Full text loading...
Abstract
Seeds are complex structures that unite diploid maternal tissues with filial tissues that may be haploid (gametophyte), diploid (embryo), or triploid (endosperm). Maternal tissues are predicted to favor smaller seeds than are favored by filial tissues, and filial genes of maternal origin are predicted to favor smaller seeds than are favored by filial genes of paternal origin. Consistent with these predictions, seed size is determined by an interplay between growth of maternal integuments, which limits seed size, and of filial endosperm, which promotes larger seeds. Within endosperm, genes of paternal origin favor delayed cellularization of endosperm and larger seeds, whereas genes of maternal origin favor early cellularization and smaller seeds. The ratio of maternal and paternal gene products in endosperm contributes to the failure of crosses between different ploidy levels of the same species and crosses between species. Maternally expressed small-interfering RNAs (siRNAs) are predicted to associate with growth-enhancing genes.