Localized ion fluxes at the plasma membrane provide electrochemical gradients at the cell surface that contribute to cell polarization, migration, and division. Ion transporters, local pH gradients, membrane potential, and organization are emerging as important factors in cell polarization mechanisms. The power of electrochemical effects is illustrated by the ability of exogenous electric fields to redirect polarization in cells ranging from bacteria, fungi, and amoebas to keratocytes and neurons. Electric fields normally surround cells and tissues and thus have been proposed to guide cell polarity in development, cancer, and wound healing. Recent studies on electric field responses in model systems and development of new biosensors provide new avenues to dissect molecular mechanisms. Here, we review recent advances that bring molecular understanding of how electrochemistry contributes to cell polarity in various contexts.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Adams DS, Masi A, Levin M. 2007. H+ pump-dependent changes in membrane voltage are an early mechanism necessary and sufficient to induce Xenopus tail regeneration. Development 134:1323–35 [Google Scholar]
  2. Adams DS, Tseng AS, Levin M. 2013. Light-activation of the Archaerhodopsin H+-pump reverses age-dependent loss of vertebrate regeneration: sparking system-level controls in vivo. Biol. Open 2:306–13 [Google Scholar]
  3. Allen GM, Mogilner A, Theriot JA. 2013. Electrophoresis of cellular membrane components creates the directional cue guiding keratocyte galvanotaxis. Curr. Biol. 23:560–68 [Google Scholar]
  4. Bagnat M, Simons K. 2002a. Cell surface polarization during yeast mating. Proc. Natl. Acad. Sci. USA 99:14183–88 [Google Scholar]
  5. Bagnat M, Simons K. 2002b. Lipid rafts in protein sorting and cell polarity in budding yeast Saccharomyces cerevisiae. Biol. Chem. 383:1475–80 [Google Scholar]
  6. Beane WS, Morokuma J, Adams DS, Levin M. 2011. A chemical genetics approach reveals H,K-ATPase-mediated membrane voltage is required for planarian head regeneration. Chem. Biol. 18:77–89 [Google Scholar]
  7. Beane WS, Morokuma J, Lemire JM, Levin M. 2013. Bioelectric signaling regulates head and organ size during planarian regeneration. Development 140:313–22 [Google Scholar]
  8. Binggeli R, Weinstein RC. 1985. Deficits in elevating membrane potential of rat fibrosarcoma cells after cell contact. Cancer Res. 45:235–41 [Google Scholar]
  9. Binggeli R, Weinstein RC, Stevenson D. 1994. Calcium ion and the membrane potential of tumor cells. Cancer Biochem. Biophys. 14:201–10 [Google Scholar]
  10. Blackiston DJ, McLaughlin KA, Levin M. 2009. Bioelectric controls of cell proliferation: ion channels, membrane voltage and the cell cycle. Cell Cycle 8:3519–28 [Google Scholar]
  11. Bohrmann J, Gutzeit H. 1987. Evidence against electrophoresis as the principal mode of protein transport in vitellogenic ovarian follicles of Drosophila. Development 101:279–88 [Google Scholar]
  12. Borgens RB, Vanable JW Jr, Jaffe LF. 1977. Bioelectricity and regeneration: Large currents leave the stumps of regenerating newt limbs. Proc. Natl. Acad. Sci. USA 74:4528–32 [Google Scholar]
  13. Brand A, Shanks S, Duncan VM, Yang M, MacKenzie K, Gow NA. 2007. Hyphal orientation of Candida albicans is regulated by a calcium-dependent mechanism. Curr. Biol. 17:347–52 [Google Scholar]
  14. Brand A, Vacharaksa A, Bendel C, Norton J, Haynes P. et al. 2008. An internal polarity landmark is important for externally induced hyphal behaviors in Candida albicans. Eukaryot. Cell 7:712–20 [Google Scholar]
  15. Brand AC, Morrison E, Milne S, Gonia S, Gale CA, Gow NA. 2014. Cdc42 GTPase dynamics control directional growth responses. Proc. Natl. Acad. Sci. USA 111:811–16 [Google Scholar]
  16. Brower DL, Giddings TH. 1980. The effects of applied electric fields on Micrasterias. II. The distributions of cytoplasmic and plasma membrane components. J. Cell Sci. 42:279–90 [Google Scholar]
  17. Casey JR, Grinstein S, Orlowski J. 2010. Sensors and regulators of intracellular pH. Nat. Rev. Mol. Cell Biol. 11:50–61 [Google Scholar]
  18. Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N. et al. 2008. Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen tubes. Plant Cell 20:614–34 [Google Scholar]
  19. Chang F, Martin SG. 2009. Shaping fission yeast with microtubules. Cold Spring Harb. Perspect. Biol. 1:A001347 [Google Scholar]
  20. Chang F, Peter M. 2003. Yeasts make their mark. Nat. Cell Biol. 5:294–99 [Google Scholar]
  21. Chang PC, Sulik GI, Soong HK, Parkinson WC. 1996. Galvanotropic and galvanotaxic responses of corneal endothelial cells. J. Formos. Med. Assoc. 95:623–27 [Google Scholar]
  22. Chen MY, Insall RH, Devreotes PN. 1996. Signaling through chemoattractant receptors in Dictyostelium. Trends Genet. 12:52–57 [Google Scholar]
  23. Chen MY, Long Y, Devreotes PN. 1997. A novel cytosolic regulator, Pianissimo, is required for chemoattractant receptor and G protein-mediated activation of the 12 transmembrane domain adenylyl cyclase in Dictyostelium. Genes Dev. 11:3218–31 [Google Scholar]
  24. Choi CH, Webb BA, Chimenti MS, Jacobson MP, Barber DL. 2013. pH sensing by FAK-His58 regulates focal adhesion remodeling. J. Cell Biol. 202:849–59 [Google Scholar]
  25. Cooper MS, Schliwa M. 1985. Electrical and ionic controls of tissue cell locomotion in DC electric fields. J. Neurosci. Res. 13:223–44 [Google Scholar]
  26. Crevenna AH, Naredi-Rainer N, Schonichen A, Dzubiella J, Barber DL. et al. 2013. Electrostatics control actin filament nucleation and elongation kinetics. J. Biol. Chem. 288:12102–13 [Google Scholar]
  27. Crombie T, Gow NA, Gooday GW. 1990. Influence of applied electrical fields on yeast and hyphal growth of Candida albicans. J. Gen. Microbiol. 136:311–17 [Google Scholar]
  28. Das A, Slaughter BD, Unruh JR, Bradford WD, Alexander R. et al. 2012. Flippase-mediated phospholipid asymmetry promotes fast Cdc42 recycling in dynamic maintenance of cell polarity. Nat. Cell Biol. 14:304–10 [Google Scholar]
  29. Denker SP, Barber DL. 2002. Cell migration requires both ion translocation and cytoskeletal anchoring by the Na-H exchanger NHE1. J. Cell Biol. 159:1087–96 [Google Scholar]
  30. Devreotes PN, Zigmond SH. 1988. Chemotaxis in eukaryotic cells: a focus on leukocytes and Dictyostelium. Annu. Rev. Cell Biol. 4:649–86 [Google Scholar]
  31. Drubin DG. 1991. Development of cell polarity in budding yeast. Cell 65:1093–96 [Google Scholar]
  32. Drubin DG, Nelson WJ. 1996. Origins of cell polarity. Cell 84:335–44 [Google Scholar]
  33. Esser AT, Smith KC, Weaver JC, Levin M. 2006. Mathematical model of morphogen electrophoresis through gap junctions. Dev. Dyn. 235:2144–59 [Google Scholar]
  34. Fairn GD, Hermansson M, Somerharju P, Grinstein S. 2011. Phosphatidylserine is polarized and required for proper Cdc42 localization and for development of cell polarity. Nat. Cell Biol. 13:1424–30 [Google Scholar]
  35. Fajardo-Somera RA, Bowman B, Riquelme M. 2013. The plasma membrane proton pump Pma-1 is incorporated into distal parts of the hyphae independently of the Spitzenkörper in Neurospora crassa. Eukaryot. Cell 12:1097–105 [Google Scholar]
  36. Feierbach B, Chang F. 2001. Roles of the fission yeast formin for3p in cell polarity, actin cable formation and symmetric cell division. Curr. Biol. 11:1656–65 [Google Scholar]
  37. Feijó JA, Sainhas J, Hackett GR, Kunkel JG, Hepler PK. 1999. Growing pollen tubes possess a constitutive alkaline band in the clear zone and a growth-dependent acidic tip. J. Cell Biol. 144:483–96 [Google Scholar]
  38. Fenno L, Yizhar O, Deisseroth K. 2011. The development and application of optogenetics. Annu. Rev. Neurosci. 34:389–412 [Google Scholar]
  39. Frantz C, Barreiro G, Dominguez L, Chen X, Eddy R. et al. 2008. Cofilin is a pH sensor for actin free barbed end formation: role of phosphoinositide binding. J. Cell Biol. 183:865–79 [Google Scholar]
  40. Frantz C, Karydis A, Nalbant P, Hahn KM, Barber DL. 2007. Positive feedback between Cdc42 activity and H+ efflux by the Na-H exchanger NHE1 for polarity of migrating cells. J. Cell Biol. 179:403–10 [Google Scholar]
  41. Gao RC, Zhang XD, Sun YH, Kamimura Y, Mogilner A. et al. 2011. Different roles of membrane potentials in electrotaxis and chemotaxis of Dictyostelium cells. Eukaryot. Cell 10:1251–56 [Google Scholar]
  42. Giardina B, Mosca D, De Rosa MC. 2004. The Bohr effect of haemoglobin in vertebrates: an example of molecular adaptation to different physiological requirements. Acta Physiol. Scand. 182:229–44 [Google Scholar]
  43. Gibbon BC, Kropf DL. 1994. Cytosolic pH gradients associated with tip growth. Science 263:1419–21 [Google Scholar]
  44. Goehring NW, Trong PK, Bois JS, Chowdhury D, Nicola EM. et al. 2011. Polarization of PAR proteins by advective triggering of a pattern-forming system. Science 334:1137–41 [Google Scholar]
  45. Goodrich LV, Strutt D. 2011. Principles of planar polarity in animal development. Development 138:1877–92 [Google Scholar]
  46. Gow NA. 1984. Transhyphal electrical currents in fungi. J. Gen. Microbiol. 130:3313–18 [Google Scholar]
  47. Gross D, Loew LM, Webb WW. 1986. Optical imaging of cell membrane potential changes induced by applied electric fields. Biophys. J. 50:339–48 [Google Scholar]
  48. Hachet O, Berthelot-Grosjean M, Kokkoris K, Vincenzetti V, Moosbrugger J, Martin SG. 2011. A phosphorylation cycle shapes gradients of the DYRK family kinase Pom1 at the plasma membrane. Cell 145:1116–28 [Google Scholar]
  49. Hall JE. 1981. Voltage-dependent lipid flip-flop induced by alamethicin. Biophys. J. 33:373–81 [Google Scholar]
  50. Hansen SB, Tao X, MacKinnon R. 2011. Structural basis of PIP2 activation of the classical inward rectifier K+ channel Kir2.2. Nature 477:495–98 [Google Scholar]
  51. Harold FM, Schreurs WJ, Harold RL, Caldwell JH. 1985. Electrobiology of fungal hyphae. Microbiol. Sci. 2:363–66 [Google Scholar]
  52. Hayles J, Wood V, Jeffery L, Hoe KL, Kim DU. et al. 2013. A genome-wide resource of cell cycle and cell shape genes of fission yeast. Open Biol. 3:130053 [Google Scholar]
  53. Hermle T, Petzoldt AG, Simons M. 2011. The role of proton transporters in epithelial Wnt signaling pathways. Pediatr. Nephrol. 26:1523–27 [Google Scholar]
  54. Hermle T, Saltukoglu D, Grünewald J, Walz G, Simons M. 2010. Regulation of Frizzled-dependent planar polarity signaling by a V-ATPase subunit. Curr. Biol. 20:1269–76 [Google Scholar]
  55. Hinkle L, McCaig CD, Robinson KR. 1981. The direction of growth of differentiating neurones and myoblasts from frog embryos in an applied electric field. J. Physiol. 314:121–35 [Google Scholar]
  56. Hollenhorst MI, Richter K, Fronius M. 2011. Ion transport by pulmonary epithelia. J. Biomed. Biotechnol. 2011:174306 [Google Scholar]
  57. Hotary KB, Robinson KR. 1990. Endogenous electrical currents and the resultant voltage gradients in the chick embryo. Dev. Biol. 140:149–60 [Google Scholar]
  58. Hotary KB, Robinson KR. 1992. Evidence of a role for endogenous electrical fields in chick embryo development. Development 114:985–96 [Google Scholar]
  59. Hubner CA, Jentsch TJ. 2002. Ion channel diseases. Hum. Mol. Genet. 11:2435–45 [Google Scholar]
  60. Hughes AL, Gottschling DE. 2012. An early age increase in vacuolar pH limits mitochondrial function and lifespan in yeast. Nature 492:261–65 [Google Scholar]
  61. Inaba M, Yamanaka H, Kondo S. 2012. Pigment pattern formation by contact-dependent depolarization. Science 335:677 [Google Scholar]
  62. Iwashita M, Watanabe M, Ishii M, Chen T, Johnson SL. et al. 2006. Pigment pattern in jaguar/obelix zebrafish is caused by a Kir7.1 mutation: implications for the regulation of melanosome movement. PLOS Genet. 2:E197 [Google Scholar]
  63. Jaffe LF. 1966. Electrical currents through the developing Fucus egg. Proc. Natl. Acad. Sci. USA 56:1102–9 [Google Scholar]
  64. Jaffe LF. 1977. Electrophoresis along cell membranes. Nature 265:600–2 [Google Scholar]
  65. Jaffe LF, Nuccitelli R. 1974. An ultrasensitive vibrating probe for measuring steady extracellular currents. J. Cell Biol. 63:614–28 [Google Scholar]
  66. Jaffe LF, Nuccitelli R. 1977. Electrical controls of development. Annu. Rev. Biophys. Bioeng. 6:445–76 [Google Scholar]
  67. Jaffe LF, Stern CD. 1979. Strong electrical currents leave the primitive streak of chick embryos. Science 206:569–71 [Google Scholar]
  68. Kim JY, Caterina MJ, Milne JL, Lin KC, Borleis JA, Devreotes PN. 1997. Random mutagenesis of the cAMP chemoattractant receptor, C/AR1, of Dictyostelium. Mutant classes that cause discrete shifts in agonist affinity and lock the receptor in a novel activational intermediate. J. Biol. Chem. 272:2060–68 [Google Scholar]
  69. Kline D, Robinson KR, Nuccitelli R. 1983. Ion currents and membrane domains in the cleaving Xenopus egg. J. Cell Biol. 97:1753–61 [Google Scholar]
  70. Kohler S, Schmoller KM, Crevenna AH, Bausch AR. 2012. Regulating contractility of the actomyosin cytoskeleton by pH. Cell Rep. 2:433–39 [Google Scholar]
  71. Koivusalo M, Welch C, Hayashi H, Scott CC, Kim M. et al. 2010. Amiloride inhibits macropinocytosis by lowering submembranous pH and preventing Rac1 and Cdc42 signaling. J. Cell Biol. 188:547–63 [Google Scholar]
  72. Korohoda W, Mycielska M, Janda E, Madeja Z. 2000. Immediate and long-term galvanotactic responses of Amoeba proteus to dc electric fields. Cell Motil. Cytoskelet. 45:10–26 [Google Scholar]
  73. Kotnik T, Miklavcic D. 2000. Analytical description of transmembrane voltage induced by electric fields on spheroidal cells. Biophys. J. 79:670–79 [Google Scholar]
  74. Kotnik T, Miklavcic D. 2006. Theoretical evaluation of voltage inducement on internal membranes of biological cells exposed to electric fields. Biophys. J. 90:480–91 [Google Scholar]
  75. Kralj JM, Douglass AD, Hochbaum DR, MacLaurin D, Cohen AE. 2012. Optical recording of action potentials in mammalian neurons using a microbial rhodopsin. Nat. Methods 9:90–95 [Google Scholar]
  76. Kralj JM, Hochbaum DR, Douglass AD, Cohen AE. 2011. Electrical spiking in Escherichia coli probed with a fluorescent voltage-indicating protein. Science 333:345–48 [Google Scholar]
  77. Kropf DL, Caldwell JH, Gow NAR, Harold FM. 1984. Transcellular ion currents in the water mold Achlya. Amino acid proton symport as a mechanism of current entry. J. Cell Biol. 99:486–96 [Google Scholar]
  78. Kucerova R, Walczysko P, Reid B, Ou J, Leiper LJ. et al. 2011. The role of electrical signals in murine corneal wound re-epithelialization. J. Cell. Physiol. 226:1544–53 [Google Scholar]
  79. Levin M. 2009. Bioelectric mechanisms in regeneration: unique aspects and future perspectives. Semin. Cell Dev. Biol. 20:543–56 [Google Scholar]
  80. Levin M. 2012. Molecular bioelectricity in developmental biology: new tools and recent discoveries: control of cell behavior and pattern formation by transmembrane potential gradients. BioEssays 34:205–17 [Google Scholar]
  81. Levin M, Thorlin T, Robinson KR, Nogi T, Mercola M. 2002. Asymmetries in H+/K+-ATPase and cell membrane potentials comprise a very early step in left-right patterning. Cell 111:77–89 [Google Scholar]
  82. Lin F, Baldessari F, Gyenge CC, Sato T, Chambers RD. et al. 2008. Lymphocyte electrotaxis in vitro and in vivo. J. Immunol. 181:2465–71 [Google Scholar]
  83. Maderspacher F, Nüsslein-Volhard C. 2003. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development 130:3447–57 [Google Scholar]
  84. Magalhaes MA, Larson DR, Mader CC, Bravo-Cordero JJ, Gil-Henn H. et al. 2011. Cortactin phosphorylation regulates cell invasion through a pH-dependent pathway. J. Cell Biol. 195:903–20 [Google Scholar]
  85. Malinska K, Malinsky J, Opekarova M, Tanner W. 2003. Visualization of protein compartmentation within the plasma membrane of living yeast cells. Mol. Biol. Cell 14:4427–36 [Google Scholar]
  86. Martin SG, Rincón SA, Basu R, Pérez P, Chang F. 2007. Regulation of the formin for3p by cdc42p and bud6p. Mol. Biol. Cell 18:4155–67 [Google Scholar]
  87. McCaig CD, Rajnicek AM, Song B, Zhao M. 2002. Has electrical growth cone guidance found its potential?. Trends Neurosci. 25:354–59 [Google Scholar]
  88. McCaig CD, Rajnicek AM, Song B, Zhao M. 2005. Controlling cell behavior electrically: current views and future potential. Physiol. Rev. 85:943–78 [Google Scholar]
  89. McGillivray AM, Gow NAR. 1986. Applied electrical fields polarize the growth of mycelial fungi. J. Gen. Microbiol. 132:2515–25 [Google Scholar]
  90. McKasson MJ, Huang L, Robinson KR. 2008. Chick embryonic Schwann cells migrate anodally in small electrical fields. Exp. Neurol. 211:585–87 [Google Scholar]
  91. McLaughlin S, Aderem A. 1995. The myristoyl-electrostatic switch: a modulator of reversible protein-membrane interactions. Trends Biochem. Sci. 20:272–76 [Google Scholar]
  92. McLaughlin S, Harary H. 1974. Phospholipid flip-flop and the distribution of surface charges in excitable membranes. Biophys. J. 14:200–8 [Google Scholar]
  93. McNamee MG, McConnell HM. 1973. Transmembrane potentials and phospholipid flip-flop in excitable membrane vesicles. Biochemistry 12:2951–58 [Google Scholar]
  94. Miesenbock G, De Angelis DA, Rothman JE. 1998. Visualizing secretion and synaptic transmission with pH-sensitive green fluorescent proteins. Nature 394:192–95 [Google Scholar]
  95. Minc N, Chang F. 2010. Electrical control of cell polarization in the fission yeast Schizosaccharomyces pombe. Curr. Biol. 20:710–16 [Google Scholar]
  96. Morokuma J, Blackiston D, Levin M. 2008. KCNQ1 and KCNE1 K+ channel components are involved in early left-right patterning in Xenopus laevis embryos. Cell. Physiol. Biochem. 21:357–72 [Google Scholar]
  97. Nishimura KY, Isseroff RR, Nuccitelli R. 1996. Human keratinocytes migrate to the negative pole in direct current electric fields comparable to those measured in mammalian wounds. J. Cell Sci. 109:Pt. 1199–207 [Google Scholar]
  98. Nuccitelli R. 2003. Endogenous electric fields in embryos during development, regeneration and wound healing. Radiat. Prot. Dosim. 106:375–83 [Google Scholar]
  99. Nuccitelli R, Jaffe LF. 1975. The pulse current pattern generated by developing fucoid eggs. J. Cell Biol. 64:636–43 [Google Scholar]
  100. Nuccitelli R, Jaffe LF. 1976. The ionic components of the current pulses generated by developing fucoid eggs. Dev. Biol. 49:518–31 [Google Scholar]
  101. Nuccitelli R, Nuccitelli P, Ramlatchan S, Sanger R, Smith PJ. 2008. Imaging the electric field associated with mouse and human skin wounds. Wound Repair Regen. 16:432–41 [Google Scholar]
  102. Nuccitelli R, Poo MM, Jaffe LF. 1977. Relations between ameboid movement and membrane-controlled electrical currents. J. Gen. Physiol. 69:743–63 [Google Scholar]
  103. Onuma EK, Hui SW. 1988. Electric field-directed cell shape changes, displacement, and cytoskeletal reorganization are calcium dependent. J. Cell Biol. 106:2067–75 [Google Scholar]
  104. Pai VP, Aw S, Shomrat T, Lemire JM, Levin M. 2012. Transmembrane voltage potential controls embryonic eye patterning in Xenopus laevis. Development 139:313–23 [Google Scholar]
  105. Parent CA, Devreotes PN. 1996. Molecular genetics of signal transduction in Dictyostelium. Annu. Rev. Biochem. 65:411–40 [Google Scholar]
  106. Patel N, Poo MM. 1982. Orientation of neurite growth by extracellular electric fields. J. Neurosci. 2:483–96 [Google Scholar]
  107. Poo M. 1981. In situ electrophoresis of membrane components. Annu. Rev. Biophys. Bioeng. 10:245–76 [Google Scholar]
  108. Poo M, Robinson KR. 1977. Electrophoresis of concanavalin a receptors along embryonic muscle cell membrane. Nature 265:602–5 [Google Scholar]
  109. Poo MM, Poo WJ, Lam JW. 1978. Lateral electrophoresis and diffusion of concanavalin a receptors in the membrane of embryonic muscle cell. J. Cell Biol. 76:483–501 [Google Scholar]
  110. Prevarskaya N, Skryma R, Shuba Y. 2010. Ion channels and the hallmarks of cancer. Trends Mol. Med. 16:107–21 [Google Scholar]
  111. Pu J, McCaig CD, Cao L, Zhao Z, Segall JE, Zhao M. 2007. EGF receptor signalling is essential for electric-field-directed migration of breast cancer cells. J. Cell Sci. 120:3395–403 [Google Scholar]
  112. Pullar CE, Baier BS, Kariya Y, Russell AJ, Horst BA. et al. 2006. β4 Integrin and epidermal growth factor coordinately regulate electric field-mediated directional migration via Rac1. Mol. Biol. Cell 17:4925–35 [Google Scholar]
  113. Pullar CE, Isseroff RR. 2005. Cyclic AMP mediates keratinocyte directional migration in an electric field. J. Cell Sci. 118:2023–34 [Google Scholar]
  114. Rajnicek AM, Gow NA, McCaig CD. 1992. Electric field-induced orientation of rat hippocampal neurones in vitro. Exp. Physiol. 77:229–32 [Google Scholar]
  115. Rajnicek AM, McCaig CD, Gow NA. 1994. Electric fields induce curved growth of Enterobacter cloacae, Escherichia coli, and Bacillus subtilis cells: implications for mechanisms of galvanotropism and bacterial growth. J. Bacteriol. 176:702–13 [Google Scholar]
  116. Reid B, Nuccitelli R, Zhao M. 2007. Non-invasive measurement of bioelectric currents with a vibrating probe. Nat. Protoc. 2:661–69 [Google Scholar]
  117. Reid B, Song B, McCaig CD, Zhao M. 2005. Wound healing in rat cornea: the role of electric currents. FASEB J. 19:379–86 [Google Scholar]
  118. Reid B, Vieira AC, Cao L, Mannis MJ, Schwab IR, Zhao M. 2011. Specific ion fluxes generate cornea wound electric currents. Commun. Integr. Biol. 4:462–65 [Google Scholar]
  119. Reid B, Zhao M. 2011. Measurement of bioelectric current with a vibrating probe. J. Vis. Exp. 47:e2358 [Google Scholar]
  120. Robinson KR, Jaffe LF. 1975. Polarizing fucoid eggs drive a calcium current through themselves. Science 187:70–72 [Google Scholar]
  121. Sato MJ, Kuwayama H, Van Egmond WN, Takayama AL, Takagi H. et al. 2009. Switching direction in electric-signal-induced cell migration by cyclic guanosine monophosphate and phosphatidylinositol signaling. Proc. Natl. Acad. Sci. USA 106:6667–72 [Google Scholar]
  122. Saunders TE, Pan KZ, Angel A, Guan Y, Shah JV. et al. 2012. Noise reduction in the intracellular Pom1p gradient by a dynamic clustering mechanism. Dev. Cell 22:558–72 [Google Scholar]
  123. Schmoller KM, Köhler S, Crevenna AH, Wedlich-Söldner R, Bausch AR. 2012. Modulation of cross-linked actin networks by pH. Soft Matter 8:9685–90 [Google Scholar]
  124. Schonichen A, Webb BA, Jacobson MP, Barber DL. 2013. Considering protonation as a posttranslational modification regulating protein structure and function. Annu. Rev. Biophys. 42:289–314 [Google Scholar]
  125. Schreurs WJ, Harold FM. 1988. Transcellular proton current in Achlya bisexualis hyphae: relationship to polarized growth. Proc. Natl. Acad. Sci. USA 85:1534–38 [Google Scholar]
  126. Segalen M, Bellaiche Y. 2009. Cell division orientation and planar cell polarity pathways. Semin. Cell Dev. Biol. 20:972–77 [Google Scholar]
  127. Shanley LJ, Walczysko P, Bain M, MacEwan DJ, Zhao M. 2006. Influx of extracellular Ca2+ is necessary for electrotaxis in Dictyostelium. J. Cell Sci. 119:4741–48 [Google Scholar]
  128. Shi R, Borgens RB. 1995. Three-dimensional gradients of voltage during development of the nervous system as invisible coordinates for the establishment of embryonic pattern. Dev. Dyn. 202:101–14 [Google Scholar]
  129. Simons M, Gault WJ, Gotthardt D, Rohatgi R, Klein TJ. et al. 2009. Electrochemical cues regulate assembly of the Frizzled/Dishevelled complex at the plasma membrane during planar epithelial polarization. Nat. Cell Biol. 11:286–94 [Google Scholar]
  130. Song B, Zhao M, Forrester JV, McCaig CD. 2002. Electrical cues regulate the orientation and frequency of cell division and the rate of wound healing in vivo. Proc. Natl. Acad. Sci. USA 99:13577–82 [Google Scholar]
  131. Soong HK, Parkinson WC, Bafna S, Sulik GL, Huang SC. 1990. Movements of cultured corneal epithelial cells and stromal fibroblasts in electric fields. Investig. Ophthalmol. Vis. Sci. 31:2278–82 [Google Scholar]
  132. Srivastava J, Barber DL, Jacobson MP. 2007. Intracellular pH sensors: design principles and functional significance. Physiology 22:30–39 [Google Scholar]
  133. Srivastava J, Barreiro G, Groscurth S, Gingras AR, Goult BT. et al. 2008. Structural model and functional significance of pH-dependent talin-actin binding for focal adhesion remodeling. Proc. Natl. Acad. Sci. USA 105:14436–41 [Google Scholar]
  134. Stewart MP, Helenius J, Toyoda Y, Ramanathan SP, Muller DJ, Hyman AA. 2011. Hydrostatic pressure and the actomyosin cortex drive mitotic cell rounding. Nature 469:226–30 [Google Scholar]
  135. Sun Y, Do H, Gao J, Zhao R, Zhao M, Mogilner A. 2013. Keratocyte fragments and cells utilize competing pathways to move in opposite directions in an electric field. Curr. Biol. 23:569–74 [Google Scholar]
  136. Szatkowski M, Mycielska M, Knowles R, Kho AL, Djamgoz MBA. 2000. Electrophysiological recordings from the rat prostate gland in vitro: identified single-cell and transepithelial (lumen) potentials. BJU Int. 86:1068–75 [Google Scholar]
  137. van West P, Morris BM, Reid B, Appiah AA, Osborne MC. et al. 2002. Oomycete plant pathogens use electric fields to target roots. Mol. Plant Microbe Interact. 15:790–98 [Google Scholar]
  138. Veltman DM, Keizer-Gunnik I, Van Haastert PJM. 2008. Four key signaling pathways mediating chemotaxis in Dictyostelium discoideum. J. Cell Biol. 180:747–53 [Google Scholar]
  139. Veltman DM, Van Haastert PJM. 2006. Guanylyl cyclase protein and cGMP product independently control front and back of chemotaxing Dictyostelium cells. Mol. Biol. Cell 17:3921–29 [Google Scholar]
  140. Volkov V. 2012. Quantitative description of ion transport via plasma membrane of yeast and small cells. arXiv1212.4491
  141. Webb BA, Chimenti M, Jacobson MP, Barber DL. 2011. Dysregulated pH: a perfect storm for cancer progression. Nat. Rev. Cancer 11:671–77 [Google Scholar]
  142. Weisenseel MH, Nuccitelli R, Jaffe LF. 1975. Large electrical currents traverse growing pollen tubes. J. Cell Biol. 66:556–67 [Google Scholar]
  143. Wessel GM, Wong JL. 2009. Cell surface changes in the egg at fertilization. Mol. Reprod. Dev. 76:942–53 [Google Scholar]
  144. Woodruff RI, Telfer WH. 1980. Electrophoresis of proteins in intercellular bridges. Nature 286:84–86 [Google Scholar]
  145. Yeung T, Gilbert GE, Shi J, Silvius J, Kapus A, Grinstein S. 2008. Membrane phosphatidylserine regulates surface charge and protein localization. Science 319:210–13 [Google Scholar]
  146. Zhang X, Jin L, Takenaka I. 2000. Galvanotactic response of mouse epididymal sperm: in vitro effects of zinc and diethyldithiocarbamate. Arch. Androl. 45:105–10 [Google Scholar]
  147. Zhao M. 2009. Electrical fields in wound healing—an overriding signal that directs cell migration. Semin. Cell Dev. Biol. 20:674–82 [Google Scholar]
  148. Zhao M, Bai H, Wang E, Forrester JV, McCaig CD. 2004. Electrical stimulation directly induces pre-angiogenic responses in vascular endothelial cells by signaling through VEGF receptors. J. Cell Sci. 117:397–405 [Google Scholar]
  149. Zhao M, Forrester JV, McCaig CD. 1999. A small, physiological electric field orients cell division. Proc. Natl. Acad. Sci. USA 96:4942–46 [Google Scholar]
  150. Zhao M, Song B, Pu J, Wada T, Reid B. et al. 2006. Electrical signals control wound healing through phosphatidylinositol-3-OH kinase-γ and PTEN. Nature 442:457–60 [Google Scholar]
  151. Zhao S, Gao R, Devreotes PN, Mogilner A, Zhao M. 2013. 3D arrays for high throughput assay of cell migration and electrotaxis. Cell Biol. Int. 37:995–1002 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error