Myelinated axons are divided into polarized subdomains including axon initial segments and nodes of Ranvier. These domains initiate and propagate action potentials and regulate the trafficking and localization of somatodendritic and axonal proteins. Formation of axon initial segments and nodes of Ranvier depends on intrinsic (neuronal) and extrinsic (glial) interactions. Several levels of redundancy in both mechanisms and molecules also exist to ensure efficient node formation. Furthermore, the establishment of polarized domains at and near nodes of Ranvier reflects the intrinsic polarity of the myelinating glia responsible for node assembly. Here, we discuss the various polarized domains of myelinated axons, how they are established by both intrinsic and extrinsic interactions, and the polarity of myelinating glia.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Arancibia-Carcamo IL, Attwell D. 2014. The node of Ranvier in CNS pathology. Acta Neuropathol. 128:161–75 [Google Scholar]
  2. Barry J, Gu Y, Jukkola P, O'Neill B, Gu H. et al. 2014. Ankyrin-G directly binds to kinesin-1 to transport voltage-gated Na+ channels into axons. Dev. Cell 28:117–31 [Google Scholar]
  3. Beirowski B, Babetto E, Golden JP, Chen YJ, Yang K. et al. 2014. Metabolic regulator LKB1 is crucial for Schwann cell-mediated axon maintenance. Nat. Neurosci. 17:1351–61 [Google Scholar]
  4. Bender KJ, Ford CP, Trussell LO. 2010. Dopaminergic modulation of axon initial segment calcium channels regulates action potential initiation. Neuron 68:500–11 [Google Scholar]
  5. Bender KJ, Trussell LO. 2009. Axon initial segment Ca2+ channels influence action potential generation and timing. Neuron 61:259–71 [Google Scholar]
  6. Bender KJ, Trussell LO. 2012. The physiology of the axon initial segment. Annu. Rev. Neurosci. 35:249–65 [Google Scholar]
  7. Bennett V, Lorenzo DN. 2013. Spectrin- and ankyrin-based membrane domains and the evolution of vertebrates. Curr. Top. Membr. 72:1–37 [Google Scholar]
  8. Berghs S, Aggujaro D, Dirkx R Jr, Maksimova E, Stabach P. et al. 2000. βIV spectrin, a new spectrin localized at axon initial segments and nodes of Ranvier in the central and peripheral nervous system. J. Cell Biol. 151:985–1002 [Google Scholar]
  9. Bhat MA, Rios JC, Lu Y, Garcia-Fresco GP, Ching W. et al. 2001. Axon-glia interactions and the domain organization of myelinated axons requires neurexin IV/Caspr/Paranodin. Neuron 30:369–83 [Google Scholar]
  10. Bolino A, Bolis A, Previtali SC, Dina G, Bussini S. et al. 2004. Disruption of Mtmr2 produces CMT4B1-like neuropathy with myelin outfolding and impaired spermatogenesis. J. Cell Biol. 167:711–21 [Google Scholar]
  11. Bolis A, Coviello S, Visigalli I, Taveggia C, Bachi A. et al. 2009. Dlg1, Sec8, and Mtmr2 regulate membrane homeostasis in Schwann cell myelination. J. Neurosci. 29:8858–70 [Google Scholar]
  12. Boyle ME, Berglund EO, Murai KK, Weber L, Peles E, Ranscht B. 2001. Contactin orchestrates assembly of the septate-like junctions at the paranode in myelinated peripheral nerve. Neuron 30:385–97 [Google Scholar]
  13. Bréchet A, Fache MP, Brachet A, Ferracci G, Baude A. et al. 2008. Protein kinase CK2 contributes to the organization of sodium channels in axonal membranes by regulating their interactions with ankyrin G. J. Cell Biol. 183:1101–14 [Google Scholar]
  14. Buffington SA, Sobotzik JM, Schultz C, Rasband MN. 2012. IκBα is not required for axon initial segment assembly. Mol. Cell. Neurosci. 50:1–9 [Google Scholar]
  15. Buttermore ED, Dupree JL, Cheng J, An X, Tessarollo L, Bhat MA. 2011. The cytoskeletal adaptor protein band 4.1B is required for the maintenance of paranodal axoglial septate junctions in myelinated axons. J. Neurosci. 31:8013–24 [Google Scholar]
  16. Chan JR, Jolicoeur C, Yamauchi J, Elliott J, Fawcett JP. et al. 2006. The polarity protein Par-3 directly interacts with p75NTR to regulate myelination. Science 314:832–36 [Google Scholar]
  17. Chang KJ, Rasband MN. 2013. Excitable domains of myelinated nerves: axon initial segments and nodes of Ranvier. Curr. Top. Membr. 72:159–92 [Google Scholar]
  18. Chang KJ, Zollinger DR, Susuki K, Sherman DL, Makara MA. et al. 2014. Glial ankyrins facilitate paranodal axoglial junction assembly. Nat. Neurosci. 17:1673–81 [Google Scholar]
  19. Cifuentes-Diaz C, Chareyre F, Garcia M, Devaux J, Carnaud M. et al. 2011. Protein 4.1B contributes to the organization of peripheral myelinated axons. PLOS ONE 6:e25043 [Google Scholar]
  20. Coman I, Aigrot MS, Seilhean D, Reynolds R, Girault JA. et al. 2006. Nodal, paranodal and juxtaparanodal axonal proteins during demyelination and remyelination in multiple sclerosis. Brain 129:3186–95 [Google Scholar]
  21. Cotter L, Ozcelik M, Jacob C, Pereira JA, Locher V. et al. 2010. Dlg1-PTEN interaction regulates myelin thickness to prevent damaging peripheral nerve overmyelination. Science 328:1415–18 [Google Scholar]
  22. Court FA, Sherman DL, Pratt T, Garry EM, Ribchester RR. et al. 2004. Restricted growth of Schwann cells lacking Cajal bands slows conduction in myelinated nerves. Nature 431:191–95 [Google Scholar]
  23. Craner MJ, Newcombe J, Black JA, Hartle C, Cuzner ML, Waxman SG. 2004. Molecular changes in neurons in multiple sclerosis: altered axonal expression of Nav1.2 and Nav1.6 sodium channels and Na+/Ca2+ exchanger. PNAS 101:8168–73 [Google Scholar]
  24. Del Puerto A, Fronzaroli-Molinieres L, Perez-Alvarez MJ, Giraud P, Carlier E. et al. 2015. ATP-P2X7 receptor modulates axon initial segment composition and function in physiological conditions and brain injury. Cereb. Cortex 25:2282–94 [Google Scholar]
  25. Denisenko-Nehrbass N, Oguievetskaia K, Goutebroze L, Galvez T, Yamakawa H. et al. 2003. Protein 4.1B associates with both Caspr/paranodin and Caspr2 at paranodes and juxtaparanodes of myelinated fibres. Eur. J. Neurosci. 17:411–16 [Google Scholar]
  26. Devaux JJ, Odaka M, Yuki N. 2012. Nodal proteins are target antigens in Guillain-Barré syndrome. J. Peripher. Nerv. Syst. 17:62–71 [Google Scholar]
  27. Devaux JJ, Scherer SS. 2005. Altered ion channels in an animal model of Charcot-Marie-Tooth disease type IA. J. Neurosci. 25:1470–80 [Google Scholar]
  28. Duflocq A, Le Bras B, Bullier E, Couraud F, Davenne M. 2008. Nav1.1 is predominantly expressed in nodes of Ranvier and axon initial segments. Mol. Cell. Neurosci. 39:180–92 [Google Scholar]
  29. Dzhashiashvili Y, Zhang Y, Galinska J, Lam I, Grumet M, Salzer JL. 2007. Nodes of Ranvier and axon initial segments are ankyrin G-dependent domains that assemble by distinct mechanisms. J. Cell Biol. 177:857–70 [Google Scholar]
  30. Edwards SL, Yu SC, Hoover CM, Phillips BC, Richmond JE, Miller KG. 2013. An organelle gatekeeper function for Caenorhabditis elegans UNC-16 (JIP3) at the axon initial segment. Genetics 194:143–61 [Google Scholar]
  31. Einheber S, Bhat MA, Salzer JL. 2006. Disrupted axo-glial junctions result in accumulation of abnormal mitochondria at nodes of Ranvier. Neuron Glia Biol. 2:165–74 [Google Scholar]
  32. Einheber S, Meng X, Rubin M, Lam I, Mohandas N. et al. 2013. The 4.1B cytoskeletal protein regulates the domain organization and sheath thickness of myelinated axons. Glia 61:240–53 [Google Scholar]
  33. Eshed Y, Feinberg K, Carey DJ, Peles E. 2007. Secreted gliomedin is a perinodal matrix component of peripheral nerves. J. Cell Biol. 177:551–62 [Google Scholar]
  34. Eshed Y, Feinberg K, Poliak S, Sabanay H, Sarig-Nadir O. et al. 2005. Gliomedin mediates Schwann cell-axon interaction and the molecular assembly of the nodes of Ranvier. Neuron 47:215–29 [Google Scholar]
  35. Etienne-Manneville S. 2008. Polarity proteins in glial cell functions. Curr. Opin. Neurobiol. 18:488–94 [Google Scholar]
  36. Feinberg K, Eshed-Eisenbach Y, Frechter S, Amor V, Salomon D. et al. 2010. A glial signal consisting of gliomedin and NrCAM clusters axonal Na+ channels during the formation of nodes of Ranvier. Neuron 65:490–502 [Google Scholar]
  37. Ferreira MA, O'Donovan MC, Meng YA, Jones IR, Ruderfer DM. et al. 2008. Collaborative genome-wide association analysis supports a role for ANK3 and CACNA1C in bipolar disorder. Nat. Genet. 40:1056–58 [Google Scholar]
  38. Galiano MR, Jha S, Ho TS, Zhang C, Ogawa Y. et al. 2012. A distal axonal cytoskeleton forms an intra-axonal boundary that controls axon initial segment assembly. Cell 149:1125–39 [Google Scholar]
  39. Garcia-Fresco GP, Sousa AD, Pillai AM, Moy SS, Crawley JN. et al. 2006. Disruption of axo-glial junctions causes cytoskeletal disorganization and degeneration of Purkinje neuron axons. PNAS 103:5137–42 [Google Scholar]
  40. Garrido JJ, Giraud P, Carlier E, Fernandes F, Moussif A. et al. 2003. A targeting motif involved in sodium channel clustering at the axonal initial segment. Science 300:2091–94 [Google Scholar]
  41. Garver TD, Ren Q, Tuvia S, Bennett V. 1997. Tyrosine phosphorylation at a site highly conserved in the L1 family of cell adhesion molecules abolishes ankyrin binding and increases lateral mobility of neurofascin. J. Cell Biol. 137:703–14 [Google Scholar]
  42. Gasser A, Ho TS-Y, Cheng X, Chang KJ, Waxman SG. et al. 2012. An ankyrinG-binding motif is necessary and sufficient for targeting Nav1.6 Na+ channels to axon initial segments and nodes of Ranvier. J. Neurosci. 32:7232–43 [Google Scholar]
  43. Goldberg EM, Clark BD, Zagha E, Nahmani M, Erisir A, Rudy B. 2008. K+ channels at the axon initial segment dampen near-threshold excitability of neocortical fast-spiking GABAergic interneurons. Neuron 58:387–400 [Google Scholar]
  44. Gollan L, Sabanay H, Poliak S, Berglund EO, Ranscht B, Peles E. 2002. Retention of a cell adhesion complex at the paranodal junction requires the cytoplasmic region of Caspr. J. Cell Biol. 157:1247–56 [Google Scholar]
  45. Grove M, Brophy PJ. 2014. FAK is required for Schwann cell spreading on immature basal lamina to coordinate the radial sorting of peripheral axons with myelination. J. Neurosci. 34:13422–34 [Google Scholar]
  46. Grubb MS, Burrone J. 2010. Activity-dependent relocation of the axon initial segment fine-tunes neuronal excitability. Nature 465:1070–74 [Google Scholar]
  47. Guo L, Moon C, Zheng Y, Ratner N. 2013. Cdc42 regulates Schwann cell radial sorting and myelin sheath folding through NF2/merlin-dependent and independent signaling. Glia 61:1906–21 [Google Scholar]
  48. Gutzmann A, Ergul N, Grossmann R, Schultz C, Wahle P, Engelhardt M. 2014. A period of structural plasticity at the axon initial segment in developing visual cortex. Front. Neuroanat. 8:11 [Google Scholar]
  49. He M, Jenkins P, Bennett V. 2012. Cysteine 70 of ankyrin-G is S-palmitoylated and is required for function of ankyrin-G in membrane domain assembly. J. Biol. Chem. 287:43995–4005 [Google Scholar]
  50. Hedstrom KL, Ogawa Y, Rasband MN. 2008. AnkyrinG is required for maintenance of the axon initial segment and neuronal polarity. J. Cell Biol. 183:635–40 [Google Scholar]
  51. Hedstrom KL, Xu X, Ogawa Y, Frischknecht R, Seidenbecher CI. et al. 2007. Neurofascin assembles a specialized extracellular matrix at the axon initial segment. J. Cell Biol. 178:875–86 [Google Scholar]
  52. Hien YE, Montersino A, Castets F, Leterrier C, Filhol O. et al. 2014. CK2 accumulation at the axon initial segment depends on sodium channel Nav1. FEBS Lett. 588:3403–8 [Google Scholar]
  53. Hinman JD, Rasband MN, Carmichael ST. 2013. Remodeling of the axon initial segment after focal cortical and white matter stroke. Stroke 44:182–89 [Google Scholar]
  54. Ho TS, Zollinger DR, Chang KJ, Xu M, Cooper EC. et al. 2014. A hierarchy of ankyrin-spectrin complexes clusters sodium channels at nodes of Ranvier. Nat. Neurosci. 17:1664–72 [Google Scholar]
  55. Horresh I, Bar V, Kissil JL, Peles E. 2010. Organization of myelinated axons by Caspr and Caspr2 requires the cytoskeletal adapter protein 4.1B. J. Neurosci. 30:2480–89 [Google Scholar]
  56. Horresh I, Poliak S, Grant S, Bredt D, Rasband MN, Peles E. 2008. Multiple molecular interactions determine the clustering of Caspr2 and Kv1 channels in myelinated axons. J. Neurosci. 28:14213–22 [Google Scholar]
  57. Iqbal Z, Vandeweyer G, van der Voet M, Waryah AM, Zahoor MY. et al. 2013. Homozygous and heterozygous disruptions of ANK3: at the crossroads of neurodevelopmental and psychiatric disorders. Hum. Mol. Genet. 22:1960–70 [Google Scholar]
  58. Jones SL, Korobova F, Svitkina T. 2014. Axon initial segment cytoskeleton comprises a multiprotein submembranous coat containing sparse actin filaments. J. Cell Biol. 205:67–81 [Google Scholar]
  59. Kole MH, Ilschner SU, Kampa BM, Williams SR, Ruben PC, Stuart GJ. 2008. Action potential generation requires a high sodium channel density in the axon initial segment. Nat. Neurosci. 11:178–86 [Google Scholar]
  60. Kole MH, Letzkus JJ, Stuart GJ. 2007. Axon initial segment Kv1 channels control axonal action potential waveform and synaptic efficacy. Neuron 55:633–47 [Google Scholar]
  61. Kole MH, Stuart GJ. 2012. Signal processing in the axon initial segment. Neuron 73:235–47 [Google Scholar]
  62. Kuba H, Adachi R, Ohmori H. 2014. Activity-dependent and activity-independent development of the axon initial segment. J. Neurosci. 34:3443–53 [Google Scholar]
  63. Kuba H, Oichi Y, Ohmori H. 2010. Presynaptic activity regulates Na+ channel distribution at the axon initial segment. Nature 465:1075–78 [Google Scholar]
  64. Lacas-Gervais S, Guo J, Strenzke N, Scarfone E, Kolpe M. et al. 2004. βIVΣ1 spectrin stabilizes the nodes of Ranvier and axon initial segments. J. Cell Biol. 166:983–90 [Google Scholar]
  65. Lambert S, Davis JQ, Bennett V. 1997. Morphogenesis of the node of Ranvier: Co-clusters of ankyrin and ankyrin-binding integral proteins define early developmental intermediates. J. Neurosci. 17:7025–36 [Google Scholar]
  66. Laquerriere A, Maluenda J, Camus A, Fontenas L, Dieterich K. et al. 2014. Mutations in CNTNAP1 and ADCY6 are responsible for severe arthrogryposis multiplex congenita with axoglial defects. Hum. Mol. Genet. 23:2279–89 [Google Scholar]
  67. Lemaillet G, Walker B, Lambert S. 2003. Identification of a conserved ankyrin-binding motif in the family of sodium channel α subunits. J. Biol. Chem. 278:27333–39 [Google Scholar]
  68. Leterrier C, Dargent B. 2013. No pasaran! Role of the axon initial segment in the regulation of protein transport and the maintenance of axonal identity. Semin. Cell Dev. Biol. 27:44–51 [Google Scholar]
  69. Leterrier C, Vacher H, Fache MP, d'Ortoli SA, Castets F. et al. 2011. End-binding proteins EB3 and EB1 link microtubules to ankyrin G in the axon initial segment. PNAS 108:8826–31 [Google Scholar]
  70. Lewallen KA, Shen YA, De la Torre AR, Ng BK, Meijer D, Chan JR. 2011. Assessing the role of the cadherin/catenin complex at the Schwann cell-axon interface and in the initiation of myelination. J. Neurosci. 31:3032–43 [Google Scholar]
  71. Lorincz A, Nusser Z. 2008. Cell-type-dependent molecular composition of the axon initial segment. J. Neurosci. 28:14329–40 [Google Scholar]
  72. Lukinavicius G, Reymond L, D'Este E, Masharina A, Gottfert F. et al. 2014. Fluorogenic probes for live-cell imaging of the cytoskeleton. Nat. Methods 11:731–33 [Google Scholar]
  73. Masaki T. 2012. Polarization and myelination in myelinating glia. ISRN Neurol. 2012:769412 [Google Scholar]
  74. McKenzie IA, Ohayon D, Li H, de Faria JP, Emery B. et al. 2014. Motor skill learning requires active central myelination. Science 346:318–22 [Google Scholar]
  75. Mellman I, Nelson WJ. 2008. Coordinated protein sorting, targeting and distribution in polarized cells. Nat. Rev. Mol. Cell Biol. 9:833–45 [Google Scholar]
  76. Nakada C, Ritchie K, Oba Y, Nakamura M, Hotta Y. et al. 2003. Accumulation of anchored proteins forms membrane diffusion barriers during neuronal polarization. Nat. Cell Biol. 5:626–32 [Google Scholar]
  77. Ogawa Y, Oses-Prieto J, Kim MY, Horresh I, Peles E. et al. 2010. ADAM22, a Kv1 channel-interacting protein, recruits membrane-associated guanylate kinases to juxtaparanodes of myelinated axons. J. Neurosci. 30:1038–48 [Google Scholar]
  78. Ogawa Y, Schafer DP, Horresh I, Bar V, Hales K. et al. 2006. Spectrins and ankyrinB constitute a specialized paranodal cytoskeleton. J. Neurosci. 26:5230–39 [Google Scholar]
  79. Ohno N, Kidd GJ, Mahad D, Kiryu-Seo S, Avishai A. et al. 2011. Myelination and axonal electrical activity modulate the distribution and motility of mitochondria at CNS nodes of Ranvier. J. Neurosci. 31:7249–58 [Google Scholar]
  80. Ozcelik M, Cotter L, Jacob C, Pereira JA, Relvas JB. et al. 2010. Pals1 is a major regulator of the epithelial-like polarization and the extension of the myelin sheath in peripheral nerves. J. Neurosci. 30:4120–31 [Google Scholar]
  81. Palay SL, Sotelo C, Peters A, Orkand PM. 1968. The axon hillock and the initial segment. J. Cell Biol. 38:193–201 [Google Scholar]
  82. Pan Z, Kao T, Horvath Z, Lemos J, Sul J-Y. et al. 2006. A common ankyrin-G-based mechanism retains KCNQ and Nav channels at electrically active domains of the axon. J. Neurosci. 26:2599–613 [Google Scholar]
  83. Petersen JD, Kaech S, Banker G. 2014. Selective microtubule-based transport of dendritic membrane proteins arises in concert with axon specification. J. Neurosci. 34:4135–47 [Google Scholar]
  84. Peterson FC, Penkert RR, Volkman BF, Prehoda KE. 2004. Cdc42 regulates the Par-6 PDZ domain through an allosteric CRIB-PDZ transition. Mol. Cell 13:665–76 [Google Scholar]
  85. Pillai AM, Thaxton C, Pribisko AL, Cheng JG, Dupree JL, Bhat MA. 2009. Spatiotemporal ablation of myelinating glia-specific neurofascin (NfascNF155) in mice reveals gradual loss of paranodal axoglial junctions and concomitant disorganization of axonal domains. J. Neurosci. Res. 87:1773–93 [Google Scholar]
  86. Poliak S, Gollan L, Salomon D, Berglund EO, Ohara R. et al. 2001. Localization of Caspr2 in myelinated nerves depends on axon-glia interactions and the generation of barriers along the axon. J. Neurosci. 21:7568–75 [Google Scholar]
  87. Poliak S, Salomon D, Elhanany H, Sabanay H, Kiernan B. et al. 2003. Juxtaparanodal clustering of Shaker-like K+ channels in myelinated axons depends on Caspr2 and TAG-1. J. Cell Biol. 162:1149–60 [Google Scholar]
  88. Pooya S, Liu X, Kumar VB, Anderson J, Imai F. et al. 2014. The tumour suppressor LKB1 regulates myelination through mitochondrial metabolism. Nat. Commun. 5:4993 [Google Scholar]
  89. Rasband MN. 2010. The axon initial segment and the maintenance of neuronal polarity. Nat. Rev. Neurosci. 11:552–62 [Google Scholar]
  90. Rasband MN, Peles E, Trimmer JS, Levinson SR, Lux SE, Shrager P. 1999. Dependence of nodal sodium channel clustering on paranodal axoglial contact in the developing CNS. J. Neurosci. 19:7516–28 [Google Scholar]
  91. Rios JC, Rubin M, St Martin M, Downey RT, Einheber S. et al. 2003. Paranodal interactions regulate expression of sodium channel subtypes and provide a diffusion barrier for the node of Ranvier. J. Neurosci. 23:7001–11 [Google Scholar]
  92. Rosenbluth J. 2009. Multiple functions of the paranodal junction of myelinated nerve fibers. J. Neurosci. Res. 87:3250–58 [Google Scholar]
  93. Roussos P, Katsel P, Davis KL, Bitsios P, Giakoumaki SG. et al. 2012. Molecular and genetic evidence for abnormalities in the nodes of Ranvier in schizophrenia. Arch. Gen. Psychiatry 69:7–15 [Google Scholar]
  94. Salzer JL. 2003. Polarized domains of myelinated axons. Neuron 40:297–318 [Google Scholar]
  95. Sanders SJ, Murtha MT, Gupta AR, Murdoch JD, Raubeson MJ. et al. 2012. De novo mutations revealed by whole-exome sequencing are strongly associated with autism. Nature 485:237–41 [Google Scholar]
  96. Savvaki M, Theodorakis K, Zoupi L, Stamatakis A, Tivodar S. et al. 2010. The expression of TAG-1 in glial cells is sufficient for the formation of the juxtaparanodal complex and the phenotypic rescue of Tag-1 homozygous mutants in the CNS. J. Neurosci. 30:13943–54 [Google Scholar]
  97. Schafer DP, Custer AW, Shrager P, Rasband MN. 2006. Early events in node of Ranvier formation during myelination and remyelination in the PNS. Neuron Glia Biol. 2:69–79 [Google Scholar]
  98. Schafer DP, Jha S, Liu F, Akella T, McCullough LD, Rasband MN. 2009. Disruption of the axon initial segment cytoskeleton is a new mechanism for neuronal injury. J. Neurosci. 29:13242–54 [Google Scholar]
  99. Seidl AH, Rubel EW, Barria A. 2014. Differential conduction velocity regulation in ipsilateral and contralateral collaterals innervating brainstem coincidence detector neurons. J. Neurosci. 34:4914–19 [Google Scholar]
  100. Seidl AH, Rubel EW, Harris DM. 2010. Mechanisms for adjusting interaural time differences to achieve binaural coincidence detection. J. Neurosci. 30:70–80 [Google Scholar]
  101. Shen YA, Chen Y, Dao DQ, Mayoral SR, Wu L. et al. 2014. Phosphorylation of LKB1/Par-4 establishes Schwann cell polarity to initiate and control myelin extent. Nat. Commun. 5:4991 [Google Scholar]
  102. Sobotzik JM, Sie JM, Politi C, Del Turco D, Bennett V. et al. 2009. AnkyrinG is required to maintain axo-dendritic polarity in vivo. PNAS 106:17564–69 [Google Scholar]
  103. Song A-H, Wang D, Chen G, Li Y, Luo J. et al. 2009. A selective filter for cytoplasmic transport at the axon initial segment. Cell 136:1148–60 [Google Scholar]
  104. Susuki K. 2013. Node of Ranvier disruption as a cause of neurological diseases. ASN Neuro 5:209–19 [Google Scholar]
  105. Susuki K, Chang KJ, Zollinger DR, Liu Y, Ogawa Y. et al. 2013. Three mechanisms assemble central nervous system nodes of Ranvier. Neuron 78:469–82 [Google Scholar]
  106. Susuki K, Raphael AR, Ogawa Y, Stankewich MC, Peles E. et al. 2011. Schwann cell spectrins modulate peripheral nerve myelination. PNAS 108:8009–14 [Google Scholar]
  107. Susuki K, Yuki N, Schafer DP, Hirata K, Zhang G. et al. 2012. Dysfunction of nodes of Ranvier: a mechanism for anti-ganglioside antibody-mediated neuropathies. Exp. Neurol. 233:534–42 [Google Scholar]
  108. Tep C, Kim ML, Opincariu LI, Limpert AS, Chan JR. et al. 2012. Brain-derived neurotrophic factor (BDNF) induces polarized signaling of small GTPase (Rac1) protein at the onset of Schwann cell myelination through partitioning-defective 3 (Par3) protein. J. Biol. Chem. 287:1600–8 [Google Scholar]
  109. Thaxton C, Pillai AM, Pribisko AL, Dupree JL, Bhat MA. 2011. Nodes of Ranvier act as barriers to restrict invasion of flanking paranodal domains in myelinated axons. Neuron 69:244–57 [Google Scholar]
  110. Tuvia S, Garver TD, Bennett V. 1997. The phosphorylation state of the FIGQY tyrosine of neurofascin determines ankyrin-binding activity and patterns of cell segregation. PNAS 94:12957–62 [Google Scholar]
  111. Ulzheimer JC, Peles E, Levinson SR, Martini R. 2004. Altered expression of ion channel isoforms at the node of Ranvier in P0-deficient myelin mutants. Mol. Cell. Neurosci. 25:83–94 [Google Scholar]
  112. Uncini A, Susuki K, Yuki N. 2013. Nodo-paranodopathy: beyond the demyelinating and axonal classification in anti-ganglioside antibody-mediated neuropathies. Clin. Neurophysiol. 124:1928–34 [Google Scholar]
  113. Vabnick I, Trimmer JS, Schwarz TL, Levinson SR, Risal D, Shrager P. 1999. Dynamic potassium channel distributions during axonal development prevent aberrant firing patterns. J. Neurosci. 19:747–58 [Google Scholar]
  114. Veres JM, Nagy GA, Vereczki VK, Andrasi T, Hajos N. 2014. Strategically positioned inhibitory synapses of axo-axonic cells potently control principal neuron spiking in the basolateral amygdala. J. Neurosci. 34:16194–206 [Google Scholar]
  115. Watanabe K, Al-Bassam S, Miyazaki Y, Wandless TJ, Webster P, Arnold DB. 2012. Networks of polarized actin filaments in the axon initial segment provide a mechanism for sorting axonal and dendritic proteins. Cell Rep. 2:1546–53 [Google Scholar]
  116. Winckler B, Forscher P, Mellman I. 1999. A diffusion barrier maintains distribution of membrane proteins in polarized neurons. Nature 397:698–701 [Google Scholar]
  117. Xu K, Zhong G, Zhuang X. 2013. Actin, spectrin, and associated proteins form a periodic cytoskeletal structure in axons. Science 339:452–56 [Google Scholar]
  118. Yang Y, Lacas-Gervais S, Morest DK, Solimena M, Rasband MN. 2004. βIV spectrins are essential for membrane stability and the molecular organization of nodes of Ranvier. J. Neurosci. 24:7230–40 [Google Scholar]
  119. Yang Y, Ogawa Y, Hedstrom KL, Rasband MN. 2007. βIV spectrin is recruited to axon initial segments and nodes of Ranvier by ankyrinG. J. Cell Biol. 176:509–19 [Google Scholar]
  120. Yoshimura T, Rasband MN. 2014. Axon initial segments: diverse and dynamic neuronal compartments. Curr. Opin. Neurobiol. 27C:96–102 [Google Scholar]
  121. Zhang C, Susuki K, Zollinger DR, Dupree JL, Rasband MN. 2013. Membrane domain organization of myelinated axons requires βII spectrin. J. Cell Biol. 203:437–43 [Google Scholar]
  122. Zhang Y, Chen K, Sloan SA, Bennett ML, Scholze AR. et al. 2014. An RNA-sequencing transcriptome and splicing database of glia, neurons, and vascular cells of the cerebral cortex. J. Neurosci. 34:11929–47 [Google Scholar]
  123. Zhou D, Lambert S, Malen PL, Carpenter S, Boland LM, Bennett V. 1998. AnkyrinG is required for clustering of voltage-gated Na channels at axon initial segments and for normal action potential firing. J. Cell Biol. 143:1295–304 [Google Scholar]
  124. Zonta B, Desmazieres A, Rinaldi A, Tait S, Sherman DL. et al. 2011. A critical role for neurofascin in regulating action potential initiation through maintenance of the axon initial segment. Neuron 69:945–56 [Google Scholar]
  125. Zonta B, Tait S, Melrose S, Anderson H, Harroch S. et al. 2008. Glial and neuronal isoforms of Neurofascin have distinct roles in the assembly of nodes of Ranvier in the central nervous system. J. Cell Biol. 181:1169–77 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error