Astrocytes regulate multiple aspects of neuronal and synaptic function from development through to adulthood. Instead of addressing each function independently, this review provides a comprehensive overview of the different ways astrocytes modulate neuronal synaptic function throughout life, with a particular focus on recent findings in each area. It includes the emerging functions of astrocytes, such as a role in synapse formation, as well as more established roles, including the uptake and recycling of neurotransmitters. This broad approach covers the many ways astrocytes and neurons constantly interact to maintain the correct functioning of the brain. It is important to consider all of these diverse functions of astrocytes when investigating how astrocyte-neuron interactions regulate synaptic behavior to appreciate the complexity of these ongoing interactions.

Keyword(s): developmentglianeuronplasticitysynapse

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agulhon C, Fiacco TA, McCarthy KD. 2010. Hippocampal short- and long-term plasticity are not modulated by astrocyte Ca2+ signaling. Science 327:1250–54 [Google Scholar]
  2. Agulhon C, Petravicz J, McMullen AB, Sweger EJ, Minton SK. et al. 2008. What is the role of astrocyte calcium in neurophysiology?. Neuron 59:932–46 [Google Scholar]
  3. Allen NJ. 2012. Glial control of synaptogenesis. Neuroglia H Kettenmann, BR Ransom 388–401 Oxford: Oxford Univ. Press, 3rd. ed. [Google Scholar]
  4. Allen NJ. 2013. Role of glia in developmental synapse formation. Curr. Opin. Neurobiol. 23:1027–33 [Google Scholar]
  5. Allen NJ, Bennett ML, Foo LC, Wang GX, Chakraborty C. et al. 2012. Astrocyte glypicans 4 and 6 promote formation of excitatory synapses via GluA1 AMPA receptors. Nature 486:410–14 [Google Scholar]
  6. Araque A, Carmignoto G, Haydon PG, Oliet SHR, Robitaille R, Volterra A. 2014. Gliotransmitters travel in time and space. Neuron 81:728–39 [Google Scholar]
  7. Araque A, Parpura V, Sanzgiri RP, Haydon PG. 1999. Tripartite synapses: glia, the unacknowledged partner. Trends Neurosci. 22:208–15 [Google Scholar]
  8. Azevedo FAC, Carvalho LRB, Grinberg LT, Farfel JM, Ferretti REL. et al. 2009. Equal numbers of neuronal and nonneuronal cells make the human brain an isometrically scaled-up primate brain. J. Comp. Neurol. 513:532–41 [Google Scholar]
  9. Banker G. 1980. Trophic interactions between astroglial cells and hippocampal neurons in culture. Science 209:809–10 [Google Scholar]
  10. Barker AJ, Koch SM, Reed J, Barres BA, Ullian EM. 2008. Developmental control of synaptic receptivity. J. Neurosci. 28:8150–60 [Google Scholar]
  11. Bass NH, Hess HH, Pope A, Thalheimer C. 1971. Quantitative cytoarchitectonic distribution of neurons, glia, and DNA in rat cerebral cortex. J. Comp. Neurol. 143:481–90 [Google Scholar]
  12. Beattie EC, Stellwagen D, Morishita W, Bresnahan JC, Ha BK. et al. 2002. Control of synaptic strength by glial TNFα. Science 295:2282–85 [Google Scholar]
  13. Bekar LK, He W, Nedergaard M. 2008. Locus coeruleus α-adrenergic–mediated activation of cortical astrocytes in vivo. Cereb. Cortex 18:2789–95 [Google Scholar]
  14. Benediktsson AM, Marrs GS, Tu JC, Worley PF, Rothstein JD. et al. 2012. Neuronal activity regulates glutamate transporter dynamics in developing astrocytes. Glia 60:175–88 [Google Scholar]
  15. Bialas AR, Stevens B. 2013. TGF-β signaling regulates neuronal C1q expression and developmental synaptic refinement. Nat. Neurosci. 16:1773–82 [Google Scholar]
  16. Blondel O, Collin C, McCarran WJ, Zhu S, Zamostiano R. et al. 2000. A glia-derived signal regulating neuronal differentiation. J. Neurosci. 20:8012–20 [Google Scholar]
  17. Bourne JN, Harris KM. 2008. Balancing structure and function at hippocampal dendritic spines. Annu. Rev. Neurosci. 31:47–67 [Google Scholar]
  18. Brink DL, Gilbert M, Xie X, Petley-Ragan L, Auld VJ. 2012. Glial processes at the Drosophila larval neuromuscular junction match synaptic growth. PLOS ONE 7:e37876 [Google Scholar]
  19. Bushong EA, Martone ME, Ellisman MH. 2004. Maturation of astrocyte morphology and the establishment of astrocyte domains during postnatal hippocampal development. Int. J. Dev. Neurosci. 22:73–86 [Google Scholar]
  20. Bushong EA, Martone ME, Jones YZ, Ellisman MH. 2002. Protoplasmic astrocytes in CA1 stratum radiatum occupy separate anatomical domains. J. Neurosci. 22:183–92 [Google Scholar]
  21. Cahoy JD, Emery B, Kaushal A, Foo LC, Zamanian JL. et al. 2008. A transcriptome database for astrocytes, neurons, and oligodendrocytes: a new resource for understanding brain development and function. J. Neurosci. 28:264–78 [Google Scholar]
  22. Camargo N, Smit AB, Verheijen MHG. 2009. SREBPs: SREBP function in glia–neuron interactions. FEBS J. 276:628–36 [Google Scholar]
  23. Carlo CN, Stevens CF. 2013. Structural uniformity of neocortex, revisited. Proc. Natl. Acad. Sci. USA 110:1488–93 [Google Scholar]
  24. Carmona MA, Murai KK, Wang L, Roberts AJ, Pasquale EB. 2009. Glial ephrin-A3 regulates hippocampal dendritic spine morphology and glutamate transport. Proc. Natl. Acad. Sci. USA 106:12524–29 [Google Scholar]
  25. Chen C, Regehr WG. 2000. Developmental remodeling of the retinogeniculate synapse. Neuron 28:955–66 [Google Scholar]
  26. Chen N, Sugihara H, Sharma J, Perea G, Petravicz J. et al. 2012. Nucleus basalis-enabled stimulus-specific plasticity in the visual cortex is mediated by astrocytes. Proc. Natl. Acad. Sci. USA 109:E2832–E41 [Google Scholar]
  27. Christopherson K, Ullian E, Stokes C, Mullowney C, Hell J. et al. 2005. Thrombospondins are astrocyte-secreted proteins that promote CNS synaptogenesis. Cell 120:421–33 [Google Scholar]
  28. Chung W-S, Clarke LE, Wang GX, Stafford BK, Sher A. et al. 2013. Astrocytes mediate synapse elimination through MEGF10 and MERTK pathways. Nature 504:394–400 [Google Scholar]
  29. Cornell-Bell AH, Finkbeiner SM, Cooper MS, Smith SJ. 1990. Glutamate induces calcium waves in cultured astrocytes: long-range glial signaling. Science 247:470–73 [Google Scholar]
  30. Correa-Gillieron EM, Cavalcante LA. 1999. Synaptogenesis in retino-receptive layers of the superior colliculus of the opossum Didelphis marsupialis. Brain Behav. Evol. 54:71–84 [Google Scholar]
  31. Cuevas ME, Carrasco MA, Fuentes Y, Castro P, Nualart F. et al. 2005. The presence of glia stimulates the appearance of glycinergic synaptic transmission in spinal cord neurons. Mol. Cell. Neurosci. 28:770–78 [Google Scholar]
  32. Cui W, Allen ND, Skynner M, Gusterson B, Clark AJ. 2001. Inducible ablation of astrocytes shows that these cells are required for neuronal survival in the adult brain. Glia 34:272–82 [Google Scholar]
  33. Delaney CL, Brenner M, Messing A. 1996. Conditional ablation of cerebellar astrocytes in postnatal transgenic mice. J. Neurosci. 16:6908–18 [Google Scholar]
  34. Di Castro MA, Chuquet J, Liaudet N, Bhaukaurally K, Santello M. et al. 2011. Local Ca2+ detection and modulation of synaptic release by astrocytes. Nat. Neurosci. 14:1276–84 [Google Scholar]
  35. Ding F, O'Donnell J, Thrane AS, Zeppenfeld D, Kang H. et al. 2013. α1-Adrenergic receptors mediate coordinated Ca2+ signaling of cortical astrocytes in awake, behaving mice. Cell Calcium 54:387–94 [Google Scholar]
  36. Djukic B, Casper KB, Philpot BD, Chin L-S, McCarthy KD. 2007. Conditional knock-out of Kir4.1 leads to glial membrane depolarization, inhibition of potassium and glutamate uptake, and enhanced short-term synaptic potentiation. J. Neurosci. 27:11354–65 [Google Scholar]
  37. Doherty J, Logan MA, Taşdemir ÖE, Freeman MR. 2009. Ensheathing glia function as phagocytes in the adult Drosophila brain. J. Neurosci. 29:4768–81 [Google Scholar]
  38. Dombeck DA, Khabbaz AN, Collman F, Adelman TL, Tank DW. 2007. Imaging large-scale neural activity with cellular resolution in awake, mobile mice. Neuron 56:43–57 [Google Scholar]
  39. Doyle JP, Dougherty JD, Heiman M, Schmidt EF, Stevens TR. et al. 2008. Application of a translational profiling approach for the comparative analysis of CNS cell types. Cell 135:749–62 [Google Scholar]
  40. Elmariah SB, Oh EJ, Hughes EG, Balice-Gordon RJ. 2005. Astrocytes regulate inhibitory synapse formation via Trk-mediated modulation of postsynaptic GABAA receptors. J. Neurosci. 25:3638–50 [Google Scholar]
  41. Eroglu Ç, Allen NJ, Susman MW, O'Rourke NA, Park CY. et al. 2009. Gabapentin receptor α2δ-1 is a neuronal thrombospondin receptor responsible for excitatory CNS synaptogenesis. Cell 139:380–92 [Google Scholar]
  42. Filosa A, Paixão S, Honsek SD, Carmona MA, Becker L. et al. 2009. Neuron-glia communication via EphA4/ephrin-A3 modulates LTP through glial glutamate transport. Nat. Neurosci. 12:1285–92 [Google Scholar]
  43. Foo LC, Allen NJ, Bushong EA, Ventura PB, Chung WS. et al. 2011. Development of a method for the purification and culture of rodent astrocytes. Neuron 71:799–811 [Google Scholar]
  44. Friede RL. 1963. The relationship of body size, nerve cell size, axon length, and glial density in the cerebellum. Proc. Natl. Acad. Sci. USA 49:187–93 [Google Scholar]
  45. Frischknecht R, Heine M, Perrais D, Seidenbecher CI, Choquet D, Gundelfinger ED. 2009. Brain extracellular matrix affects AMPA receptor lateral mobility and short-term synaptic plasticity. Nat. Neurosci. 12:897–904 [Google Scholar]
  46. Garrett AM, Weiner JA. 2009. Control of CNS synapse development by γ-protocadherin-mediated astrocyte–neuron contact. J. Neurosci. 29:11723–31 [Google Scholar]
  47. Ge W-P, Miyawaki A, Gage FH, Jan YN, Jan LY. 2012. Local generation of glia is a major astrocyte source in postnatal cortex. Nature 484:376–80 [Google Scholar]
  48. Genoud C, Quairiaux C, Steiner P, Hirling H, Welker E, Knott GW. 2006. Plasticity of astrocytic coverage and glutamate transporter expression in adult mouse cortex. PLOS Biol. 4:e343 [Google Scholar]
  49. Goodman M, Sterner KN, Islam M, Uddin M, Sherwood CC. et al. 2009. Phylogenomic analyses reveal convergent patterns of adaptive evolution in elephant and human ancestries. Proc. Natl. Acad. Sci. USA 106:20824–29 [Google Scholar]
  50. Gourine AV, Kasymov V, Marina N, Tang F, Figueiredo MF. et al. 2010. Astrocytes control breathing through pH-dependent release of ATP. Science 329:571–75 [Google Scholar]
  51. Haber M, Zhou L, Murai KK. 2006. Cooperative astrocyte and dendritic spine dynamics at hippocampal excitatory synapses. J. Neurosci. 26:8881–91 [Google Scholar]
  52. Halassa MM, Fellin T, Takano H, Dong J-H, Haydon PG. 2007. Synaptic islands defined by the territory of a single astrocyte. J. Neurosci. 27:6473–77 [Google Scholar]
  53. Hall CN, Klein-Flügge MC, Howarth C, Attwell D. 2012. Oxidative phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms underlying brain information processing. J. Neurosci. 32:8940–51 [Google Scholar]
  54. Hama H, Hara C, Yamaguchi K, Miyawaki A. 2004. PKC signaling mediates global enhancement of excitatory synaptogenesis in neurons triggered by local contact with astrocytes. Neuron 41:405–15 [Google Scholar]
  55. Hamilton NB, Attwell D. 2010. Do astrocytes really exocytose neurotransmitters?. Nat. Rev. Neurosci. 11:227–38 [Google Scholar]
  56. Han X, Chen M, Wang F, Windrem M, Wang S. et al. 2013. Forebrain engraftment by human glial progenitor cells enhances synaptic plasticity and learning in adult mice. Cell Stem Cell 12:342–53 [Google Scholar]
  57. Harris JJ, Jolivet R, Attwell D. 2012. Synaptic energy use and supply. Neuron 75:762–77 [Google Scholar]
  58. Hawkins A, Olszewski J. 1957. Glia/nerve cell index for cortex of the whale. Science 126:76–77 [Google Scholar]
  59. Hayashi H. 2011. Lipid metabolism and glial lipoproteins in the central nervous system. Biol. Pharm. Bull. 34:453–61 [Google Scholar]
  60. Henneberger C, Papouin T, Oliet SHR, Rusakov DA. 2010. Long-term potentiation depends on release of d-serine from astrocytes. Nature 463:232–36 [Google Scholar]
  61. Hennekinne L, Colasse S, Triller A, Renner M. 2013. Differential control of thrombospondin over synaptic glycine and AMPA receptors in spinal cord neurons. J. Neurosci. 33:11432–39 [Google Scholar]
  62. Hirrlinger J, Hulsmann S, Kirchhoff F. 2004. Astroglial processes show spontaneous motility at active synaptic terminals in situ. Eur. J. Neurosci. 20:2235–39 [Google Scholar]
  63. Hu R, Cai WQ, Wu XG, Yang Z. 2007. Astrocyte-derived estrogen enhances synapse formation and synaptic transmission between cultured neonatal rat cortical neurons. Neuroscience 144:1229–40 [Google Scholar]
  64. Hughes EG, Elmariah SB, Balice-Gordon RJ. 2010. Astrocyte secreted proteins selectively increase hippocampal GABAergic axon length, branching, and synaptogenesis. Mol. Cell. Neurosci. 43:136–45 [Google Scholar]
  65. Iino M, Goto K, Kakegawa W, Okado H, Sudo M. et al. 2001. Glia-synapse interaction through Ca2+-permeable AMPA receptors in Bergmann glia. Science 292:926–29 [Google Scholar]
  66. Ivanov AI, Malkov AE, Waseem T, Mukhtarov M, Buldakova S. et al. 2014. Glycolysis and oxidative phosphorylation in neurons and astrocytes during network activity in hippocampal slices. J. Cereb. Blood Flow Metab. 34:397–407 [Google Scholar]
  67. Jones EV, Bernardinelli Y, Tse YC, Chierzi S, Wong TP, Murai KK. 2011. Astrocytes control glutamate receptor levels at developing synapses through SPARC–β-integrin interactions. J. Neurosci. 31:4154–65 [Google Scholar]
  68. Kerr KS, Fuentes-Medel Y, Brewer C, Barria R, Ashley J. et al. 2014. Glial Wingless/Wnt regulates glutamate receptor clustering and synaptic physiology at the Drosophila neuromuscular junction. J. Neurosci. 34:2910–20 [Google Scholar]
  69. Kettenmann H, Verkhratsky A. 2008. Neuroglia: the 150 years after. Trends Neurosci. 31:653–59 [Google Scholar]
  70. Klein R. 2009. Bidirectional modulation of synaptic functions by Eph/ephrin signaling. Nat. Neurosci. 12:15–20 [Google Scholar]
  71. Korn MJ, Koppel SJ, Li LH, Mehta D, Mehta SB. et al. 2012. Astrocyte-secreted factors modulate the developmental distribution of inhibitory synapses in nucleus laminaris of the avian auditory brainstem. J. Comp. Neurol. 520:1262–77 [Google Scholar]
  72. Kucukdereli H, Allen NJ, Lee AT, Feng A, Ozlu MI. et al. 2011. Control of excitatory CNS synaptogenesis by astrocyte-secreted proteins Hevin and SPARC. Proc. Natl. Acad. Sci. USA 108:E440–E49 [Google Scholar]
  73. Kuffler SW. 1967. The Ferrier Lecture: neuroglial cells: physiological properties and a potassium mediated effect of neuronal activity on the glial membrane potential. Proc. R. Soc. Lond. Ser. B Biol. Sci. 168:1–21 [Google Scholar]
  74. Larsen BR, Assentoft M, Cotrina ML, Hua SZ, Nedergaard M. et al. 2014. Contributions of the Na+/K+-ATPase, NKCC1, and Kir4.1 to hippocampal K+ clearance and volume responses. Glia 62:608–22 [Google Scholar]
  75. Li Y-X, Schaffner AE, Barker JL. 1999. Astrocytes regulate the developmental appearance of GABAergic and glutamatergic postsynaptic currents in cultured embryonic rat spinal neurons. Eur. J. Neurosci. 11:2537–51 [Google Scholar]
  76. Liang S-L, Carlson GC, Coulter DA. 2006. Dynamic regulation of synaptic GABA release by the glutamate-glutamine cycle in hippocampal area CA1. J. Neurosci. 26:8537–48 [Google Scholar]
  77. Lippman JJ, Lordkipanidze T, Buell ME, Yoon SO, Dunaevsky A. 2008. Morphogenesis and regulation of Bergmann glial processes during Purkinje cell dendritic spine ensheathment and synaptogenesis. Glia 56:1463–77 [Google Scholar]
  78. Lippman Bell JJ, Lordkipanidze T, Cobb N, Dunaevsky A. 2010. Bergmann glial ensheathment of dendritic spines regulates synapse number without affecting spine motility. Neuron Glia Biol. 6:193–200 [Google Scholar]
  79. Liu Q-Y, Schaffner AE, Li Y-X, Dunlap V, Barker JL. 1996. Upregulation of GABAA current by astrocytes in cultured embryonic rat hippocampal neurons. J. Neurosci. 16:2912–23 [Google Scholar]
  80. López-Bayghen E, Ortega A. 2011. Glial glutamate transporters: new actors in brain signaling. IUBMB Life 63:816–23 [Google Scholar]
  81. MacDonald JM, Beach MG, Porpiglia E, Sheehan AE, Watts RJ, Freeman MR. 2006. The Drosophila cell corpse engulfment receptor Draper mediates glial clearance of severed axons. Neuron 50:869–81 [Google Scholar]
  82. Magistretti PJ. 2006. Neuron–glia metabolic coupling and plasticity. J. Exp. Biol. 209:2304–11 [Google Scholar]
  83. Marcaggi P, Attwell D. 2004. Role of glial amino acid transporters in synaptic transmission and brain energetics. Glia 47:217–25 [Google Scholar]
  84. Mauch DH, Nägler K, Schumacher S, Göritz C, Müller EC. et al. 2001. CNS synaptogenesis promoted by glia-derived cholesterol. Science 294:1354–57 [Google Scholar]
  85. Meyer-Franke A, Kaplan MR, Pfieger FW, Barres BA. 1995. Characterization of the signaling interactions that promote the survival and growth of developing retinal ganglion cells in culture. Neuron 15:805–19 [Google Scholar]
  86. Miller FD, Gauthier AS. 2007. Timing is everything: making neurons versus glia in the developing cortex. Neuron 54:357–69 [Google Scholar]
  87. Müller HW, Junghans U, Kappler J. 1995. Astroglial neurotrophic and neurite-promoting factors. Pharmacol. Ther. 65:1–18 [Google Scholar]
  88. Murai KK, Nguyen LN, Irie F, Yamaguchi Y, Pasquale EB. 2003. Control of hippocampal dendritic spine morphology through ephrin-A3/EphA4 signaling. Nat. Neurosci. 6:153–60 [Google Scholar]
  89. Murai KK, Pasquale EB. 2011. Eph receptors and ephrins in neuron–astrocyte communication at synapses. Glia 59:1567–78 [Google Scholar]
  90. Nägler K, Mauch DH, Pfrieger FW. 2001. Glia-derived signals induce synapse formation in neurones of the rat central nervous system. J. Physiol. 533:665–79 [Google Scholar]
  91. Navarrete M, Perea G, Fernandez de Sevilla D, Gómez-Gonzalo M, Núñez A. et al. 2012. Astrocytes mediate in vivo cholinergic-induced synaptic plasticity. PLOS Biol. 10:e1001259 [Google Scholar]
  92. Nedergaard M, Verkhratsky A. 2012. Artifact versus reality—how astrocytes contribute to synaptic events. Glia 60:1013–23 [Google Scholar]
  93. Nimmerjahn A, Mukamel EA, Schnitzer MJ. 2009. Motor behavior activates Bergmann glial networks. Neuron 62:400–12 [Google Scholar]
  94. Nishida H, Okabe S. 2007. Direct astrocytic contacts regulate local maturation of dendritic spines. J. Neurosci. 27:331–40 [Google Scholar]
  95. Oberheim NA, Takano T, Han X, He W, Lin JHC. et al. 2009. Uniquely hominid features of adult human astrocytes. J. Neurosci. 29:3276–87 [Google Scholar]
  96. Oberheim NA, Wang X, Goldman S, Nedergaard M. 2006. Astrocytic complexity distinguishes the human brain. Trends Neurosci. 29:547–53 [Google Scholar]
  97. Oikonomou G, Shaham S. 2011. The glia of Caenorhabditis elegans. Glia 59:1253–63 [Google Scholar]
  98. Ostroff LE, Manzur MK, Cain CK, LeDoux JE. 2013. Synapses lacking astrocyte appear in the amygdala during consolidation of Pavlovian threat conditioning. J. Comp. Neurol. 522:2152–63 [Google Scholar]
  99. Panatier A, Vallée J, Haber M, Murai KK, Lacaille J-C, Robitaille R. 2011. Astrocytes are endogenous regulators of basal transmission at central synapses. Cell 146:785–98 [Google Scholar]
  100. Pannasch U, Freche D, Dallérac G, Ghézali G, Escartin C. et al. 2014. Connexin 30 sets synaptic strength by controlling astroglial synapse invasion. Nat. Neurosci. 17:549–58 [Google Scholar]
  101. Pascual O, Casper KB, Kubera C, Zhang J, Revilla-Sanchez R. et al. 2005. Astrocytic purinergic signaling coordinates synaptic networks. Science 310:113–16 [Google Scholar]
  102. Pellerin L, Magistretti PJ. 1994. Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization. Proc. Natl. Acad. Sci. USA 91:10625–29 [Google Scholar]
  103. Pellerin L, Magistretti PJ. 2012. Sweet sixteen for ANLS. J. Cereb. Blood Flow Metab. 32:1152–66 [Google Scholar]
  104. Perea G, Yang A, Boyden ES, Sur M. 2014. Optogenetic astrocyte activation modulates response selectivity of visual cortex neurons in vivo. Nat. Commun. 5:3262 [Google Scholar]
  105. Pfrieger FW, Barres BA. 1997. Synaptic efficacy enhanced by glial cells in vitro. Science 277:1684–87 [Google Scholar]
  106. Procko C, Lu Y, Shaham S. 2011. Glia delimit shape changes of sensory neuron receptive endings in C. elegans.. Development 138:1371–81 [Google Scholar]
  107. Pyka M, Busse C, Seidenbecher C, Gundelfinger ED, Faissner A. 2011a. Astrocytes are crucial for survival and maturation of embryonic hippocampal neurons in a neuron-glia cell-insert coculture assay. Synapse 65:41–53 [Google Scholar]
  108. Pyka M, Wetzel C, Aguado A, Geissler M, Hatt H, Faissner A. 2011b. Chondroitin sulfate proteoglycans regulate astrocyte-dependent synaptogenesis and modulate synaptic activity in primary embryonic hippocampal neurons. Eur. J. Neurosci. 33:2187–202 [Google Scholar]
  109. Rusakov DA, Bard L, Stewart MG, Henneberger C. 2014. Diversity of astroglial functions alludes to subcellular specialisation. Trends Neurosci. 37:228–42 [Google Scholar]
  110. Sasaki T, Beppu K, Tanaka KF, Fukazawa Y, Shigemoto R, Matsui K. 2012. Application of an optogenetic byway for perturbing neuronal activity via glial photostimulation. Proc. Natl. Acad. Sci. USA 109:20720–25 [Google Scholar]
  111. Schafer DP, Lehrman EK, Kautzman AG, Koyama R, Mardinly AR. et al. 2012. Microglia sculpt postnatal neural circuits in an activity and complement-dependent manner. Neuron 74:691–705 [Google Scholar]
  112. Schummers J, Yu H, Sur M. 2008. Tuned responses of astrocytes and their influence on hemodynamic signals in the visual cortex. Science 320:1638–43 [Google Scholar]
  113. Shao Z, Watanabe S, Christensen R, Jorgensen EM, Colón-Ramos DA. 2013. Synapse location during growth depends on glia location. Cell 154:337–50 [Google Scholar]
  114. Shigetomi E, Bushong EA, Haustein MD, Tong X, Jackson-Weaver O. et al. 2013. Imaging calcium microdomains within entire astrocyte territories and endfeet with GCaMPs expressed using adeno-associated viruses. J. Gen. Physiol. 141:633–47 [Google Scholar]
  115. Shigetomi E, Tong X, Kwan KY, Corey DP, Khakh BS. 2012. TRPA1 channels regulate astrocyte resting calcium and inhibitory synapse efficacy through GAT-3. Nat. Neurosci. 15:70–80 [Google Scholar]
  116. Sibille J, Pannasch U, Rouach N. 2014. Astroglial potassium clearance contributes to short-term plasticity of synaptically evoked currents at the tripartite synapse. J. Physiol. 592:87–102 [Google Scholar]
  117. Sofroniew MV, Bush TG, Blumauer N, Kruger L, Mucke L, Johnson MH. 1999. Genetically-targeted and conditionally-regulated ablation of astroglial cells in the central, enteric and peripheral nervous systems in adult transgenic mice. Brain Res. 835:91–95 [Google Scholar]
  118. Sosunov AA, Wu X, Tsankova NM, Guilfoyle E, McKhann GM, Goldman JE. 2014. Phenotypic heterogeneity and plasticity of isocortical and hippocampal astrocytes in the human brain. J. Neurosci. 34:2285–98 [Google Scholar]
  119. Stellwagen D, Beattie EC, Seo JY, Malenka RC. 2005. Differential regulation of AMPA receptor and GABA receptor trafficking by tumor necrosis factor-α. J. Neurosci. 25:3219–28 [Google Scholar]
  120. Stellwagen D, Malenka RC. 2006. Synaptic scaling mediated by glial TNF-α. Nature 440:1054–59 [Google Scholar]
  121. Stevens B, Allen NJ, Vazquez LE, Howell GR, Christopherson KS. et al. 2007. The classical complement cascade mediates CNS synapse elimination. Cell 131:1164–78 [Google Scholar]
  122. Sun W, McConnell E, Pare J-F, Xu Q, Chen M. et al. 2013. Glutamate-dependent neuroglial calcium signaling differs between young and adult brain. Science 339:197–200 [Google Scholar]
  123. Suzuki A, Stern SA, Bozdagi O, Huntley GW, Walker RH. et al. 2011. Astrocyte-neuron lactate transport is required for long-term memory formation. Cell 144:810–23 [Google Scholar]
  124. Takata N, Hirase H. 2008. Cortical layer 1 and layer 2/3 astrocytes exhibit distinct calcium dynamics in vivo. PLOS ONE 3:e2525 [Google Scholar]
  125. Takata N, Mishima T, Hisatsune C, Nagai T, Ebisui E. et al. 2011. Astrocyte calcium signaling transforms cholinergic modulation to cortical plasticity in vivo. J. Neurosci. 31:18155–65 [Google Scholar]
  126. Tanaka K, Watase K, Manabe T, Yamada K, Watanabe M. et al. 1997. Epilepsy and exacerbation of brain injury in mice lacking the glutamate transporter GLT-1. Science 276:1699–702 [Google Scholar]
  127. Tani H, Dulla CG, Farzampour Z, Taylor-Weiner A, Huguenard JR, Reimer RJ. 2014. A local glutamate-glutamine cycle sustains synaptic excitatory transmitter release. Neuron 81:888–900 [Google Scholar]
  128. Tasdemir-Yilmaz OE, Freeman MR. 2014. Astrocytes engage unique molecular programs to engulf pruned neuronal debris from distinct subsets of neurons. Genes Dev. 28:20–33 [Google Scholar]
  129. Theodosis DT, Poulain DA, Oliet SHR. 2008. Activity-dependent structural and functional plasticity of astrocyte-neuron interactions. Physiol. Rev. 88:983–1008 [Google Scholar]
  130. Thomas CG, Tian H, Diamond JS. 2011. The relative roles of diffusion and uptake in clearing synaptically released glutamate change during early postnatal development. J. Neurosci. 31:4743–54 [Google Scholar]
  131. Thrane AS, Rangroo Thrane V, Zeppenfeld D, Lou N, Xu Q. et al. 2012. General anesthesia selectively disrupts astrocyte calcium signaling in the awake mouse cortex. Proc. Natl. Acad. Sci. USA 109:18974–79 [Google Scholar]
  132. Tsai H-H, Li H, Fuentealba LC, Molofsky AV, Taveira-Marques R. et al. 2012. Regional astrocyte allocation regulates CNS synaptogenesis and repair. Science 337:358–62 [Google Scholar]
  133. Ullian EM, Sapperstein SK, Christopherson KS, Barres BA. 2001. Control of synapse number by glia. Science 291:657–61 [Google Scholar]
  134. Uwechue NM, Marx MC, Chevy Q, Billups B. 2012. Activation of glutamate transport evokes rapid glutamine release from perisynaptic astrocytes. J. Physiol. 590:2317–31 [Google Scholar]
  135. Ventura R, Harris KM. 1999. Three-dimensional relationships between hippocampal synapses and astrocytes. J. Neurosci. 19:6897–906 [Google Scholar]
  136. Wagner B, Natarajan A, Grünaug S, Kroismayr R, Wagner EF, Sibilia M. 2006. Neuronal survival depends on EGFR signaling in cortical but not midbrain astrocytes. EMBO J. 25:752–62 [Google Scholar]
  137. Waites CL, Craig AM, Garner CC. 2005. Mechanisms of vertebrate synaptogenesis. Annu. Rev. Neurosci. 28:251–74 [Google Scholar]
  138. Wang F, Smith NA, Xu Q, Fujita T, Baba A. et al. 2012a. Astrocytes modulate neural network activity by Ca2+-dependent uptake of extracellular K+. Sci. Signal. 5:ra26 [Google Scholar]
  139. Wang F, Xu Q, Wang W, Takano T, Nedergaard M. 2012b. Bergmann glia modulate cerebellar Purkinje cell bistability via Ca2+-dependent K+ uptake. Proc. Natl. Acad. Sci. USA 109:7911–16 [Google Scholar]
  140. Wang X, Lou N, Xu Q, Tian G-F, Peng WG. et al. 2006. Astrocytic Ca2+ signaling evoked by sensory stimulation in vivo. Nat. Neurosci. 9:816–23 [Google Scholar]
  141. Witcher MR, Kirov SA, Harris KM. 2007. Plasticity of perisynaptic astroglia during synaptogenesis in the mature rat hippocampus. Glia 55:13–23 [Google Scholar]
  142. Witcher MR, Park YD, Lee MR, Sharma S, Harris KM, Kirov SA. 2010. Three-dimensional relationships between perisynaptic astroglia and human hippocampal synapses. Glia 58:572–87 [Google Scholar]
  143. Xu J, Xiao N, Xia J. 2009. Thrombospondin 1 accelerates synaptogenesis in hippocampal neurons through neuroligin 1. Nat. Neurosci. 13:22–24 [Google Scholar]
  144. Xu-Friedman MA, Harris KM, Regehr WG. 2001. Three-dimensional comparison of ultrastructural characteristics at depressing and facilitating synapses onto cerebellar Purkinje cells. J. Neurosci. 21:6666–72 [Google Scholar]
  145. Yang Y, Gozen O, Watkins A, Lorenzini I, Lepore A. et al. 2009. Presynaptic regulation of astroglial excitatory neurotransmitter transporter GLT1. Neuron 61:880–94 [Google Scholar]
  146. Yeh T-H, Lee DY, Gianino SM, Gutmann DH. 2009. Microarray analyses reveal regional astrocyte heterogeneity with implications for neurofibromatosis type 1 (NF1)-regulated glial proliferation. Glia 57:1239–49 [Google Scholar]
  147. Zhang Y, Barres BA. 2010. Astrocyte heterogeneity: an underappreciated topic in neurobiology. Curr. Opin. Neurobiol. 20:588–94 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error