1932

Abstract

Pathogens use a vast number of strategies to alter host membrane dynamics. Targeting the host membrane machinery is important for the survival and pathogenesis of several extracellular, vacuolar, and cytosolic bacteria. Membrane manipulation promotes bacterial replication while suppressing host responses, allowing the bacterium to thrive in a hostile environment. This review provides a comprehensive summary of various strategies used by both extracellular and intracellular bacteria to hijack host membrane trafficking machinery. We start with mechanisms used by bacteria to alter the plasma membrane, delve into the hijacking of various vesicle trafficking pathways, and conclude by summarizing bacterial adaptation to host immune responses. Understanding bacterial manipulation of host membrane trafficking provides insights into bacterial pathogenesis and uncovers the molecular mechanisms behind various processes within a eukaryotic cell.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-100913-013439
2014-10-06
2024-06-17
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/30/1/annurev-cellbio-100913-013439.html?itemId=/content/journals/10.1146/annurev-cellbio-100913-013439&mimeType=html&fmt=ahah

Literature Cited

  1. Aachoui Y, Leaf IA, Hagar JA, Fontana MF, Campos CG. et al. 2013. Caspase-11 protects against bacteria that escape the vacuole. Science 339:975–78 [Google Scholar]
  2. Abrahams G, Müller P, Hensel M. 2006. Functional dissection of SseF, a type III effector protein involved in positioning the Salmonella-containing vacuole. Traffic 7:950–65 [Google Scholar]
  3. Aitio O, Hellman M, Kazlauskas A, Vingadassalom DF, Leong JM. et al. 2010. Recognition of tandem PxxP motifs as a unique Src homology 3-binding mode triggers pathogen-driven actin assembly. Proc. Natl. Acad. Sci. USA 107:21743–48 [Google Scholar]
  4. Akhter A, Caution K, Abu Khweek A, Tazi M, Abdulrahman BA. et al. 2012. Caspase-11 promotes the fusion of phagosomes harboring pathogenic bacteria with lysosomes by modulating actin polymerization. Immunity 37:35–47 [Google Scholar]
  5. Alvarez-Dominguez C, Madrazo-Toca F, Fernandez-Prieto L, Vandekerckhove J, Pareja E. et al. 2008. Characterization of a Listeria monocytogenes protein interfering with Rab5a. Traffic 9:325–37 [Google Scholar]
  6. Amer AO, Swanson MS. 2005. Autophagy is an immediate macrophage response to Legionella pneumophila. Cell Microbiol. 7:765–78 [Google Scholar]
  7. Arasaki K, Roy C. 2010. Legionella pneumophila promotes functional interactions between plasma membrane syntaxins and Sec22b. Traffic 11:587–600 [Google Scholar]
  8. Arasaki K, Toomre D, Roy C. 2012. The Legionella pneumophila effector DrrA is sufficient to stimulate SNARE-dependent membrane fusion. Cell Host Microbe 11:46–57 [Google Scholar]
  9. Arellano-Reynoso B, Lapaque N, Salcedo S, Briones G, Ciocchini AE. et al. 2005. Cyclic β-1,2-glucan is a Brucella virulence factor required for intracellular survival. Nat. Immunol. 6:618–25 [Google Scholar]
  10. Atluri VL, Xavier MN, de Jong MF, den Hartigh AB, Tsolis RM. 2011. Interactions of the human pathogenic Brucella species with their hosts. Annu. Rev. Microbiol. 65:523–41 [Google Scholar]
  11. Bach H, Papavinasasundaram K, Wong D, Hmama Z, Av-Gay Y. 2008. Mycobacterium tuberculosis virulence is mediated by PtpA dephosphorylation of human vacuolar protein sorting 33B. Cell Host Microbe 3:316–22 [Google Scholar]
  12. Bakowski M, Braun V, Lam G, Yeung T, Heo W. et al. 2010. The phosphoinositide phosphatase SopB manipulates membrane surface charge and trafficking of the Salmonella-containing vacuole. Cell Host Microbe 7:453–62 [Google Scholar]
  13. Barber GN. 2011. Innate immune DNA sensing pathways: STING, AIMII and the regulation of interferon production and inflammatory responses. Curr. Opin. Immunol. 23:10–20 [Google Scholar]
  14. Beare P, Gilk S, Larson C, Hill J, Stead C. et al. 2011. Dot/Icm type IVB secretion system requirements for Coxiella burnetii growth in human macrophages. mBio 2:e00175 [Google Scholar]
  15. Berón W, Gutierrez M, Rabinovitch M, Colombo M. 2002. Coxiella burnetii localizes in a Rab7-labeled compartment with autophagic characteristics. Infect. Immun. 70:5816–21 [Google Scholar]
  16. Berube BJ, Bubeck Wardenburg J. 2013. Staphylococcus aureus α-toxin: nearly a century of intrigue. Toxins 5:1140–66 [Google Scholar]
  17. Beuzón C, Méresse S, Unsworth K, Ruíz-Albert J, Garvis S. et al. 2000. Salmonella maintains the integrity of its intracellular vacuole through the action of SifA. EMBO J. 19:3235–49 [Google Scholar]
  18. Bierne H, Sabet C, Personnic N, Cossart P. 2007. Internalins: a complex family of leucine-rich repeat-containing proteins in Listeria monocytogenes. Microbes Infect. 9:1156–66 [Google Scholar]
  19. Birmingham CL, Canadien V, Gouin E, Troy EB, Yoshimori T. et al. 2007. Listeria monocytogenes evades killing by autophagy during colonization of host cells. Autophagy 3:442–51 [Google Scholar]
  20. Birmingham CL, Smith AC, Bakowski MA, Yoshimori T, Brumell JH. 2006. Autophagy controls Salmonella infection in response to damage to the Salmonella-containing vacuole. J. Biol. Chem. 281:11374–83 [Google Scholar]
  21. Black DS, Bliska JB. 2000. The RhoGAP activity of the Yersinia pseudotuberculosis cytotoxin YopE is required for antiphagocytic function and virulence. Mol. Microbiol. 37:515–27 [Google Scholar]
  22. Bonazzi M, Vasudevan L, Mallet A, Sachse M, Sartori A. et al. 2011. Clathrin phosphorylation is required for actin recruitment at sites of bacterial adhesion and internalization. J. Cell Biol. 195:525–36 [Google Scholar]
  23. Bonazzi M, Veiga E, Pizarro-Cerdá J, Cossart P. 2008. Successive post-translational modifications of E-cadherin are required for InlA-mediated internalization of Listeria monocytogenes. Cell Microbiol. 10:2208–22 [Google Scholar]
  24. Boschiroli M, Ouahrani-Bettache S, Foulongne V, Michaux-Charachon S, Bourg G. et al. 2002. The Brucella suis virB operon is induced intracellularly in macrophages. Proc. Natl. Acad. Sci. USA 99:1544–49 [Google Scholar]
  25. Boucrot E, Henry T, Borg J-P, Gorvel J-P, Méresse S. 2005. The intracellular fate of Salmonella depends on the recruitment of kinesin. Science 308:1174–78 [Google Scholar]
  26. Bourdet-Sicard R, Rüdiger M, Jockusch BM, Gounon P, Sansonetti PJ, Van Nhieu GT. 1999. Binding of the Shigella protein IpaA to vinculin induces F-actin depolymerization. EMBO J. 18:5853–62 [Google Scholar]
  27. Brady MJ, Campellone KG, Ghildiyal M, Leong JM. 2007. Enterohaemorrhagic and enteropathogenic Esch-erichia coli Tir proteins trigger a common Nck-independent actin assembly pathway. Cell Microbiol. 9:2242–53 [Google Scholar]
  28. Brandizzi F, Barlowe C. 2001. Organization of the ER-Golgi interface for membrane traffic control. Nat. Rev. Mol. Cell Biol. 14:382–92 [Google Scholar]
  29. Braun V, Wong A, Landekic M, Hong W, Grinstein S, Brumell J. 2010. Sorting nexin 3 (SNX3) is a component of a tubular endosomal network induced by Salmonella and involved in maturation of the Salmonella-containing vacuole. Cell Microbiol. 12:1352–67 [Google Scholar]
  30. Brumell J, Goosney D, Finlay B. 2002. SifA, a type III secreted effector of Salmonella typhimurium, directs Salmonella-induced filament (Sif) formation along microtubules. Traffic 3:407–15 [Google Scholar]
  31. Bujny M, Ewels P, Humphrey S, Attar N, Jepson M, Cullen P. 2008. Sorting nexin-1 defines an early phase of Salmonella-containing vacuole-remodeling during Salmonella infection. J. Cell Sci. 121:2027–36 [Google Scholar]
  32. Campoy EM, Mansilla ME, Colombo MI. 2013. Endocytic SNAREs are involved in optimal Coxiella burnetii vacuole development. Cell Microbiol. 15:922–41 [Google Scholar]
  33. Campoy EM, Zoppino FCM, Colombo MI. 2011. The early secretory pathway contributes to the growth of the Coxiella-replicative niche. Infect. Immun. 79:402–13 [Google Scholar]
  34. Capmany A, Damiani MT. 2010. Chlamydia trachomatis intercepts Golgi-derived sphingolipids through a Rab14-mediated transport required for bacterial development and replication. PLOS ONE 5:e14084 [Google Scholar]
  35. Carey KL, Newton HJ, Lührmann A, Roy C. 2012. The Coxiella burnetii Dot/Icm system delivers a unique repertoire of type IV effectors into host cells and is required for intracellular replication. PLOS Pathog. 7:e1002056 [Google Scholar]
  36. Case CL, Kohler LJ, Lima JB, Strowig T, de Zoete MR. et al. 2013a. Caspase-11 stimulates rapid flagellin-independent pyroptosis in response to Legionella pneumophila. Proc. Natl. Acad. Sci. USA 110:1851–56 [Google Scholar]
  37. Case E, Chong A, Wehrly T, Hansen B, Child R. et al. 2013b. The Francisella O-antigen mediates survival in the macrophage cytosol via autophagy avoidance. Cell Microbiol. 16:862–77 [Google Scholar]
  38. Celli J, Salcedo SP, Gorvel J-P. 2005. Brucella coopts the small GTPase Sar1 for intracellular replication. Proc. Natl. Acad. Sci. USA 102:1673–78 [Google Scholar]
  39. Celli J, Zahrt TC. 2013. Mechanisms of Francisella tularensis intracellular pathogenesis. Cold Spring Harb. Perspect. Med. 3:a010314 [Google Scholar]
  40. Checroun C, Wehrly T, Fischer E, Hayes S, Celli J. 2006. Autophagy-mediated reentry of Francisella tularensis into the endocytic compartment after cytoplasmic replication. Proc. Natl. Acad. Sci. USA 103:14578–83 [Google Scholar]
  41. Cheng HC, Skehan BM, Campellone KG, Leong JM, Rosen MK. 2008. Structural mechanism of WASP activation by the enterohaemorrhagic E. coli effector EspFU. Nature 454:1009–13 [Google Scholar]
  42. Chong A, Wehrly T, Nair V, Fischer E, Barker J. et al. 2008. The early phagosomal stage of Francisella tularensis determines optimal phagosomal escape and Francisella pathogenicity island protein expression. Infect. Immun. 76:5488–99 [Google Scholar]
  43. Choy A, Dancourt J, Mugo B, O'Connor TJ, Isberg RR. et al. 2013. The Legionella effector RavZ inhibits host autophagy through irreversible Atg8 deconjugation. Science 338:1072–76 [Google Scholar]
  44. Choy A, Roy C. 2013. Autophagy and bacterial infection: an evolving arms race. Trends Microbiol. 21:451–56 [Google Scholar]
  45. Christen M, Coye L, Hontz J, LaRock D, Pfuetzner R. et al. 2009. Activation of a bacterial virulence protein by the GTPase RhoA. Sci. Signal. 2:ra71 [Google Scholar]
  46. Clausen J, Christiansen G, Holst H, Birkelund S. 1997. Chlamydia trachomatis utilizes the host cell microtubule network during early events of infection. Mol. Microbiol. 25:441–49 [Google Scholar]
  47. Clemens D, Horwitz M. 1995. Characterization of the Mycobacterium tuberculosis phagosome and evidence that phagosomal maturation is inhibited. J. Exp. Med. 181:257–70 [Google Scholar]
  48. Clemens D, Lee B-Y, Horwitz M. 2004. Virulent and avirulent strains of Francisella tularensis prevent acidification and maturation of their phagosomes and escape into the cytoplasm in human macrophages. Infect. Immun. 72:3204–17 [Google Scholar]
  49. Coleman S, Fischer E, Howe D, Mead D, Heinzen R. 2004. Temporal analysis of Coxiella burnetii morphological differentiation. J. Bacteriol. 186:7344–52 [Google Scholar]
  50. Collins CA, Brown EJ. 2010. Cytosol as battleground: ubiquitin as a weapon for both host and pathogen. Trends Cell Biol. 20:205–13 [Google Scholar]
  51. Cossart P, Vicente MF, Mengaud J, Baquero F, Perez-Diaz JC, Berche P. 1989. Listeriolysin O is essential for virulence of Listeria monocytogenes: direct evidence obtained by gene complementation. Infect. Immun. 57:3629–36 [Google Scholar]
  52. Creasey EA, Isberg R. 2014. Maintenance of vacuole integrity by bacterial pathogens. Curr. Opin. Microbiol. 17:42–46 [Google Scholar]
  53. Dai S, Sarmiere PD, Wiggan O, Bamburg JR, Zhou D. 2004. Efficient Salmonella entry requires activity cycles of host ADF and cofilin. Cell Microbiol. 6:459–71 [Google Scholar]
  54. Danne C, Dramsi S. 2012. Pili of gram-positive bacteria: roles in host colonization. Res. Microbiol. 163:645–58 [Google Scholar]
  55. Dautry-Varsat A, Subtil A, Hackstadt T. 2005. Recent insights into the mechanisms of Chlamydia entry. Cell Microbiol. 7:1714–22 [Google Scholar]
  56. de Barsy M, Jamet A, Filopon D, Nicolas C, Laloux G. et al. 2011. Identification of a Brucella spp. secreted effector specifically interacting with human small GTPase Rab2. Cell Microbiol. 13:1044–58 [Google Scholar]
  57. Derré I, Swiss R, Agaisse H. 2011. The lipid transfer protein CERT interacts with the Chlamydia inclusion protein IncD and participates to ER-Chlamydia inclusion membrane contact sites. PLOS Pathog. 7:e1002092 [Google Scholar]
  58. Döhmer P, Valguarnera E, Czibener C, Ugalde J. 2012. Identification of a type IV secretion substrate of Brucella abortus that participates in the early stages of intracellular survival. Cell Microbiol. 16:396–410 [Google Scholar]
  59. Dong N, Zhu Y, Lu Q, Hu L, Zheng Y, Shao F. 2012. Structurally distinct bacterial TBC-like GAPs link Arf GTPase to Rab1 inactivation to counteract host defenses. Cell 150:1029–41 [Google Scholar]
  60. Dortet L, Mostowy S, Samba-Louaka A, Gouin E, Nahori MA. et al. 2011. Recruitment of the major vault protein by InlK: a Listeria monocytogenes strategy to avoid autophagy. PLOS Pathog. 7:e1002168 [Google Scholar]
  61. Drecktrah D, Knodler L, Howe D, Steele-Mortimer O. 2007. Salmonella trafficking is defined by continuous dynamic interactions with the endolysosomal system. Traffic 8:212–25 [Google Scholar]
  62. Dumont A, Boucrot E, Drevensek S, Daire V, Gorvel J-P. et al. 2010. SKIP, the host target of the Salmonella virulence factor SifA, promotes kinesin-1-dependent vacuolar membrane exchanges. Traffic 11:899–911 [Google Scholar]
  63. Dumont AL, Torres VJ. 2014. Cell targeting by the Staphylococcus aureus pore-forming toxins: It's not just about lipids. Trends Microbiol. 22:21–27 [Google Scholar]
  64. Dunstone MA, Tweten RK. 2012. Packing a punch: the mechanism of pore formation by cholesterol dependent cytolysins and membrane attack complex/perforin-like proteins. Curr. Opin. Struct. Biol. 22:342–49 [Google Scholar]
  65. Elwell C, Jiang S, Kim J, Lee A, Wittmann T. et al. 2011. Chlamydia trachomatis co-opts GBF1 and CERT to acquire host sphingomyelin for distinct roles during intracellular development. PLOS Pathog. 9:e1002198 [Google Scholar]
  66. Ferraris DM, Gherardi E, Di Y, Heinz DW, Niemann HH. 2010. Ligand-mediated dimerization of the Met receptor tyrosine kinase by the bacterial invasion protein InlB. J. Mol. Biol. 395:522–32 [Google Scholar]
  67. Finsel I, Ragaz C, Hoffmann C, Harrison C, Weber S. et al. 2013. The Legionella effector RidL inhibits retrograde trafficking to promote intracellular replication. Cell Host Microbe 14:38–50 [Google Scholar]
  68. Friebel A, Ilchmann H, Aepfelbacher M, Ehrbar K, Machleidt W, Hardt WD. 2001. SopE and SopE2 from Salmonella typhimurium activate different sets of RhoGTPases of the host cell. J. Biol. Chem. 276:34035–40 [Google Scholar]
  69. Fu Y, Galán JE. 1999. A Salmonella protein antagonizes Rac-1 and Cdc42 to mediate host-cell recovery after bacterial invasion. Nature 401:293–97 [Google Scholar]
  70. Fugier E, Salcedo S, de Chastellier C, Pophillat M, Muller A. et al. 2009. The glyceraldehyde-3-phosphate dehydrogenase and the small GTPase Rab 2 are crucial for Brucella replication. PLOS Pathog. 5:e1000487 [Google Scholar]
  71. Galkin VE, Orlova A, VanLoock MS, Zhou D, Galan JE, Egelman EH. 2002. The bacterial protein SipA polymerizes G-actin and mimics muscle nebulin. Nat. Struct. Biol. 9:518–21 [Google Scholar]
  72. Garcia-del Portillo F, Finlay BB. 1995. Targeting of Salmonella typhimurium to vesicles containing lysosomal membrane glycoproteins bypasses compartments with mannose 6-phosphate receptors. J. Cell Biol. 129:81–97 [Google Scholar]
  73. Garcia-del Portillo F, Zwick M, Leung K, Finlay B. 1993. Salmonella induces the formation of filamentous structures containing lysosomal membrane glycoproteins in epithelial cells. Proc. Natl. Acad. Sci. USA 90:10544–48 [Google Scholar]
  74. Godi A, Pertile P, Meyers R, Marra P, Di Tullio G. et al. 1999. ARF mediates recruitment of PtdIns-4-OH kinase-β and stimulates synthesis of PtdIns(4,5)P2 on the Golgi complex. Nat. Cell Biol. 1:280–87 [Google Scholar]
  75. Goehring UM, Schmidt G, Pederson KJ, Aktories K, Barbieri JT. 1999. The N-terminal domain of Pseudomonas aeruginosa exoenzyme S is a GTPase-activating protein for Rho GTPases. J. Biol. Chem. 274:36369–72 [Google Scholar]
  76. Gonzalez MR, Bischofberger M, Pernot L, van der Goot FG, Frêche B. 2008. Bacterial pore-forming toxins: the (w)hole story?. Cell. Mol. Life Sci. 65:493–507 [Google Scholar]
  77. Grant B, Donaldson J. 2009. Pathways and mechanisms of endocytic recycling. Nat. Rev. Mol. Cell Biol. 10:597–608 [Google Scholar]
  78. Gruenberg J. 2001. The endocytic pathway: a mosaic of domains. Nat. Rev. Mol. Cell Biol. 2:721–30 [Google Scholar]
  79. Gruenheid S, DeVinney R, Bladt F, Goosney D, Gelkop S. et al. 2001. Enteropathogenic E. coli Tir binds Nck to initiate actin pedestal formation in host cells. Nat. Cell Biol. 3:856–59 [Google Scholar]
  80. Guignot J, Caron E, Beuzón C, Bucci C, Kagan J. et al. 2004. Microtubule motors control membrane dynamics of Salmonella-containing vacuoles. J. Cell Sci. 117:1033–45 [Google Scholar]
  81. Gutierrez MG, Vázquez CL, Munafó DB, Zoppino FC, Berón W. et al. 2005. Autophagy induction favours the generation and maturation of the Coxiella-replicative vacuoles. Cell Microbiol. 7:981–93 [Google Scholar]
  82. Hackstadt T. 2000. Redirection of host vesicle trafficking pathways by intracellular parasites. Traffic 1:93–99 [Google Scholar]
  83. Hagar JA, Powell DA, Aachoui Y, Ernst RK, Miao EA. 2013. Cytoplasmic LPS activates caspase-11: implications in TLR4-independent endotoxic shock. Science 341:1250–53 [Google Scholar]
  84. Haglund CM, Welch MD. 2011. Pathogens and polymers: microbe-host interactions illuminate the cytoskeleton. J. Cell Biol. 195:7–17 [Google Scholar]
  85. Hamon MA, Ribet D, Stavru F, Cossart P. 2012. Listeriolysin O: the Swiss army knife of Listeria. Trends Microbiol. 20:360–68 [Google Scholar]
  86. Handa Y, Suzuki M, Ohya K, Iwai H, Ishijima N. et al. 2007. Shigella IpgB1 promotes bacterial entry through the ELMO-Dock180 machinery. Nat. Cell Biol. 9:121–28 [Google Scholar]
  87. Haneburger I, Hilbi H. 2013. Phosphoinositide lipids and the Legionella pathogen vacuole. Curr. Top. Microbiol. Immunol. 376:155–73 [Google Scholar]
  88. Hanisch J, Kolm R, Wozniczka M, Bumann D, Rottner K, Stradal TE. 2011. Activation of a RhoA/myosin II-dependent but Arp2/3 complex-independent pathway facilitates Salmonella invasion. Cell Host Microbe 9:273–85 [Google Scholar]
  89. Harrison R, Brumell J, Khandani A, Bucci C, Scott C. et al. 2004. Salmonella impairs RILP recruitment to Rab7 during maturation of invasion vacuoles. Mol. Biol. Cell 15:3146–54 [Google Scholar]
  90. Hashim S, Mukherjee K, Raje M, Basu S, Mukhopadhyay A. 2000. Live Salmonella modulate expression of Rab proteins to persist in a specialized compartment and escape transport to lysosomes. J. Biol. Chem. 275:16281–88 [Google Scholar]
  91. Hayward RD, Koronakis V. 1999. Direct nucleation and bundling of actin by the SipC protein of invasive Salmonella. EMBO J. 18:4926–34 [Google Scholar]
  92. He C, Klionsky DJ. 2009. Regulation mechanisms and signaling pathways of autophagy. Annu. Rev. Genet. 43:67–93 [Google Scholar]
  93. Heise T, Dersch P. 2006. Identification of a domain in Yersinia virulence factor YadA that is crucial for extracellular matrix-specific cell adhesion and uptake. Proc. Natl. Acad. Sci. USA 103:3375–80 [Google Scholar]
  94. Henry T, Couillault C, Rockenfeller P, Boucrot E, Dumont A. et al. 2006. The Salmonella effector protein PipB2 is a linker for kinesin-1. Proc. Natl. Acad. Sci. USA 103:13497–502 [Google Scholar]
  95. Heo W, Inoue T, Park W, Kim M, Park B. et al. 2006. PI(3,4,5)P3 and PI(4,5)P2 lipids target proteins with polybasic clusters to the plasma membrane. Science 314:1458–61 [Google Scholar]
  96. Hernandez L, Hueffer K, Wenk M, Galán J. 2004. Salmonella modulates vesicular traffic by altering phosphoinositide metabolism. Science 304:1805–7 [Google Scholar]
  97. Heuer D, Rejman Lipinski A, Machuy N, Karlas A, Wehrens A. et al. 2009. Chlamydia causes fragmentation of the Golgi compartment to ensure reproduction. Nature 457:731–35 [Google Scholar]
  98. High N, Mounier J, Prévost MC, Sansonetti PJ. 1992. IpaB of Shigella flexneri causes entry into epithelial cells and escape from the phagocytic vacuole. EMBO J. 11:1991–99 [Google Scholar]
  99. Hotze EM, Le HM, Sieber JR, Bruxvoort C, McInerney MJ, Tweten RK. 2013. Identification and characterization of the first cholesterol-dependent cytolysins from Gram-negative bacteria. Infect. Immun. 81:216–25 [Google Scholar]
  100. Howe D, Melnicáková J, Barák I, Heinzen R. 2003. Maturation of the Coxiella burnetii parasitophorous vacuole requires bacterial protein synthesis but not replication. Cell Microbiol. 5:469–80 [Google Scholar]
  101. Hybiske K, Stephens RS. 2008. Exit strategies of intracellular pathogens. Nat. Rev. Microbiol. 6:99–110 [Google Scholar]
  102. Ireton K, Payrastre B, Cossart P. 1999. The Listeria monocytogenes protein InlB is an agonist of mammalian phosphoinositide 3-kinase. J. Biol. Chem. 274:17025–32 [Google Scholar]
  103. Isberg RR, O'Connor TJ, Heidtman M. 2009. The Legionella pneumophila replication vacuole: making a cosy niche inside host cells. Nat. Rev. Microbiol. 7:13–24 [Google Scholar]
  104. Ishikawa H, Barber GN. 2008. STING is an endoplasmic reticulum adaptor that facilitates innate immune signalling. Nature 455:674–78 [Google Scholar]
  105. Jackson L, Nawabi P, Hentea C, Roark E, Haldar K. 2008. The Salmonella virulence protein SifA is a G protein antagonist. Proc. Natl. Acad. Sci. USA 105:14141–46 [Google Scholar]
  106. Jo E-K, Yuk J-M, Shin D-M, Sasakawa C. 2013. Roles of autophagy in elimination of intracellular bacterial pathogens. Front. Immunol. 4:97 [Google Scholar]
  107. Kagan JC, Stein MP, Pypaert M, Roy CR. 2004. Legionella subvert the functions of Rab1 and Sec22b to create a replicative organelle. J. Exp. Med. 199:1201–11 [Google Scholar]
  108. Kenny B, DeVinney R, Stein M, Reinscheid DJ, Frey EA, Finlay BB. 1997. Enteropathogenic E. coli (EPEC) transfers its receptor for intimate adherence into mammalian cells. Cell 91:511–20 [Google Scholar]
  109. Khweek AA, Caution K, Akhter A, Abdulrahman BA, Tazi M. et al. 2013. A bacterial protein promotes the recognition of the Legionella pneumophila vacuole by autophagy. Eur. J. Immunol. 43:1333–44 [Google Scholar]
  110. Kim Y-G, Park J-H, Shaw M, Franchi L, Inohara N, Núñez G. 2008. The cytosolic sensors Nod1 and Nod2 are critical for bacterial recognition and host defense after exposure to Toll-like receptor ligands. Immunity 28:246–57 [Google Scholar]
  111. Kinchen J, Ravichandran K. 2008. Phagosome maturation: going through the acid test. Nat. Rev. Mol. Cell Biol. 9:781–95 [Google Scholar]
  112. Krieg AM. 2010. AIMing 2 defend against intracellular pathogens. Nat. Immunol. 11:367–69 [Google Scholar]
  113. Kueltzo LA, Osiecki J, Barker J, Picking WL, Ersoy B. et al. 2003. Structure-function analysis of invasion plasmid antigen C (IpaC) from Shigella flexneri. J. Biol. Chem. 278:2792–98 [Google Scholar]
  114. Larson C, Beare P, Howe D, Heinzen R. 2013. Coxiella burnetii effector protein subverts clathrin-mediated vesicular trafficking for pathogen vacuole biogenesis. Proc. Natl. Acad. Sci. USA 110:E4770–79 [Google Scholar]
  115. Lecuit M, Ohayon H, Braun L, Mengaud J, Cossart P. 1997. Internalin of Listeria monocytogenes with an intact leucine-rich repeat region is sufficient to promote internalization. Infect. Immun. 65:5309–19 [Google Scholar]
  116. Li Z, Solomon J, Isberg R. 2005. Dictyostelium discoideum strains lacking the RtoA protein are defective for maturation of the Legionella pneumophila replication vacuole. Cell Microbiol. 7:431–42 [Google Scholar]
  117. Luo Y, Frey EA, Pfuetzner RA, Creagh AL, Knoechel DG. et al. 2000. Crystal structure of enteropathogenic Escherichia coli intimin-receptor complex. Nature 405:1073–77 [Google Scholar]
  118. MacGurn J, Cox J. 2007. A genetic screen for Mycobacterium tuberculosis mutants defective for phagosome maturation arrest identifies components of the ESX-1 secretion system. Infect. Immun. 75:2668–78 [Google Scholar]
  119. Machner MP, Isberg RR. 2007. A bifunctional bacterial protein links GDI displacement to Rab1 activation. Science 318:974–77 [Google Scholar]
  120. McDonough J, Newton H, Klum S, Swiss R, Agaisse H, Roy C. 2013. Host pathways important for Coxiella burnetii infection revealed by genome-wide RNA interference screening. mBio 4:e00606–12 [Google Scholar]
  121. McGourty K, Thurston TL, Matthews SA, Pinaud L, Mota LJ, Holden DW. 2012. Salmonella inhibits retrograde trafficking of mannose-6-phosphate receptors and lysosome function. Science 338:963–67 [Google Scholar]
  122. Meixenberger K, Pache F, Eitel J, Schmeck B, Hippenstiel S. et al. 2010. Listeria monocytogenes-infected human peripheral blood mononuclear cells produce IL-1β, depending on listeriolysin O and NLRP3. J. Immunol. 184:922–30 [Google Scholar]
  123. Méresse S, Steele-Mortimer O, Finlay B, Gorvel J. 1999. The rab7 GTPase controls the maturation of Salmonella typhimurium-containing vacuoles in HeLa cells. EMBO J. 18:4394–403 [Google Scholar]
  124. Mesquita FS, Thomas M, Sachse M, Santos AJM, Figueira R, Holden DW. 2012. The Salmonella deubiquitinase SseL inhibits selective autophagy of cytosolic aggregates. PLOS Pathog. 8:e1002743 [Google Scholar]
  125. Mital J, Miller N, Fischer E, Hackstadt T. 2010. Specific chlamydial inclusion membrane proteins associate with active Src family kinases in microdomains that interact with the host microtubule network. Cell Microbiol. 12:1235–49 [Google Scholar]
  126. Moorhead A, Jung J-Y, Smirnov A, Kaufer S, Scidmore M. 2007. Multiple host proteins that function in phosphatidylinositol-4-phosphate metabolism are recruited to the chlamydial inclusion. Infect. Immun. 78:1990–2007 [Google Scholar]
  127. Mueller M, Grauschopf U, Maier T, Glockshuber R, Ban N. 2009. The structure of a cytolytic α-helical toxin pore reveals its assembly mechanism. Nature 459:726–30 [Google Scholar]
  128. Nagai H, Kagan J, Zhu X, Kahn R, Roy C. 2002. A bacterial guanine nucleotide exchange factor activates ARF on Legionella phagosomes. Science 295:679–82 [Google Scholar]
  129. Niebuhr K, Giuriato S, Pedron T, Philpott DJ, Gaits F. et al. 2002. Conversion of PtdIns(4,5)P2 into PtdIns(5)P by the S. flexneri effector IpgD reorganizes host cell morphology. EMBO J. 21:5069–78 [Google Scholar]
  130. O'Connor TJ, Boyd D, Dorer MS, Isberg RR. 2012. Aggravating genetic interactions allow a solution to redundancy in a bacterial pathogen. Science 338:1440–44 [Google Scholar]
  131. Ogawa M, Nakagawa I, Yoshikawa Y, Hain T, Chakraborty T, Sasakawa C. 2009. Streptococcus-, Shigella-, and Listeria-induced autophagy. Methods Enzymol. 452:363–81 [Google Scholar]
  132. Ogawa M, Yoshikawa Y, Kobayashi T, Mimuro H, Fukumatsu M. et al. 2011. A Tecpr1-dependent selective autophagy pathway targets bacterial pathogens. Cell Host Microbe 9:376–89 [Google Scholar]
  133. Ogawa M, Yoshimori T, Suzuki T, Sagara H, Mizushima N, Sasakawa C. 2005. Escape of intracellular Shigella from autophagy. Science 307:727–31 [Google Scholar]
  134. Ohlson M, Huang Z, Alto N, Blanc M-P, Dixon J. et al. 2008. Structure and function of Salmonella SifA indicate that its interactions with SKIP, SseJ, and RhoA family GTPases induce endosomal tubulation. Cell Host Microbe 4:434–46 [Google Scholar]
  135. Page AL, Ohayon H, Sansonetti PJ, Parsot C. 1999. The secreted IpaB and IpaC invasins and their cytoplasmic chaperone IpgC are required for intercellular dissemination of Shigella flexneri. Cell Microbiol. 1:183–93 [Google Scholar]
  136. Patel JC, Galan JE. 2006. Differential activation and function of Rho GTPases during Salmonella-host cell interactions. J. Cell Biol. 175:453–63 [Google Scholar]
  137. Picking WL, Nishioka H, Hearn PD, Baxter MA, Harrington AT. et al. 2005. IpaD of Shigella flexneri is independently required for regulation of Ipa protein secretion and efficient insertion of IpaB and IpaC into host membranes. Infect. Immun. 73:1432–40 [Google Scholar]
  138. Pizarro-Cerdá J, Méresse S, Parton R, van der Goot G, Sola-Landa A. et al. 1998a. Brucella abortus transits through the autophagic pathway and replicates in the endoplasmic reticulum of nonprofessional phagocytes. Infect. Immun. 66:5711–24 [Google Scholar]
  139. Pizarro-Cerdá J, Moreno E, Sanguedolce V, Mege J, Gorvel J. 1998b. Virulent Brucella abortus prevents lysosome fusion and is distributed within autophagosome-like compartments. Infect. Immun. 66:2387–92 [Google Scholar]
  140. Ragaz C, Pietsch H, Urwyler S, Tiaden A, Weber S, Hilbi H. 2008. The Legionella pneumophila phosphatidylinositol-4 phosphate-binding type IV substrate SidC recruits endoplasmic reticulum vesicles to a replication-permissive vacuole. Cell Microbiol. 10:2416–33 [Google Scholar]
  141. Ray K, Marteyn B, Sansonetti PJ, Tang CM. 2009. Life on the inside: the intracellular lifestyle of cytosolic bacteria. Nat. Rev. Microbiol. 7:333–40 [Google Scholar]
  142. Rejman Lipinski A, Heymann J, Meissner C, Karlas A, Brinkmann V. et al. 2009. Rab6 and Rab11 regulate Chlamydia trachomatis development and golgin-84-dependent Golgi fragmentation. PLOS Pathog. 5:e1000615 [Google Scholar]
  143. Renesto P, Dehoux P, Gouin E, Touqui L, Cossart P, Raoult D. 2003. Identification and characterization of a phospholipase D-superfamily gene in Rickettsiae. J. Infect. Dis. 188:1276–83 [Google Scholar]
  144. Reyes-Robles T, Alonzo F 3rd, Kozhaya L, Lacy DB, Unutmaz D, Torres VJ. 2013. Staphylococcus aureus leukotoxin ED targets the chemokine receptors CXCR1 and CXCR2 to kill leukocytes and promote infection. Cell Host Microbe 14:453–59 [Google Scholar]
  145. Rieder S, Emr S. 1997. A novel RING finger protein complex essential for a late step in protein transport to the yeast vacuole. Mol. Biol. Cell 8:2307–27 [Google Scholar]
  146. Rohde M, Chhatwal GS. 2013. Adherence and invasion of streptococci to eukaryotic cells and their role in disease pathogenesis. Curr. Top. Microbiol. Immunol. 368:83–110 [Google Scholar]
  147. Romano P, Gutierrez M, Berón W, Rabinovitch M, Colombo M. 2007. The autophagic pathway is actively modulated by phase II Coxiella burnetii to efficiently replicate in the host cell. Cell Microbiol. 9:891–909 [Google Scholar]
  148. Ruiz-Albert J, Yu X-J, Beuzón C, Blakey A, Galyov E, Holden D. 2002. Complementary activities of SseJ and SifA regulate dynamics of the Salmonella typhimurium vacuolar membrane. Mol. Microbiol. 44:645–61 [Google Scholar]
  149. Rzomp K, Scholtes L, Briggs B, Whittaker G, Scidmore M. 2003. Rab GTPases are recruited to chlamydial inclusions in both a species-dependent and species-independent manner. Infect. Immun. 71:5855–70 [Google Scholar]
  150. Saftig P, Klumperman J. 2009. Lysosome biogenesis and lysosomal membrane proteins: trafficking meets function. Nat. Rev. Mol. Cell Biol. 10:623–35 [Google Scholar]
  151. Salcedo S, Holden D. 2003. SseG, a virulence protein that targets Salmonella to the Golgi network. EMBO J. 22:5003–14 [Google Scholar]
  152. Santic M, Molmeret M, Klose KE, Jones S, Kwaik YA. 2005. The Francisella tularensis pathogenicity island protein IglC and its regulator MglA are essential for modulating phagosome biogenesis and subsequent bacterial escape into the cytoplasm. Cell Microbiol. 7:969–79 [Google Scholar]
  153. Schroeder N, Mota L, Méresse S. 2011. Salmonella-induced tubular networks. Trends Microbiol. 19:268–77 [Google Scholar]
  154. Shaughnessy LM, Hoppe AD, Christensen KA, Swanson JA. 2006. Membrane perforations inhibit lysosome fusion by altering pH and calcium in Listeria monocytogenes vacuoles. Cell Microbiol. 8:781–92 [Google Scholar]
  155. Sherwood R, Roy C. 2013. A Rab-centric perspective of bacterial pathogen-occupied vacuoles. Cell Host Microbe 14:256–68 [Google Scholar]
  156. Singh R, Jamieson A, Cresswell P. 2008. GILT is a critical host factor for Listeria monocytogenes infection. Nature 455:1244–47 [Google Scholar]
  157. Smith GA, Marquis H, Jones S, Johnston NC, Portnoy DA, Goldfine H. 1995. The two distinct phospholipases C of Listeria monocytogenes have overlapping roles in escape from a vacuole and cell-to-cell spread. Infect. Immun. 63:4231–37 [Google Scholar]
  158. Sousa S, Cabanes D, Archambaud C, Colland F, Lemichez E. et al. 2005. ARHGAP10 is necessary for α-catenin recruitment at adherens junctions and for Listeria invasion. Nat. Cell Biol. 7:954–60 [Google Scholar]
  159. Sousa S, Cabanes D, Bougneres L, Lecuit M, Sansonetti P. et al. 2007. Src, cortactin and Arp2/3 complex are required for E-cadherin-mediated internalization of Listeria into cells. Cell Microbiol. 9:2629–43 [Google Scholar]
  160. Stanley SA, Cox JS. 2013. Host-pathogen interactions during Mycobacterium tuberculosis infections. Curr. Top. Microbiol. Immunol. 374:211–41 [Google Scholar]
  161. Starr T, Child R, Wehrly T, Hansen B, Hwang S. et al. 2012. Selective subversion of autophagy complexes facilitates completion of the Brucella intracellular cycle. Cell Host Microbe 11:33–45 [Google Scholar]
  162. Starr T, Ng T, Wehrly T, Knodler L, Celli J. 2008. Brucella intracellular replication requires trafficking through the late endosomal/lysosomal compartment. Traffic 9:678–94 [Google Scholar]
  163. Stein M, Leung K, Zwick M, Garcia-del Portillo F, Finlay B. 1996. Identification of a Salmonella virulence gene required for formation of filamentous structures containing lysosomal membrane glycoproteins within epithelial cells. Mol. Microbiol. 20:151–64 [Google Scholar]
  164. Sturgill-Koszycki S, Schlesinger P, Chakraborty P, Haddix P, Collins H. et al. 1994. Lack of acidification in Mycobacterium phagosomes produced by exclusion of the vesicular proton-ATPase. Science 263:678–81 [Google Scholar]
  165. Sturgill-Koszycki S, Swanson MS. 2000. Legionella pneumophila replication vacuoles mature into acidic, endocytic organelles. J. Exp. Med. 192:1261–72 [Google Scholar]
  166. Sun L, Wu J, Du F, Chen X, Chen ZJ. 2013. Cyclic GMP-AMP synthase is a cytosolic DNA sensor that activates the type I interferon pathway. Science 339:786–91 [Google Scholar]
  167. Swanson MS, Isberg RR. 1995. Association of Legionella pneumophila with the macrophage endoplasmic reticulum. Infect. Immun. 63:3609–20 [Google Scholar]
  168. Tattoli I, Sorbara MT, Vuckovic D, Ling A, Soares F. et al. 2012. Amino acid starvation induced by invasive bacterial pathogens triggers an innate host defense program. Cell Host Microbe 11:563–75 [Google Scholar]
  169. Tattoli I, Sorbara MT, Yang C, Tooze SA, Philpott DJ, Girardin SE. 2013. Listeria phospholipases subvert host autophagic defenses by stalling pre-autophagosomal structures. EMBO J. 32:3066–78 [Google Scholar]
  170. Terebiznik M, Vieira O, Marcus S, Slade A, Yip C. et al. 2002. Elimination of host cell PtdIns(4,5)P2 by bacterial SigD promotes membrane fission during invasion by Salmonella. Nat. Cell Biol. 4:766–73 [Google Scholar]
  171. Tilley S, Saibil H. 2006. The mechanism of pore formation by bacterial toxins. Curr. Opin. Struct. Biol. 16:230–36 [Google Scholar]
  172. van Schaik E, Chen C, Mertens K, Weber M, Samuel J. 2013. Molecular pathogenesis of the obligate intracellular bacterium Coxiella burnetii. Nat. Rev. Microbiol. 11:561–73 [Google Scholar]
  173. Veiga E, Cossart P. 2005. Listeria hijacks the clathrin-dependent endocytic machinery to invade mammalian cells. Nat. Cell Biol. 7:894–900 [Google Scholar]
  174. Vergne I, Chua J, Deretic V. 2003. Tuberculosis toxin blocking phagosome maturation inhibits a novel Ca2+/calmodulin-PI3K hVPS34 cascade. J. Exp. Med. 198:653–59 [Google Scholar]
  175. Vergne I, Chua J, Lee H-H, Lucas M, Belisle J, Deretic V. 2005. Mechanism of phagolysosome biogenesis block by viable Mycobacterium tuberculosis. Proc. Natl. Acad. Sci. USA 102:4033–38 [Google Scholar]
  176. Vergne I, Chua J, Singh S, Deretic V. 2004. Cell biology of Mycobacterium tuberculosis phagosome. Annu. Rev. Cell Dev. Biol. 20:367–94 [Google Scholar]
  177. Via L, Deretic D, Ulmer R, Hibler N, Huber L, Deretic V. 1997. Arrest of mycobacterial phagosome maturation is caused by a block in vesicle fusion between stages controlled by rab5 and rab7. J. Biol. Chem. 272:13326–31 [Google Scholar]
  178. Vingadassalom D, Campellone K, Brady M, Skehan B, Battle S. et al. 2010. Enterohemorrhagic E. coli requires N-WASP for efficient type III translocation but not for EspFU-mediated actin pedestal formation. PLOS Pathog. 6:e1001056 [Google Scholar]
  179. Vingadassalom D, Kazlauskas A, Skehan B, Cheng HC, Magoun L. et al. 2009. Insulin receptor tyrosine kinase substrate links the E. coli O157:H7 actin assembly effectors Tir and EspFU during pedestal formation. Proc. Natl. Acad. Sci. USA 106:6754–59 [Google Scholar]
  180. von Moltke J, Ayres J, Kofoed E, Chavarría-Smith J, Vance R. 2013. Recognition of bacteria by inflammasomes. Annu. Rev. Immunol. 31:73–106 [Google Scholar]
  181. Walburger A, Koul A, Ferrari G, Nguyen L, Prescianotto-Baschong C. et al. 2004. Protein kinase G from pathogenic mycobacteria promotes survival within macrophages. Science 304:1800–4 [Google Scholar]
  182. Weiss SM, Ladwein M, Schmidt D, Ehinger J, Lommel S. et al. 2009. IRSp53 links the enterohemorrhagic E. coli effectors Tir and EspFU for actin pedestal formation. Cell Host Microbe 5:244–58 [Google Scholar]
  183. Welch M, Mullins R. 2002. Cellular control of actin nucleation. Annu. Rev. Cell Dev. Biol. 18:247–88 [Google Scholar]
  184. Whitworth T, Popov VL, Yu XJ, Walker DH, Bouyer DH. 2005. Expression of the Rickettsia prowazekii pld or tlyC gene in Salmonella enterica serovar Typhimurium mediates phagosomal escape. Infect. Immun. 73:6668–73 [Google Scholar]
  185. Wullschleger S, Loewith R, Hall MN. 2006. TOR signaling in growth and metabolism. Cell 124:471–84 [Google Scholar]
  186. Yarbrough ML, Li Y, Kinch LN, Grishin NV, Ball HL, Orth K. 2009. AMPylation of Rho GTPases by Vibrio VopS disrupts effector binding and downstream signaling. Science 323:269–72 [Google Scholar]
  187. Yoshida S, Katayama E, Kuwae A, Mimuro H, Suzuki T, Sasakawa C. 2002. Shigella deliver an effector protein to trigger host microtubule destabilization, which promotes Rac1 activity and efficient bacterial internalization. EMBO J. 21:2923–35 [Google Scholar]
  188. Yoshikawa Y, Ogawa M, Hain T, Yoshida M, Fukumatsu M. et al. 2009. Listeria monocytogenes ActA-mediated escape from autophagic recognition. Nat. Cell Biol. 11:1233–40 [Google Scholar]
  189. Zhou D, Chen LM, Hernandez L, Shears SB, Galán JE. 2001. A Salmonella inositol polyphosphatase acts in conjunction with other bacterial effectors to promote host cell actin cytoskeleton rearrangements and bacterial internalization. Mol. Microbiol. 39:248–59 [Google Scholar]
  190. Zoppino FC, Militello RD, Slavin I, Álvarez C, Colombo MI. 2010. Autophagosome formation depends on the small GTPase Rab1 and functional ER exit sites. Traffic 11:1246–61 [Google Scholar]
/content/journals/10.1146/annurev-cellbio-100913-013439
Loading
/content/journals/10.1146/annurev-cellbio-100913-013439
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error