The definition of shape in multicellular organisms is a major issue of developmental biology. It is well established that morphogenesis relies on genetic regulation. However, cells, tissues, and organism behaviors are also bound by the laws of physics, which limit the range of possible deformations organisms can undergo but also define what organisms must do to achieve specific shapes. Besides experiments, theoretical models and numerical simulations of growing tissues are powerful tools to investigate the link between genetic regulation and mechanics. Here, we provide an overview of the main mechanical models of plant morphogenesis developed so far, from subcellular scales to whole tissues. The common concepts and discrepancies between the various models are discussed.

Keyword(s): growthmechanicssimulation

Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alim K, Hamant O, Boudaoud A. 2012. Regulatory role of cell division rules on tissue growth heterogeneity. Front. Plant Sci. 3:174 [Google Scholar]
  2. Avery GS Jr. 1933. Structure and development of the tobacco leaf. Am. J. Bot. 20:565–92 [Google Scholar]
  3. Barbacci A, Lahaye M, Magnenet V. 2013. Another brick in the cell wall: biosynthesis dependent growth model. PLOS ONE 8:9e74400 [Google Scholar]
  4. Baskin T. 2005. Anisotropic expansion of the plant cell wall. Annu. Rev. Cell Dev. Biol. 21:203–22 [Google Scholar]
  5. Besson S, Dumais J. 2011. Universal rule for the symmetric division of plant cells. Proc. Natl. Acad. Sci. USA 108:156294–99 [Google Scholar]
  6. Boudaoud A. 2010. An introduction to the mechanics of morphogenesis for plant biologists. Trends Plant Sci. 15:6353–60 [Google Scholar]
  7. Bozorg B, Krupinski P, Jönsson H. 2014. Stress and strain provide positional and directional cues in development. PLOS Comput. Biol. 10:1e1003410 [Google Scholar]
  8. Burgert I. 2006. Exploring the micromechanical design of plant cell walls. Am. J. Bot. 93:101391–401 [Google Scholar]
  9. Cho H-T, Cosgrove DJ. 2000. Altered expression of expansin modulates leaf growth and pedicel abscission in Arabidopsis thaliana. Proc. Natl. Acad. Sci. USA 97:179783–88 [Google Scholar]
  10. Chopard J, Godin C. 2010. The role of mechanics in morphogenesis. Proc. 6th Int. Workshop Funct.-Struct. Plant Models, Davis, CA135–37 Davis: Regents Univ. Calif. [Google Scholar]
  11. Coen E, Rolland-Lagan AG, Matthews M, Bangham JA, Prusinkiewicz P. 2004. The genetics of geometry. Proc. Natl. Acad. Sci. USA 101:144728–35 [Google Scholar]
  12. Corson F, Hamant O, Bohn S, Traas J, Boudaoud A, Couder Y. 2009. Turning a plant tissue into a living cell froth through isotropic growth. Proc. Natl. Acad. Sci. USA 106:218453–58 [Google Scholar]
  13. Cosgrove DJ. 1993. Wall extensibility: its nature, measurement and relationship to plant cell growth. New Phytol. 124:11–23 [Google Scholar]
  14. Cosgrove DJ. 2005. Growth of the plant cell wall. Nat. Rev. Mol. Cell Biol. 6:11850–61 [Google Scholar]
  15. Dumais J, Kwiatkowska D. 2002. Analysis of surface growth in shoot apices. Plant J. 31:2229–41 [Google Scholar]
  16. Dumais J, Long SR, Shaw SL. 2004. The mechanics of surface expansion anisotropy in Medicago truncatula root hairs. Plant Physiol. 136:23266–75 [Google Scholar]
  17. Dumais J, Shaw SL, Steele CR, Long SR, Ray PM. 2006. An anisotropic-viscoplastic model of plant cell morphogenesis by tip growth. Int. J. Dev. Biol. 50:2–3209–22 [Google Scholar]
  18. Dupuy L, Mackenzie J, Haseloff J. 2010. Coordination of plant cell division and expansion in a simple morphogenetic system. Proc. Natl. Acad. Sci. USA 107:62711–16 [Google Scholar]
  19. Dupuy L, Mackenzie J, Rudge T, Haseloff J. 2008. A system for modelling cell-cell interactions during plant morphogenesis. Ann. Bot. 101:81255–65 [Google Scholar]
  20. Dupuy L, Mackenzie JP, Haseloff JP. 2006. A biomechanical model for the study of plant morphogenesis: Coleocheate orbicularis, a 2D study species. Proc. 5th Plant Biomech. Conf., Stockholm
  21. Dyson RJ, Band LR, Jensen OE. 2012. A model of crosslink kinetics in the expanding plant cell wall: yield stress and enzyme action. J. Theor. Biol. 307:125–36 [Google Scholar]
  22. Dyson RJ, Jensen OE. 2010. A fibre-reinforced fluid model of anisotropic plant cell growth. J. Fluid Mech. 655:472–503 [Google Scholar]
  23. Erickson RO. 1966. Relative elemental rates and anisotropy of growth in area: a computer programme. J. Exp. Bot. 17:2390–403 [Google Scholar]
  24. Erickson RO. 1976. Modeling of plant growth. Annu. Rev. Plant Physiol. 27:1407–34 [Google Scholar]
  25. Errera L. 1886. Sur une condition fondamentale d'équilibre des cellules vivantes [On a fundamental condition of equilibrium for living cells]. C. R. Hebd. Séances Acad. Sci. 103:822–24 [Google Scholar]
  26. Fernandez R, Das P, Mirabet V, Moscardi E, Traas J. et al. 2010. Imaging plant growth in 4D: robust tissue reconstruction and lineaging at cell resolution. Nat. Methods 7:7547–53 [Google Scholar]
  27. Fleming AJ, McQueen-Mason S, Mandel T, Kuhlemeier C. 1997. Induction of leaf primordia by the cell wall protein expansin. Science 276:53171415–18 [Google Scholar]
  28. Fozard A, Lucas M, King JR, Jensen OE. 2013. Vertex-element models for anisotropic growth of elongated plant organs. Front. Plant Sci. 4:233 [Google Scholar]
  29. Geitmann A, Ortega JKE. 2009. Mechanics and modeling of plant cell growth. Trends Plant Sci. 14:9467–78 [Google Scholar]
  30. Gierz G, Bartnicki-Garcia S. 2001. A three-dimensional model of fungal morphogenesis based on the vesicle supply center concept. J. Theor. Biol. 208:2151–64 [Google Scholar]
  31. Goriely A, Tabor M. 2003. Biomechanical models of hyphal growth in actinomycetes. J. Theor. Biol. 222:2211–18 [Google Scholar]
  32. Grandjean O, Vernoux T, Laufs P, Belcram K, Mizukami Y, Traas J. 2004. In vivo analysis of cell division, cell growth, and differentiation at the shoot apical meristem in Arabidopsis. Plant Cell 16:174–87 [Google Scholar]
  33. Green AA, Kennaway JR, Hanna AI, Bangham JA, Coen E. 2010. Genetic control of organ shape and tissue polarity. PLOS Biol. 8:11e1000537 [Google Scholar]
  34. Green PB. 1968. Growth physics in Nitella: a method for continuous in vivo analysis of extensibility based on a micro-manometer technique for turgor pressure. Plant Physiol. 43:81169–84 [Google Scholar]
  35. Green PB, Erickson RO, Buggy J. 1971. Metabolic and physical control of cell elongation rate: in vivo studies in Nitella. Plant Physiol. 47:3423–30 [Google Scholar]
  36. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M. et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:59081650–55 [Google Scholar]
  37. Hamant O, Traas J. 2009. The mechanics behind plant development. New Phytol. 185:2369–85 [Google Scholar]
  38. Heisler M, Alim K, Jönsson H, Hamant O, Boudaoud A. 2007. Modelling meristem development in plants. Curr. Opin. Plant Biol. 10:192–97 [Google Scholar]
  39. Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C. et al. 2010. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. PLOS Biol. 8:10e1000516 [Google Scholar]
  40. Hofmeister W. 1863. Zusätze und Berichtigungen zu den 1851 veröffentlichen Untersuchungen der Entwicklung höherer Kryptogamen [Additions and adjustments to the 1851 published investigations of the development of higher cryptogams]. Jahrb. Wiss. Bot. 3:259–93 (in German) [Google Scholar]
  41. Jönsson H, Heisler MG, Shapiro BE, Meyerowitz EM, Mjolsness E. 2006. An auxin-driven polarized transport model for phyllotaxis. Proc. Natl. Acad. Sci. USA 103:51633–38 [Google Scholar]
  42. Kennaway R, Coen E, Green A, Bangham A. 2011. Generation of diverse biological forms through combinatorial interactions between tissue polarity and growth. PLOS Comput. Biol. 7:6e1002071 [Google Scholar]
  43. Kha H, Tuble SC, Kalyanasundaram S, Williamson RE. 2010. WallGen, software to construct layered cellulose-hemicellulose networks and predict their small deformation mechanics. Plant Physiol. 152:2774–86 [Google Scholar]
  44. Kierzkowski D, Nakayama N, Routier-Kierzkowska A-L, Weber A, Bayer E. et al. 2012. Elastic domains regulate growth and organogenesis in the plant shoot apical meristem. Science 335:61096–99 [Google Scholar]
  45. Kuchen EE, Fox S, Barbier de Reuille P, Kennaway R, Bensmihen S. et al. 2012. Generation of leaf shape through early patterns of growth and tissue polarity. Science 335:60721092–96 [Google Scholar]
  46. Lecuit T, Lenne P-F. 2007. Cell surface mechanics and the control of cell shape, tissue patterns and morphogenesis. Nat. Rev. Mol. Cell Biol. 8:8633–44 [Google Scholar]
  47. Lockhart JA. 1965. An analysis of irreversible plant cell elongation. J. Theor. Biol. 8:2264–75 [Google Scholar]
  48. Lockhart JA. 1967. Physical nature of irreversible deformation of plant cells. Plant Physiol. 42:111545–52 [Google Scholar]
  49. McQueen-Mason S, Durachko DM, Cosgrove DJ. 1992. Two endogenous proteins that induce cell wall extension in plants. Plant Cell Online 4:1425–33 [Google Scholar]
  50. Merks RMH, Guravage M, Inze D, Beemster GTS. 2011. VirtualLeaf: an open-source framework for cell-based modeling of plant tissue growth and development. Plant Physiol. 155:2656–66 [Google Scholar]
  51. Ortega JK. 1985. Augmented growth equation for cell wall expansion. Plant Physiol. 79:1318–20 [Google Scholar]
  52. Paredez AR, Somerville CR, Ehrhardt DW. 2006. Visualization of cellulose synthase demonstrates functional association with microtubules. Science 312:57791491–95 [Google Scholar]
  53. Passioura JB, Fry SC. 1992. Turgor and cell expansion: beyond the Lockhart equation. Funct. Plant Biol. 19:5565–76 [Google Scholar]
  54. Peaucelle A, Braybrook S, Höfte H. 2012. Cell wall mechanics and growth control in plants: the role of pectins revisited. Front. Plant Sci. 3:121 [Google Scholar]
  55. Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A. 2001. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. Proc. Natl. Acad. Sci. USA 98:2011812–17 [Google Scholar]
  56. Reddy GV, Heisler MG, Ehrhardt DW, Meyerowitz EM. 2004. Real-time lineage analysis reveals oriented cell divisions associated with morphogenesis at the shoot apex of Arabidopsis thaliana. Development 131:174225–37 [Google Scholar]
  57. Reinhardt D, Pesce E-R, Stieger P, Mandel T, Baltensperger K. et al. 2003. Regulation of phyllotaxis by polar auxin transport. Nature 426:6964255–60 [Google Scholar]
  58. Rojas ER, Hotton S, Dumais J. 2011. Chemically mediated mechanical expansion of the pollen tube cell wall. Biophys. J. 101:81844–53 [Google Scholar]
  59. Sachs J. 1878. Über die Anordnung der Zellen in jüngsten Pflanzentheilen [On the arrangement of cells in embryonic tissues]. Arb. Bot. Inst. Würzbg. 2:46–104 (in German) [Google Scholar]
  60. Sauret-Güeto S, Schiessl K, Bangham A, Sablowski R, Coen E. 2013. JAGGED controls Arabidopsis petal growth and shape by interacting with a divergent polarity field. PLOS Biol. 11:4e1001550 [Google Scholar]
  61. Schopfer P. 2006. Biomechanics of plant growth. Am. J. Bot. 93:101415–25 [Google Scholar]
  62. Shapiro BE, Jönsson H, Sahlin P, Heisler M, Roeder A. et al. 2012. Tessellations and pattern formation in plant growth and development. arXiv: 12092937
  63. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykręt D. et al. 2012. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:2439–51 [Google Scholar]
  64. Veytsman BA, Cosgrove DJ. 1998. A model of cell wall expansion based on thermodynamics of polymer networks. Biophys. J. 75:52240–50 [Google Scholar]
  65. Wasteneys GO, Ambrose JC. 2009. Spatial organization of plant cortical microtubules: close encounters of the 2D kind. Trends Cell Biol. 19:262–71 [Google Scholar]
  66. Willats WGT, Knox JP, Mikkelsen JD. 2006. Pectin: New insights into an old polymer are starting to gel. Trends Food Sci. Technol. 17:397–104 [Google Scholar]
  67. Wolf S, Hématy K, Höfte H. 2012. Growth control and cell wall signaling in plants. Annu. Rev. Plant Biol. 63:1381–407 [Google Scholar]
  68. Yi H, Puri VM. 2012. Architecture-based multiscale computational modeling of plant cell wall mechanics to examine the hydrogen-bonding hypothesis of the cell wall network structure model. Plant Physiol. 160:31281–92 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error