lichtman JW. 2004. Axon branch removal at developing synapses by axosome shedding. Neuron 44:651–61 [Google Scholar]
  15. Bitanihirwe BK, Lim MP, Kelley JF, Kaneko T, Woo TU. 2009. Glutamatergic deficits and parvalbumin-containing inhibitory neurons in the prefrontal cortex in schizophrenia. BMC Psychiatry 9:71 [Google Scholar]
  16. Boksa P. 2012. Abnormal synaptic pruning in schizophrenia: Urban myth or reality?. J. Psychiatry Neurosci. 37:75–77 [Google Scholar]
  17. Bourgeois JP, Goldman-Rakic PS, Rakic P. 1994. Synaptogenesis in the prefrontal cortex of rhesus monkeys. Cereb. Cortex 4:78–96 [Google Scholar]
  18. Bravin M, Morando L, Vercelli A, Rossi F, Strata P. 1999. Control of spine formation by electrical activity in the adult rat cerebellum. PNAS 96:1704–9 [Google Scholar]
  19. Broadbelt K, Byne W, Jones LB. 2002. Evidence for a decrease in basilar dendrites of pyramidal cells in schizophrenic medial prefrontal cortex. Schizophr. Res. 58:75–81 [Google Scholar]
  20. Cang J, Feldheim DA. 2013. Developmental mechanisms of topographic map formation and alignment. Annu. Rev. Neurosci. 36:51–77 [Google Scholar]
  21. Cang J, Renteria RC, Kaneko M, Liu X, Copenhagen DR, Stryker MP. 2005. Development of precise maps in visual cortex requires patterned spontaneous activity in the retina. Neuron 48:797–809 [Google Scholar]
  22. Cang J, Wang L, Stryker MP, Feldheim DA. 2008. Roles of ephrin-As and structured activity in the development of functional maps in the superior colliculus. J. Neurosci. 28:11015–23 [Google Scholar]
  23. Casey BJ, Jones RM, Hare TA. 2008. The adolescent brain. Ann. N.Y. Acad. Sci. 1124:111–26 [Google Scholar]
  24. Cesa R, Scelfo B, Strata P. 2007. Activity-dependent presynaptic and postsynaptic structural plasticity in the mature cerebellum. J. Neurosci. 27:4603–11 [Google Scholar]
  25. Chedotal A, Sotelo C. 1992. Early development of olivocerebellar projections in the fetal rat using CGRP immunocytochemistry. Eur. J. Neurosci. 4:1159–79 [Google Scholar]
  26. Chen M, Maloney JA, Kallop DY, Atwal JK, Tam SJ. et al. 2012. Spatially coordinated kinase signaling regulates local axon degeneration. J. Neurosci. 32:13439–53 [Google Scholar]
  27. Chen Z, Jalabi W, Hu W, Park HJ, Gale JT. et al. 2014. Microglial displacement of inhibitory synapses provides neuroprotection in the adult brain. Nat. Commun. 5:4486 [Google Scholar]
  28. Cheng TW, Liu XB, Faulkner RL, Stephan AH, Barres BA. et al. 2010. Emergence of lamina-specific retinal ganglion cell connectivity by axon arbor retraction and synapse elimination. J. Neurosci. 30:16376–82 [Google Scholar]
  29. Cho JY, Chak K, Andreone BJ, Wooley JR, Kolodkin AL. 2012. The extracellular matrix proteoglycan perlecan facilitates transmembrane semaphorin-mediated repulsive guidance. Genes Dev. 26:2222–35 [Google Scholar]
  30. Chung WS, Clarke LE, Wang GX, Stafford BK, Sher A. et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400 [Google Scholar]
  31. Coleman MP, Freeman MR. 2010. Wallerian degeneration, WldS, and Nmnat. Annu. Rev. Neurosci. 33:245–67 [Google Scholar]
  32. Colman H, Nabekura J, Lichtman JW. 1997. Alterations in synaptic strength preceding axon withdrawal. Science 275:356–61 [Google Scholar]
  33. Comery TA, Harris JB, Willems PJ, Oostra BA, Irwin SA. et al. 1997. Abnormal dendritic spines in fragile X knockout mice: maturation and pruning deficits. PNAS 94:5401–4 [Google Scholar]
  34. Cosker KE, Pazyra-Murphy MF, Fenstermacher SJ, Segal RA. 2013. Target-derived neurotrophins coordinate transcription and transport of Bclw to prevent axonal degeneration. J. Neurosci. 33:5195–207 [Google Scholar]
  35. Crepel F, Delhaye-Bouchaud N. 1979. Distribution of climbing fibres on cerebellar Purkinje cells in X-irradiated rats. An electrophysiological study. J. Physiol. 290:97–112 [Google Scholar]
  36. Crepel F, Delhaye-Bouchaud N, Dupont JL. 1981. Fate of the multiple innervation of cerebellar Purkinje cells by climbing fibers in immature control, x-irradiated and hypothyroid rats. Brain Res. 227:59–71 [Google Scholar]
  37. Crepel F, Mariani J. 1976. Multiple innervation of Purkinje cells by climbing fibers in the cerebellum of the weaver mutant mouse. J. Neurobiol. 7:579–82 [Google Scholar]
  38. Crepel F, Mariani J, Delhaye-Bouchaud N. 1976. Evidence for a multiple innervation of Purkinje cells by climbing fibers in the immature rat cerebellum. J. Neurobiol. 7:567–78 [Google Scholar]
  39. Cressman VL, Balaban J, Steinfeld S, Shemyakin A, Graham P. et al. 2010. Prefrontal cortical inputs to the basal amygdala undergo pruning during late adolescence in the rat. J. Comp. Neurol. 518:2693–709 [Google Scholar]
  40. Cusack CL, Swahari V, Henley WH, Ramsey JM, Deshmukh M. 2013. Distinct pathways mediate axon degeneration during apoptosis and axon-specific pruning. Nat. Commun. 4:1876 [Google Scholar]
  41. Davidsson P, Gottfries J, Bogdanovic N, Ekman R, Karlsson I. et al. 1999. The synaptic-vesicle-specific proteins rab3a and synaptophysin are reduced in thalamus and related cortical brain regions in schizophrenic brains. Schizophr. Res. 40:23–29 [Google Scholar]
  42. de Wit J, Verhaagen J. 2007. Proteoglycans as modulators of axon guidance cue function. Adv. Exp. Med. Biol. 600:73–89 [Google Scholar]
  43. Denault JB, Salvesen GS. 2002. Caspases: keys in the ignition of cell death. Chem. Rev. 102:4489–500 [Google Scholar]
  44. Deppmann CD, Mihalas S, Sharma N, Lonze BE, Niebur E, Ginty DD. 2008. A model for neuronal competition during development. Science 320:369–73 [Google Scholar]
  45. Feinberg I. 1982. Schizophrenia: Caused by a fault in programmed synaptic elimination during adolescence?. J. Psychiatr. Res. 17:319–34 [Google Scholar]
  46. Feldheim DA, Vanderhaeghen P, Hansen MJ, Frisen J, Lu Q. et al. 1998. Topographic guidance labels in a sensory projection to the forebrain. Neuron 21:1303–13 [Google Scholar]
  47. Feller MB, Wellis DP, Stellwagen D, Werblin FS, Shatz CJ. 1996. Requirement for cholinergic synaptic transmission in the propagation of spontaneous retinal waves. Science 272:1182–87 [Google Scholar]
  48. Freeman MR. 2014. Signaling mechanisms regulating Wallerian degeneration. Curr. Opin. Neurobiol. 27:224–31 [Google Scholar]
  49. George EB, Glass JD, Griffin JW. 1995. Axotomy-induced axonal degeneration is mediated by calcium influx through ion-specific channels. J. Neurosci. 15:6445–52 [Google Scholar]
  50. Giedd JN. 2004. Structural magnetic resonance imaging of the adolescent brain. Ann. N.Y. Acad. Sci. 1021:77–85 [Google Scholar]
  51. Glantz LA, Lewis DA. 1997. Reduction of synaptophysin immunoreactivity in the prefrontal cortex of subjects with schizophrenia. Regional and diagnostic specificity. Arch. Gen. Psychiatry 54:943–52 [Google Scholar]
  52. Glantz LA, Lewis DA. 2000. Decreased dendritic spine density on prefrontal cortical pyramidal neurons in schizophrenia. Arch. Gen. Psychiatry 57:65–73 [Google Scholar]
  53. Gogtay N, Giedd JN, Lusk L, Hayashi KM, Greenstein D. et al. 2004. Dynamic mapping of human cortical development during childhood through early adulthood. PNAS 101:8174–79 [Google Scholar]
  54. Gomez TM, Letourneau PC. 2014. Actin dynamics in growth cone motility and navigation. J. Neurochem. 129:221–34 [Google Scholar]
  55. Gray DC, Mahrus S, Wells JA. 2010. Activation of specific apoptotic caspases with an engineered small-molecule-activated protease. Cell 142:637–46 [Google Scholar]
  56. Grubb MS, Rossi FM, Changeux JP, Thompson ID. 2003. Abnormal functional organization in the dorsal lateral geniculate nucleus of mice lacking the beta 2 subunit of the nicotinic acetylcholine receptor. Neuron 40:1161–72 [Google Scholar]
  57. Haase G, Pettmann B, Raoul C, Henderson CE. 2008. Signaling by death receptors in the nervous system. Curr. Opin. Neurobiol. 18:284–91 [Google Scholar]
  58. Hakim Y, Yaniv SP, Schuldiner O. 2014. Astrocytes play a key role in Drosophila mushroom body axon pruning. PLOS ONE 9:e86178 [Google Scholar]
  59. Halim ND, Weickert CS, McClintock BW, Hyde TM, Weinberger DR. et al. 2003. Presynaptic proteins in the prefrontal cortex of patients with schizophrenia and rats with abnormal prefrontal development. Mol. Psychiatry 8:797–810 [Google Scholar]
  60. Hamburger V, Levi-Montalcini R. 1949. Proliferation, differentiation and degeneration in the spinal ganglia of the chick embryo under normal and experimental conditions. J. Exp. Zool. 111:457–501 [Google Scholar]
  61. Harrington AW, Ginty DD. 2013. Long-distance retrograde neurotrophic factor signalling in neurons. Nat. Rev. Neurosci. 14:177–87 [Google Scholar]
  62. Hashimoto K, Ichikawa R, Kitamura K, Watanabe M, Kano M. 2009a. Translocation of a “winner” climbing fiber to the Purkinje cell dendrite and subsequent elimination of “losers” from the soma in developing cerebellum. Neuron 63:106–18 [Google Scholar]
  63. Hashimoto K, Ichikawa R, Takechi H, Inoue Y, Aiba A. et al. 2001. Roles of glutamate receptor δ2 subunit (GluRδ2) and metabotropic glutamate receptor subtype 1 (mGluR1) in climbing fiber synapse elimination during postnatal cerebellar development. J. Neurosci. 21:9701–12 [Google Scholar]
  64. Hashimoto K, Tsujita M, Miyazaki T, Kitamura K, Yamazaki M. et al. 2011. Postsynaptic P/Q-type Ca2+ channel in Purkinje cell mediates synaptic competition and elimination in developing cerebellum. PNAS 108:9987–92 [Google Scholar]
  65. Hashimoto K, Yoshida T, Sakimura K, Mishina M, Watanabe M, Kano M. 2009b. Influence of parallel fiber-Purkinje cell synapse formation on postnatal development of climbing fiber-Purkinje cell synapses in the cerebellum. Neuroscience 162:601–11 [Google Scholar]
  66. Holmes GL, Sarkisian M, Ben-Ari Y, Chevassus-Au-Louis N. 1999. Mossy fiber sprouting after recurrent seizures during early development in rats. J. Comp. Neurol. 404:537–53 [Google Scholar]
  67. Honer WG, Falkai P, Bayer TA, Xie J, Hu L. et al. 2002. Abnormalities of SNARE mechanism proteins in anterior frontal cortex in severe mental illness. Cereb. Cortex 12:349–56 [Google Scholar]
  68. Hong YK, Park S, Litvina EY, Morales J, Sanes JR, Chen C. 2014. Refinement of the retinogeniculate synapse by bouton clustering. Neuron 84:2332–39 [Google Scholar]
  69. Hoopfer ED, McLaughlin T, Watts RJ, Schuldiner O, O'Leary DD, Luo L. 2006. WldS protection distinguishes axon degeneration following injury from naturally occurring developmental pruning. Neuron 50:883–95 [Google Scholar]
  70. Hur EM, Zhou FQ. 2010. GSK3 signalling in neural development. Nat. Rev. Neurosci. 11:539–51 [Google Scholar]
  71. Huttenlocher PR. 1979. Synaptic density in human frontal cortex—developmental changes and effects of aging. Brain Res. 163:195–205 [Google Scholar]
  72. Huttenlocher PR, Dabholkar AS. 1997. Regional differences in synaptogenesis in human cerebral cortex. J. Comp. Neurol. 387:167–78 [Google Scholar]
  73. Ichise T, Kano M, Hashimoto K, Yanagihara D, Nakao K. et al. 2000. mGluR1 in cerebellar Purkinje cells essential for long-term depression, synapse elimination, and motor coordination. Science 288:1832–35 [Google Scholar]
  74. Issman-Zecharya N, Schuldiner O. 2014. The PI3K-class III complex promotes axon pruning by downregulating a Ptc-derived signal via endosome-lysosomal degradation. Dev. Cell 31:4461–73 [Google Scholar]
  75. Ito M. 1984. The modifiable neuronal network of the cerebellum. Jpn. J. Physiol. 34:781–92 [Google Scholar]
  76. Ivanco TL, Greenough WT. 2002. Altered mossy fiber distributions in adult Fmr1 (FVB) knockout mice. Hippocampus 12:47–54 [Google Scholar]
  77. Ji K, Akgul G, Wollmuth LP, Tsirka SE. 2013. Microglia actively regulate the number of functional synapses. PLOS ONE 8:e56293 [Google Scholar]
  78. Kakegawa W, Mitakidis N, Miura E, Abe M, Matsuda K. et al. 2015. Anterograde C1ql1 signaling is required in order to determine and maintain a single-winner climbing fiber in the mouse cerebellum. Neuron 85:316–29 [Google Scholar]
  79. Kakizawa S, Miyazaki T, Yanagihara D, Iino M, Watanabe M, Kano M. 2005. Maintenance of presynaptic function by AMPA receptor-mediated excitatory postsynaptic activity in adult brain. PNAS 102:19180–85 [Google Scholar]
  80. Kakizawa S, Yamasaki M, Watanabe M, Kano M. 2000. Critical period for activity-dependent synapse elimination in developing cerebellum. J. Neurosci. 20:4954–61 [Google Scholar]
  81. Kalus P, Muller TJ, Zuschratter W, Senitz D. 2000. The dendritic architecture of prefrontal pyramidal neurons in schizophrenic patients. Neuroreport 11:3621–25 [Google Scholar]
  82. Kanamori T, Kanai MI, Dairyo Y, Yasunaga K, Morikawa RK, Emoto K. 2013. Compartmentalized calcium transients trigger dendrite pruning in Drosophila sensory neurons. Science 340:1475–78 [Google Scholar]
  83. Kano M, Hashimoto K, Kurihara H, Watanabe M, Inoue Y. et al. 1997. Persistent multiple climbing fiber innervation of cerebellar Purkinje cells in mice lacking mGluR1. Neuron 18:71–79 [Google Scholar]
  84. Kano M, Rexhausen U, Dreessen J, Konnerth A. 1992. Synaptic excitation produces a long-lasting rebound potentiation of inhibitory synaptic signals in cerebellar Purkinje cells. Nature 356:601–4 [Google Scholar]
  85. Kirilly D, Gu Y, Huang Y, Wu Z, Bashirullah A. et al. 2009. A genetic pathway composed of Sox14 and Mical governs severing of dendrites during pruning. Nat. Neurosci. 12:1497–505 [Google Scholar]
  86. Kirilly D, Wong JJ, Lim EK, Wang Y, Zhang H. et al. 2011. Intrinsic epigenetic factors cooperate with the steroid hormone ecdysone to govern dendrite pruning in Drosophila. Neuron 72:86–100 [Google Scholar]
  87. Klein R. 2012. Eph/ephrin signalling during development. Development 139:4105–9 [Google Scholar]
  88. Klein R, Conway D, Parada LF, Barbacid M. 1990. The trkB tyrosine protein kinase gene codes for a second neurogenic receptor that lacks the catalytic kinase domain. Cell 61:647–56 [Google Scholar]
  89. Kollins KM, Bell RL, Butts M, Withers GS. 2009. Dendrites differ from axons in patterns of microtubule stability and polymerization during development. Neural Dev. 4:26 [Google Scholar]
  90. Koropouli E, Kolodkin AL. 2014. Semaphorins and the dynamic regulation of synapse assembly, refinement, and function. Curr. Opin. Neurobiol. 27:1–7 [Google Scholar]
  91. Koss WA, Belden CE, Hristov AD, Juraska JM. 2014. Dendritic remodeling in the adolescent medial prefrontal cortex and the basolateral amygdala of male and female rats. Synapse 68:61–72 [Google Scholar]
  92. Kuo CT, Jan LY, Jan YN. 2005. Dendrite-specific remodeling of Drosophila sensory neurons requires matrix metalloproteases, ubiquitin-proteasome, and ecdysone signaling. PNAS 102:15230–35 [Google Scholar]
  93. Kuo CT, Zhu S, Younger S, Jan LY, Jan YN. 2006. Identification of E2/E3 ubiquitinating enzymes and caspase activity regulating Drosophila sensory neuron dendrite pruning. Neuron 51:283–90 [Google Scholar]
  94. Lee HH, Jan LY, Jan YN. 2009. Drosophila IKK-related kinase Ik2 and Katanin p60-like 1 regulate dendrite pruning of sensory neuron during metamorphosis. PNAS 106:6363–68 [Google Scholar]
  95. Lee JC. 1963. Electron microscopy of Wallerian degeneration. J. Comp. Neurol. 120:65–79 [Google Scholar]
  96. Lee T, Lee A, Luo L. 1999. Development of the Drosophila mushroom bodies: sequential generation of three distinct types of neurons from a neuroblast. Development 126:4065–76 [Google Scholar]
  97. Lee T, Marticke S, Sung C, Robinow S, Luo L. 2000. Cell-autonomous requirement of the USP/EcR-B ecdysone receptor for mushroom body neuronal remodeling in Drosophila. Neuron 28:807–18 [Google Scholar]
  98. Levi-Montalcini R. 1987. The nerve growth factor 35 years later. Science 237:1154–62 [Google Scholar]
  99. Lewis DA, Levitt P. 2002. Schizophrenia as a disorder of neurodevelopment. Annu. Rev. Neurosci. 25:409–32 [Google Scholar]
  100. Lin YC, Koleske AJ. 2010. Mechanisms of synapse and dendrite maintenance and their disruption in psychiatric and neurodegenerative disorders. Annu. Rev. Neurosci. 33:349–78 [Google Scholar]
  101. Liu XB, Low LK, Jones EG, Cheng HJ. 2005. Stereotyped axon pruning via plexin signaling is associated with synaptic complex elimination in the hippocampus. J. Neurosci. 25:9124–34 [Google Scholar]
  102. Liu Y, Rutlin M, Huang S, Barrick CA, Wang F. et al. 2012. Sexually dimorphic BDNF signaling directs sensory innervation of the mammary gland. Science 338:1357–60 [Google Scholar]
  103. Lorenzetto E, Caselli L, Feng G, Yuan W, Nerbonne JM. et al. 2009. Genetic perturbation of postsynaptic activity regulates synapse elimination in developing cerebellum. PNAS 106:16475–80 [Google Scholar]
  104. Low LK, Liu XB, Faulkner RL, Coble J, Cheng HJ. 2008. Plexin signaling selectively regulates the stereotyped pruning of corticospinal axons from visual cortex. PNAS 105:8136–41 [Google Scholar]
  105. Luduena RF, Anderson WH, Prasad V, Jordan MA, Ferrigni KC. et al. 1986. Interactions of vinblastine and maytansine with tubulin. Ann. N.Y. Acad. Sci. 466:718–32 [Google Scholar]
  106. Lunn ER, Perry VH, Brown MC, Rosen H, Gordon S. 1989. Absence of Wallerian degeneration does not hinder regeneration in peripheral nerve. Eur. J. Neurosci. 1:27–33 [Google Scholar]
  107. Ma M, Ferguson TA, Schoch KM, Li J, Qian Y. et al. 2013. Calpains mediate axonal cytoskeleton disintegration during Wallerian degeneration. Neurobiol. Dis. 56:34–46 [Google Scholar]
  108. Mack TG, Reiner M, Beirowski B, Mi W, Emanuelli M. et al. 2001. Wallerian degeneration of injured axons and synapses is delayed by a Ube4b/Nmnat chimeric gene. Nat. Neurosci. 4:1199–206 [Google Scholar]
  109. Maor-Nof M, Homma N, Raanan C, Nof A, Hirokawa N, Yaron A. 2013. Axonal pruning is actively regulated by the microtubule-destabilizing protein kinesin superfamily protein 2A. Cell Rep. 3:971–77 [Google Scholar]
  110. Mariani J, Changeux JP. 1981. Ontogenesis of olivocerebellar relationships. II. Spontaneous activity of inferior olivary neurons and climbing fibermediated activity of cerebellar Purkinje cells in developing rats. J. Neurosci. 1:703–9 [Google Scholar]
  111. Mariani J, Crepel F, Mikoshiba K, Changeux JP, Sotelo C. 1977. Anatomical, physiological and biochemical studies of the cerebellum from Reeler mutant mouse. Philos. Trans. R. Soc. Lond. B Biol. Sci. 281:1–28 [Google Scholar]
  112. Martin SM, O'Brien GS, Portera-Cailliau C, Sagasti A. 2010. Wallerian degeneration of zebrafish trigeminal axons in the skin is required for regeneration and developmental pruning. Development 137:3985–94 [Google Scholar]
  113. McLaughlin T, O'Leary DD. 2005. Molecular gradients and development of retinotopic maps. Annu. Rev. Neurosci. 28:327–55 [Google Scholar]
  114. McLaughlin T, Torborg CL, Feller MB, O'Leary DD. 2003. Retinotopic map refinement requires spontaneous retinal waves during a brief critical period of development. Neuron 40:1147–60 [Google Scholar]
  115. Mintz IM, Adams ME, Bean BP. 1992. P-type calcium channels in rat central and peripheral neurons. Neuron 9:85–95 [Google Scholar]
  116. Muir-Robinson G, Hwang BJ, Feller MB. 2002. Retinogeniculate axons undergo eye-specific segregation in the absence of eye-specific layers. J. Neurosci. 22:5259–64 [Google Scholar]
  117. Nakamura H, O'Leary DD. 1989. Inaccuracies in initial growth and arborization of chick retinotectal axons followed by course corrections and axon remodeling to develop topographic order. J. Neurosci. 9:3776–95 [Google Scholar]
  118. Nakayama AY, Harms MB, Luo L. 2000. Small GTPases Rac and Rho in the maintenance of dendritic spines and branches in hippocampal pyramidal neurons. J. Neurosci. 20:5329–38 [Google Scholar]
  119. Napper RM, Harvey RJ. 1988. Number of parallel fiber synapses on an individual Purkinje cell in the cerebellum of the rat. J. Comp. Neurol. 274:168–77 [Google Scholar]
  120. Neukomm LJ, Freeman MR. 2014. Diverse cellular and molecular modes of axon degeneration. Trends Cell Biol. 24:515–23 [Google Scholar]
  121. Nikolaev A, McLaughlin T, O'Leary DD, Tessier-Lavigne M. 2009. APP binds DR6 to trigger axon pruning and neuron death via distinct caspases. Nature 457:981–89 [Google Scholar]
  122. Olsen O, Kallop DY, McLaughlin T, Huntwork-Rodriguez S, Wu Z. et al. 2014. Genetic analysis reveals that amyloid precursor protein and death receptor 6 function in the same pathway to control axonal pruning independent of β-secretase. J. Neurosci. 34:6438–47 [Google Scholar]
  123. Oppenheim RW. 1989. The neurotrophic theory and naturally occurring motoneuron death. Trends Neurosci. 12:252–55 [Google Scholar]
  124. Osterloh JM, Yang J, Rooney TM, Fox AN, Adalbert R. et al. 2012. dSarm/Sarm1 is required for activation of an injury-induced axon death pathway. Science 337:481–84 [Google Scholar]
  125. Paolicelli RC, Bolasco G, Pagani F, Maggi L, Scianni M. et al. 2011. Synaptic pruning by microglia is necessary for normal brain development. Science 333:1456–58 [Google Scholar]
  126. Pasterkamp RJ, Giger RJ. 2009. Semaphorin function in neural plasticity and disease. Curr. Opin. Neurobiol. 19:263–74 [Google Scholar]
  127. Perrot R, Berges R, Bocquet A, Eyer J. 2008. Review of the multiple aspects of neurofilament functions, and their possible contribution to neurodegeneration. Mol. Neurobiol. 38:27–65 [Google Scholar]
  128. Pettegrew JW, Keshavan MS, Panchalingam K, Strychor S, Kaplan DB. et al. 1991. Alterations in brain high-energy phosphate and membrane phospholipid metabolism in first-episode, drug-naive schizophrenics. A pilot study of the dorsal prefrontal cortex by in vivo phosphorus 31 nuclear magnetic resonance spectroscopy. Arch. Gen. Psychiatry 48:563–68 [Google Scholar]
  129. Picciotto MR, Zoli M, Lena C, Bessis A, Lallemand Y. et al. 1995. Abnormal avoidance learning in mice lacking functional high-affinity nicotine receptor in the brain. Nature 374:65–67 [Google Scholar]
  130. Potts PR, Singh S, Knezek M, Thompson CB, Deshmukh M. 2003. Critical function of endogenous XIAP in regulating caspase activation during sympathetic neuronal apoptosis. J. Cell Biol. 163:789–99 [Google Scholar]
  131. Poulain FE, Chien CB. 2013. Proteoglycan-mediated axon degeneration corrects pretarget topographic sorting errors. Neuron 78:49–56 [Google Scholar]
  132. Prokop A. 2013. The intricate relationship between microtubules and their associated motor proteins during axon growth and maintenance. Neural Dev. 8:17 [Google Scholar]
  133. Regehr WG, Mintz IM. 1994. Participation of multiple calcium channel types in transmission at single climbing fiber to Purkinje cell synapses. Neuron 12:605–13 [Google Scholar]
  134. Riccomagno MM, Hurtado A, Wang H, Macopson JGJ, Griner EM. et al. 2012. The RacGAP β2-chimaerin selectively mediates axonal pruning in the hippocampus. Cell 149:1594–606 [Google Scholar]
  135. Sahay A, Molliver ME, Ginty DD, Kolodkin AL. 2003. Semaphorin 3F is critical for development of limbic system circuitry and is required in neurons for selective CNS axon guidance events. J. Neurosci. 23:6671–80 [Google Scholar]
  136. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR. et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705 [Google Scholar]
  137. Schizophr. Work. Group Psychiatr. Genomics Consort 2014. Biological insights from 108 schizophrenia-associated genetic loci. Nature 511:421–27 [Google Scholar]
  138. Schuldiner O, Yaron A. 2015. Mechanisms of developmental neurite pruning. Cell. Mol. Life Sci. 72:101–19 [Google Scholar]
  139. Selemon LD, Goldman-Rakic PS. 1999. The reduced neuropil hypothesis: a circuit based model of schizophrenia. Biol. Psychiatry 45:17–25 [Google Scholar]
  140. Simon DJ, Weimer RM, McLaughlin T, Kallop D, Stanger K. et al. 2012. A caspase cascade regulating developmental axon degeneration. J. Neurosci. 32:17540–53 [Google Scholar]
  141. Simon DK, O'Leary DD. 1990. Limited topographic specificity in the targeting and branching of mammalian retinal axons. Dev. Biol. 137:125–34 [Google Scholar]
  142. Smith IW, Mikesh M, Lee Y, Thompson WJ. 2013. Terminal Schwann cells participate in the competition underlying neuromuscular synapse elimination. J. Neurosci. 33:17724–36 [Google Scholar]
  143. Sowell ER, Peterson BS, Thompson PM, Welcome SE, Henkenius AL, Toga AW. 2003. Mapping cortical change across the human life span. Nat. Neurosci. 6:309–15 [Google Scholar]
  144. Sowell ER, Thompson PM, Leonard CM, Welcome SE, Kan E, Toga AW. 2004. Longitudinal mapping of cortical thickness and brain growth in normal children. J. Neurosci. 24:8223–31 [Google Scholar]
  145. Stanfield BB, O'Leary DD, Fricks C. 1982. Selective collateral elimination in early postnatal development restricts cortical distribution of rat pyramidal tract neurones. Nature 298:371–73 [Google Scholar]
  146. Stanley JA, Williamson PC, Drost DJ, Carr TJ, Rylett RJ. et al. 1995. An in vivo study of the prefrontal cortex of schizophrenic patients at different stages of illness via phosphorus magnetic resonance spectroscopy. Arch. Gen. Psychiatry 52:399–406 [Google Scholar]
  147. Stea A, Tomlinson WJ, Soong TW, Bourinet E, Dubel SJ. et al. 1994. Localization and functional properties of a rat brain α1A calcium channel reflect similarities to neuronal Q- and P-type channels. PNAS 91:10576–80 [Google Scholar]
  148. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS. et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78 [Google Scholar]
  149. Sun D, Stuart GW, Jenkinson M, Wood SJ, McGorry PD. et al. 2009. Brain surface contraction mapped in first-episode schizophrenia: a longitudinal magnetic resonance imaging study. Mol. Psychiatry 14:976–86 [Google Scholar]
  150. Tasdemir-Yilmaz OE, Freeman MR. 2014. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28:20–33 [Google Scholar]
  151. Thomas PK. 1964. Changes in the endoneurial sheaths of peripheral myelinated nerve fibres during Wallerian degeneration. J. Anat. 98:175–82 [Google Scholar]
  152. Thomas PK, Sheldon H. 1964. Tubular arrays derived from myelin breakdown during Wallerian degeneration of peripheral nerve. J. Cell Biol. 22:715–18 [Google Scholar]
  153. Tounekti O, Zhang Y, Klaiman G, Goodyer CG, LeBlanc A. 2004. Proteasomal degradation of caspase-6 in 17β-estradiol-treated neurons. J. Neurochem. 89:561–68 [Google Scholar]
  154. Toyofuku T, Yoshida J, Sugimoto T, Zhang H, Kumanogoh A. et al. 2005. FARP2 triggers signals for Sema3A-mediated axonal repulsion. Nat. Neurosci. 8:1712–19 [Google Scholar]
  155. Tran TS, Kolodkin AL, Bharadwaj R. 2007. Semaphorin regulation of cellular morphology. Annu. Rev. Cell Dev. Biol. 23:263–92 [Google Scholar]
  156. Tran TS, Rubio ME, Clem RL, Johnson D, Case L. et al. 2009. Secreted semaphorins control spine distribution and morphogenesis in the postnatal CNS. Nature 462:1065–69 [Google Scholar]
  157. Uesaka N, Uchigashima M, Mikuni T, Nakazawa T, Nakao H. et al. 2014. Retrograde semaphorin signaling regulates synapse elimination in the developing mouse brain. Science 344:1020–23 [Google Scholar]
  158. Unsain N, Higgins JM, Parker KN, Johnstone AD, Barker PA. 2013. XIAP regulates caspase activity in degenerating axons. Cell Rep. 4:751–63 [Google Scholar]
  159. Van Vactor D, Wall DP, Johnson KG. 2006. Heparan sulfate proteoglycans and the emergence of neuronal connectivity. Curr. Opin. Neurobiol. 16:40–51 [Google Scholar]
  160. Walsh MK, Lichtman JW. 2003. In vivo time-lapse imaging of synaptic takeover associated with naturally occurring synapse elimination. Neuron 37:67–73 [Google Scholar]
  161. Wan HI, DiAntonio A, Fetter RD, Bergstrom K, Strauss R, Goodman CS. 2000. Highwire regulates synaptic growth in Drosophila. Neuron 26:313–29 [Google Scholar]
  162. Watanabe M. 2008. Molecular mechanisms governing competitive synaptic wiring in cerebellar Purkinje cells. Tohoku J. Exp. Med. 214:175–90 [Google Scholar]
  163. Watanabe M, Kano M. 2011. Climbing fiber synapse elimination in cerebellar Purkinje cells. Eur. J. Neurosci. 34:1697–710 [Google Scholar]
  164. Watts RJ, Hoopfer ED, Luo L. 2003. Axon pruning during Drosophila metamorphosis: evidence for local degeneration and requirement of the ubiquitin-proteasome system. Neuron 38:871–85 [Google Scholar]
  165. Watts RJ, Schuldiner O, Perrino J, Larsen C, Luo L. 2004. Glia engulf degenerating axons during developmental axon pruning. Curr. Biol. 14:678–84 [Google Scholar]
  166. Williams DW, Kondo S, Krzyzanowska A, Hiromi Y, Truman JW. 2006. Local caspase activity directs engulfment of dendrites during pruning. Nat. Neurosci. 9:1234–36 [Google Scholar]
  167. Wong JJ, Li S, Lim EK, Wang Y, Wang C. et al. 2013. A Cullin1-based SCF E3 ubiquitin ligase targets the InR/PI3K/TOR pathway to regulate neuronal pruning. PLOS Biol. 11:e1001657 [Google Scholar]
  168. Woo TU, Pucak ML, Kye CH, Matus CV, Lewis DA. 1997. Peripubertal refinement of the intrinsic and associational circuitry in monkey prefrontal cortex. Neuroscience 80:1149–58 [Google Scholar]
  169. Xiong X, Hao Y, Sun K, Li J, Li X. et al. 2012. The Highwire ubiquitin ligase promotes axonal degeneration by tuning levels of Nmnat protein. PLOS Biol. 10:e1001440 [Google Scholar]
  170. Xu NJ, Henkemeyer M. 2009. Ephrin-B3 reverse signaling through Grb4 and cytoskeletal regulators mediates axon pruning. Nat. Neurosci. 12:268–76 [Google Scholar]
  171. Xu NJ, Sun S, Gibson JR, Henkemeyer M. 2011. A dual shaping mechanism for postsynaptic ephrin-B3 as a receptor that sculpts dendrites and synapses. Nat. Neurosci. 14:1421–29 [Google Scholar]
  172. Xu W, Orr-Urtreger A, Nigro F, Gelber S, Sutcliffe CB. et al. 1999. Multiorgan autonomic dysfunction in mice lacking the β2 and the β4 subunits of neuronal nicotinic acetylcholine receptors. J. Neurosci. 19:9298–305 [Google Scholar]
  173. Yang J, Weimer RM, Kallop D, Olsen O, Wu Z. et al. 2013. Regulation of axon degeneration after injury and in development by the endogenous calpain inhibitor calpastatin. Neuron 80:1175–89 [Google Scholar]
  174. Yu F, Schuldiner O. 2014. Axon and dendrite pruning in Drosophila. Curr. Opin. Neurobiol. 27:192–98 [Google Scholar]
  175. Yu XM, Gutman I, Mosca TJ, Iram T, Ozkan E. et al. 2013. Plum, an immunoglobulin superfamily protein, regulates axon pruning by facilitating TGF-β signaling. Neuron 78:456–68 [Google Scholar]
  176. Zehr JL, Todd BJ, Schulz KM, McCarthy MM, Sisk CL. 2006. Dendritic pruning of the medial amygdala during pubertal development of the male Syrian hamster. J. Neurobiol. 66:578–90 [Google Scholar]
  177. Zhai Q, Wang J, Kim A, Liu Q, Watts R. et al. 2003. Involvement of the ubiquitin-proteasome system in the early stages of Wallerian degeneration. Neuron 39:217–25 [Google Scholar]
  178. Zhan Y, Paolicelli RC, Sforazzini F, Weinhard L, Bolasco G. et al. 2014. Deficient neuron-microglia signaling results in impaired functional brain connectivity and social behavior. Nat. Neurosci. 17:400–6 [Google Scholar]
  179. Zhang H, Wang Y, Wong JJ, Lim KL, Liou YC. et al. 2014. Endocytic pathways downregulate the L1-type cell adhesion molecule neuroglian to promote dendrite pruning in Drosophila. Dev. Cell 30:463–78 [Google Scholar]
  180. Zheng X, Wang J, Haerry TE, Wu AY, Martin J. et al. 2003. TGF-β signaling activates steroid hormone receptor expression during neuronal remodeling in the Drosophila brain. Cell 112:303–15 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error