In biomembrane fusion pathways, membranes are destabilized through insertions of amphipathic protein segments, lipid reorganization via hemifusion, protein restructuring, and dimpling of the membranes. Four classes of membrane proteins are known in virus and cell fusion. Class I virus-cell fusion proteins (fusogens) are α-helix-rich prefusion trimers that form coiled-coil structures that insert hydrophobic fusion peptides or loops (FPs or FLs) into membranes and refold into postfusion trimers. Class II virus-cell fusogens are β-sheet-rich prefusion homo- or heterodimers that insert FLs into membranes, ending in postfusion trimers. Class III virus-cell fusogens are trimers with both α-helices and β-sheets that dissociate into monomers, insert FLs into membranes, and oligomerize into postfusion trimers. Class IV reoviral cell-cell fusogens are small proteins with FLs that oligomerize to fuse membranes. Class I cell-cell fusogens (Syncytins) were captured by mammals from retroviruses, and class II cell-cell fusogens (EFF-1/AFF-1) fuse membranes via homotypic zippering. Mechanisms and fusogens for most cell fusion events are unknown.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Abmayr SM, Pavlath GK. 2012. Myoblast fusion: lessons from flies and mice. Development 139:641–56 [Google Scholar]
  2. Aguilar PS, Baylies MK, Fleissner A, Helming L, Inoue N. et al. 2013. Genetic basis of cell-cell fusion mechanisms. Trends Genet. 29:427–37 [Google Scholar]
  3. Albertini AA, Merigoux C, Libersou S, Madiona K, Bressanelli S. et al. 2012b. Characterization of monomeric intermediates during VSV glycoprotein structural transition. PLOS Pathog. 8:e1002556 [Google Scholar]
  4. Albertini AAV, Baquero E, Ferlin A, Gaudin Y. 2012a. Molecular and cellular aspects of Rhabdovirus entry. Viruses 4:117–39 [Google Scholar]
  5. Alper S, Kenyon C. 2002. The zinc finger protein REF-2 functions with the Hox genes to inhibit cell fusion in the ventral epidermis of C. elegans. Development 129:3335–48 [Google Scholar]
  6. Alper S, Podbilewicz B. 2008. Cell fusion in Caenorhabditis elegans. Methods Mol. Biol. 475:53–74 [Google Scholar]
  7. Avinoam O. 2012. Conserved eukaryotic fusogens can fuse viral envelopes to cells. PhD Thesis, Technion–Israel Inst. Technol., Haifa 138
  8. Avinoam O, Fridman K, Valansi C, Abutbul I, Zeev-Ben-Mordehai T. et al. 2011. Conserved eukaryotic fusogens can fuse viral envelopes to cells. Science 332:589–92 [Google Scholar]
  9. Avinoam O, Podbilewicz B. 2011. Eukaryotic cell-cell fusion families. Curr. Top. Membr. 68:209–34 [Google Scholar]
  10. Baquero E, Albertini AA, Vachette P, Lepault J, Bressanelli S, Gaudin Y. 2013. Intermediate conformations during viral fusion glycoprotein structural transition. Curr. Opin. Virol. 3:143–50 [Google Scholar]
  11. Barry C, Duncan R. 2009. Multifaceted sequence-dependent and -independent roles for reovirus FAST protein cytoplasmic tails in fusion pore formation and syncytiogenesis. J. Virol. 83:12185–95 [Google Scholar]
  12. Barry C, Key T, Haddad R, Duncan R. 2010. Features of a spatially constrained cystine loop in the p10 FAST protein ectodomain define a new class of viral fusion peptides. J. Biol. Chem. 285:16424–33 [Google Scholar]
  13. Bianchi E, Joyce JG, Miller MD, Finnefrock AC, Liang X. et al. 2010. Vaccination with peptide mimetics of the gp41 prehairpin fusion intermediate yields neutralizing antisera against HIV-1 isolates. Proc. Natl. Acad. Sci. USA 107:10655–60 [Google Scholar]
  14. Blond JL, Besème F, Duret L, Bouton O, Bedin F. et al. 1999. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J. Virol. 73:1175–85 [Google Scholar]
  15. Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G. et al. 2000. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J. Virol. 74:3321–29 [Google Scholar]
  16. Blumenthal R, Durell S, Viard M. 2012. HIV entry and envelope glycoprotein-mediated fusion. J. Biol. Chem. 287:40841–49 [Google Scholar]
  17. Bonde S, Pedram M, Stultz R, Zavazava N. 2010. Cell fusion of bone marrow cells and somatic cell reprogramming by embryonic stem cells. FASEB J. 24:364–73 [Google Scholar]
  18. Brabin C, Appleford PJ, Woollard A. 2011. The Caenorhabditis elegans GATA factor ELT-1 works through the cell proliferation regulator BRO-1 and the fusogen EFF-1 to maintain the seam stem-like fate. PLOS Genet. 7:e1002200 [Google Scholar]
  19. Bullough PA, Hughson FM, Skehel JJ, Wiley DC. 1994. Structure of influenza haemagglutinin at the pH of membrane fusion. Nature 371:37–43 [Google Scholar]
  20. Campbell KH, McWhir J, Ritchie WA, Wilmut I. 1996. Sheep cloned by nuclear transfer from a cultured cell line. Nature 380:64–66 [Google Scholar]
  21. Carr CM, Kim PS. 1993. A spring-loaded mechanism for the conformational change of influenza hemagglutinin. Cell 73:823–32 [Google Scholar]
  22. Cassata G, Shemer G, Morandi P, Donhauser R, Podbilewicz B, Baumeister R. 2005. ceh-16/engrailed patterns the embryonic epidermis of Caenorhabditis elegans. Development 132:739–49 [Google Scholar]
  23. Chen J, Lee KH, Steinhauer DA, Stevens DJ, Skehel JJ, Wiley DC. 1998. Structure of the hemagglutinin precursor cleavage site, a determinant of influenza pathogenicity and the origin of the labile conformation. Cell 95:409–17 [Google Scholar]
  24. Chernomordik LV, Kozlov MM. 2005. Membrane hemifusion: crossing a chasm in two leaps. Cell 123:375–82 [Google Scholar]
  25. Chernomordik LV, Kozlov MM. 2008. Mechanics of membrane fusion. Nat. Struct. Mol. Biol. 15:675–83 [Google Scholar]
  26. Chernomordik LV, Leikina E, Frolov VA, Bronk P, Zimmerberg J. 1997. An early stage of membrane fusion mediated by the low pH conformation of influenza hemagglutinin depends upon membrane lipids. J. Cell Biol. 136:81–93 [Google Scholar]
  27. Chernomordik LV, Zimmerberg J, Kozlov MM. 2006. Membranes of the world unite. ! J. Cell Biol. 175:201–7 [Google Scholar]
  28. Choi J, Richards KL, Cinar HN, Newman AP. 2006. N-ethylmaleimide sensitive factor is required for fusion of the C. elegans uterine anchor cell. Dev. Biol. 297:87–102 [Google Scholar]
  29. Clancy EK, Duncan R. 2009. Reovirus FAST protein transmembrane domains function in a modular, primary sequence-independent manner to mediate cell-cell membrane fusion. J. Virol. 83:2941–50 [Google Scholar]
  30. Clancy EK, Duncan R. 2011. Helix-destabilizing, β-branched, and polar residues in the baboon reovirus p15 transmembrane domain influence the modularity of FAST proteins. J. Virol. 85:4707–19 [Google Scholar]
  31. Corcoran JA, Clancy EK, Duncan R. 2011. Homomultimerization of the reovirus p14 fusion-associated small transmembrane protein during transit through the ER-Golgi complex secretory pathway. J. Gen. Virol. 92:162–66 [Google Scholar]
  32. Corcoran JA, Syvitski R, Top D, Epand RM, Epand RF. et al. 2004. Myristoylation, a protruding loop, and structural plasticity are essential features of a nonenveloped virus fusion peptide motif. J. Biol. Chem. 279:51386–94 [Google Scholar]
  33. Cornelis G, Heidmann O, Degrelle SA, Vernochet C, Lavialle C. et al. 2013. Captured retroviral envelope syncytin gene associated with the unique placental structure of higher ruminants. Proc. Natl. Acad. Sci. USA 110:E828–37 [Google Scholar]
  34. Costa M, Raich W, Agbunag C, Leung B, Hardin J, Priess JR. 1998. A putative catenin-cadherin system mediates morphogenesis of the Caenorhabditis elegans embryo. J. Cell Biol. 141:297–308 [Google Scholar]
  35. Danieli T, Pelletier SL, Henis YI, White JM. 1996. Membrane fusion mediated by the influenza virus hemagglutinin requires the concerted action of at least three hemagglutinin trimers. J. Cell Biol. 133:559–69 [Google Scholar]
  36. de Silva A, Braakman I, Helenius A. 1993. Posttranslational folding of vesicular stomatitis virus G protein in the ER: involvement of noncovalent and covalent complexes. J. Cell Biol. 120:647–55 [Google Scholar]
  37. del Campo JJ, Opoku-Serebuoh E, Isaacson AB, Scranton VL, Tucker M. et al. 2005. Fusogenic activity of EFF-1 is regulated via dynamic localization in fusing somatic cells of C. elegans. Curr. Biol. 15:413–23 [Google Scholar]
  38. Dessau M, Modis Y. 2013. Crystal structure of glycoprotein C from Rift Valley fever virus. Proc. Natl. Acad. Sci. USA 110:1696–701 [Google Scholar]
  39. Doms RW, Helenius A, White J. 1985. Membrane fusion activity of the influenza virus hemagglutinin. J. Biol. Chem. 260:2973–81 [Google Scholar]
  40. Dubey GP, Ben-Yehuda S. 2011. Intercellular nanotubes mediate bacterial communication. Cell 144:590–600 [Google Scholar]
  41. DuBois RM, Vaney MC, Tortorici MA, Kurdi RA, Barba-Spaeth G. et al. 2013. Functional and evolutionary insight from the crystal structure of rubella virus protein E1. Nature 493:552–56 [Google Scholar]
  42. Duelli DM, Padilla-Nash HM, Berman D, Murphy KM, Ried T, Lazebnik Y. 2007. A virus causes cancer by inducing massive chromosomal instability through cell fusion. Curr. Biol. 17:431–37 [Google Scholar]
  43. Dupressoir A, Vernochet C, Bawa O, Harper F, Pierron G. et al. 2009. Syncytin-A knockout mice demonstrate the critical role in placentation of a fusogenic, endogenous retrovirus-derived, envelope gene. Proc. Natl. Acad. Sci. USA 106:12127–32 [Google Scholar]
  44. Dupressoir A, Vernochet C, Harper F, Guegan J, Dessen P. et al. 2011. A pair of co-opted retroviral envelope syncytin genes is required for formation of the two-layered murine placental syncytiotrophoblast. Proc. Natl. Acad. Sci. USA 108:E1164–73 [Google Scholar]
  45. Esnault C, Cornelis G, Heidmann O, Heidmann T. 2013. Differential evolutionary fate of an ancestral primate endogenous retrovirus envelope gene, the EnvV Syncytin, captured for a function in placentation. PLOS Genet. 9:e1003400 [Google Scholar]
  46. Fernandes JS, Sternberg PW. 2007. The tailless ortholog nhr-67 regulates patterning of gene expression and morphogenesis in the C. elegans vulva. PLOS Genet. 3:e69 [Google Scholar]
  47. Fields W, Kielian M. 2013. A key interaction between the alphavirus envelope proteins responsible for initial dimer dissociation during fusion. J. Virol. 87:3774–81 [Google Scholar]
  48. Frendo JL, Olivier D, Cheynet V, Blond JL, Bouton O. et al. 2003. Direct involvement of HERV-W Env glycoprotein in human trophoblast cell fusion and differentiation. Mol. Cell. Biol. 23:3566–74 [Google Scholar]
  49. Fridman K. 2012. Ultrastructure and function of AFF-1 and EFF-1 in membrane remodeling MSc Thesis, Technion–Israel Inst. Technol., Haifa 62
  50. Gattegno T, Mittal A, Valansi C, Nguyen KC, Hall DH. et al. 2007. Genetic control of fusion pore expansion in the epidermis of Caenorhabditis elegans. Mol. Biol. Cell 18:1153–66 [Google Scholar]
  51. Ghosh-Roy A, Wu Z, Goncharov A, Jin Y, Chisholm AD. 2010. Calcium and cyclic AMP promote axonal regeneration in Caenorhabditis elegans and require DLK-1 kinase. J. Neurosci. 30:3175–83 [Google Scholar]
  52. Gibbons DL, Vaney MC, Roussel A, Vigouroux A, Reilly B. et al. 2004. Conformational change and protein-protein interactions of the fusion protein of Semliki Forest virus. Nature 427:320–25 [Google Scholar]
  53. Gong R, Peng X, Kang S, Feng H, Huang J. et al. 2005. Structural characterization of the fusion core in syncytin, envelope protein of human endogenous retrovirus family W. Biochem. Biophys. Res. Commun. 331:1193–200 [Google Scholar]
  54. Gruenbaum-Cohen Y, Harel I, Umansky KB, Tzahor E, Snapper SB. et al. 2012. The actin regulator N-WASp is required for muscle-cell fusion in mice. Proc. Natl. Acad. Sci. USA 109:11211–16 [Google Scholar]
  55. Hamamura Y, Saito C, Awai C, Kurihara D, Miyawaki A. et al. 2011. Live-cell imaging reveals the dynamics of two sperm cells during double fertilization in Arabidopsis thaliana. Curr. Biol. 21:497–502 [Google Scholar]
  56. Harmon B, Campbell N, Ratner L. 2010. Role of Abl kinase and the Wave2 signaling complex in HIV-1 entry at a post-hemifusion step. PLOS Pathog. 6:e1000956 [Google Scholar]
  57. Harrison SC. 2008. Viral membrane fusion. Nat. Struct. Mol. Biol. 15:690–98 [Google Scholar]
  58. Hedgecock EM, White JG. 1985. Polyploid tissues in the nematode Caenorhabditis elegans. Dev. Biol. 107:128–38 [Google Scholar]
  59. Heldwein EE, Lou H, Bender FC, Cohen GH, Eisenberg RJ, Harrison SC. 2006. Crystal structure of glycoprotein B from herpes simplex virus 1. Science 313:217–20 [Google Scholar]
  60. Helenius A. 2013. Virus entry: What has pH got to do with it?. Nat. Cell Biol. 15:125 [Google Scholar]
  61. Helenius A, Kartenbeck J, Simons K, Fries E. 1980. On the entry of Semliki Forest virus into BHK-21 cells. J. Cell Biol. 84:404–20 [Google Scholar]
  62. Henke C, Ruebner M, Faschingbauer F, Stolt CC, Schaefer N. et al. 2013. Regulation of murine placentogenesis by the retroviral genes Syncytin-A, Syncytin-B and Peg10. Differentiation 85:150–60 [Google Scholar]
  63. Hernandez JM, Stein A, Behrmann E, Riedel D, Cypionka A. et al. 2012. Membrane fusion intermediates via directional and full assembly of the SNARE complex. Science 336:1581–84 [Google Scholar]
  64. Hirai M, Arai M, Mori T, Miyagishima SY, Kawai S. et al. 2008. Male fertility of malaria parasites is determined by GCS1, a plant-type reproduction factor. Curr. Biol. 18:607–13 [Google Scholar]
  65. Hu C, Ahmed M, Melia TJ, Sollner TH, Mayer T, Rothman JE. 2003. Fusion of cells by flipped SNAREs. Science 300:1745–49 [Google Scholar]
  66. Hu J, Shibata Y, Zhu PP, Voss C, Rismanchi N. et al. 2009. A class of dynamin-like GTPases involved in the generation of the tubular ER network. Cell 138:549–61 [Google Scholar]
  67. Huiskonen JT, Overby AK, Weber F, Grunewald K. 2009. Electron cryo-microscopy and single-particle averaging of Rift Valley fever virus: evidence for GN-GC glycoprotein heterodimers. J. Virol. 83:3762–69 [Google Scholar]
  68. Igonet S, Rey FA. 2012. SnapShot: viral and eukaryotic protein fusogens. Cell 151:1634–34e1 [Google Scholar]
  69. Ivanovic T, Choi JL, Whelan SP, van Oijen AM, Harrison SC. 2013. Influenza-virus membrane fusion by cooperative fold-back of stochastically induced hemagglutinin intermediates. eLife 2:e00333 [Google Scholar]
  70. Kemble GW, Danieli T, White JM. 1994. Lipid-anchored influenza hemagglutinin promotes hemifusion, not complete fusion. Cell 76:383–91 [Google Scholar]
  71. Kielian M, Chanel-Vos C, Liao M. 2010. Alphavirus entry and membrane fusion. Viruses 2:796–825 [Google Scholar]
  72. Kielian MC, Helenius A. 1984. Role of cholesterol in fusion of Semliki Forest virus with membranes. J. Virol. 52:281–83 [Google Scholar]
  73. Kim CS, Epand RF, Leikina E, Epand RM, Chernomordik LV. 2011a. The final conformation of the complete ectodomain of the HA2 subunit of influenza hemagglutinin can by itself drive low pH-dependent fusion. J. Biol. Chem. 286:13226–34 [Google Scholar]
  74. Kim YH, Donald JE, Grigoryan G, Leser GP, Fadeev AY. et al. 2011b. Capture and imaging of a prehairpin fusion intermediate of the paramyxovirus PIV5. Proc. Natl. Acad. Sci. USA 108:20992–97 [Google Scholar]
  75. Kiontke K, Barriere A, Kolotuev I, Podbilewicz B, Sommer R. et al. 2007. Trends, stasis, and drift in the evolution of nematode vulva development. Curr. Biol. 17:1925–37 [Google Scholar]
  76. Klein DE, Choi JL, Harrison SC. 2013. Structure of a dengue virus envelope protein late-stage fusion intermediate. J. Virol. 87:2287–93 [Google Scholar]
  77. Koh K, Bernstein Y, Sundaram MV. 2004. The nT1 translocation separates vulval regulatory elements from the egl-18 and elt-6 GATA factor genes. Dev. Biol. 267:252–63 [Google Scholar]
  78. Kohler G, Milstein C. 1975. Continuous cultures of fused cells secreting antibody of predefined specificity. Nature 256:495–97 [Google Scholar]
  79. Kolotuev I, Podbilewicz B. 2004. Pristionchus pacificus vulva formation: polarized division, cell migration, cell fusion and evolution of invagination. Dev. Biol. 266:322–33 [Google Scholar]
  80. Kolotuev I, Podbilewicz B. 2008. Changing of the cell division axes drives vulva evolution in nematodes. Dev. Biol. 313:142–54 [Google Scholar]
  81. Kontani K, Moskowitz IP, Rothman JH. 2005. Repression of cell-cell fusion by components of the C. elegans vacuolar ATPase complex. Dev. Cell 8:787–94 [Google Scholar]
  82. Kozlov MM, Markin VS. 1983. Possible mechanism of membrane fusion. Biofizika 28:242–47 [Google Scholar]
  83. Larsen JM, Christensen IJ, Nielsen HJ, Hansen U, Bjerregaard B. et al. 2009. Syncytin immunoreactivity in colorectal cancer: potential prognostic impact. Cancer Lett. 280:44–49 [Google Scholar]
  84. Lazova R, LaBerge GS, Duvall E, Spoelstra N, Klump V. et al. 2013. A melanoma brain metastasis with a donor-patient hybrid genome following bone marrow transplantation: first evidence for fusion in human cancer. PLOS ONE 8:e66731 [Google Scholar]
  85. Leikin SL, Kozlov MM, Chernomordik LV, Markin VS, Chizmadzhev YA. 1987. Membrane fusion: overcoming of the hydration barrier and local restructuring. J. Theor. Biol. 129:411–25 [Google Scholar]
  86. Leikina E, Chernomordik LV. 2000. Reversible merger of membranes at the early stage of influenza hemagglutinin-mediated fusion. Mol. Biol. Cell 11:2359–71 [Google Scholar]
  87. Leikina E, Mittal A, Cho MS, Melikov K, Kozlov MM, Chernomordik LV. 2004. Influenza hemagglutinins outside of the contact zone are necessary for fusion pore expansion. J. Biol. Chem. 279:26526–32 [Google Scholar]
  88. Lescar J, Roussel A, Wien MW, Navaza J, Fuller SD. et al. 2001. The fusion glycoprotein shell of Semliki Forest virus: an icoshadral assembly primed for fusogenic activation at endosomal pH. Cell 105:137–48 [Google Scholar]
  89. Liang CY, Wang LJ, Chen CP, Chen LF, Chen YH, Chen H. 2010. GCM1 regulation of the expression of syncytin 2 and its cognate receptor MFSD2A in human placenta. Biol. Reprod. 83:387–95 [Google Scholar]
  90. Liao M, Kielian M. 2005. Domain III from class II fusion proteins functions as a dominant-negative inhibitor of virus membrane fusion. J. Cell Biol. 171:111–20 [Google Scholar]
  91. Libersou S, Albertini AA, Ouldali M, Maury V, Maheu C. et al. 2010. Distinct structural rearrangements of the VSV glycoprotein drive membrane fusion. J. Cell Biol. 191:199–210 [Google Scholar]
  92. Liu Q, Stone JA, Bradel-Tretheway B, Dabundo J, Benavides Montano JA. et al. 2013. Unraveling a three-step spatiotemporal mechanism of triggering of receptor-induced Nipah virus fusion and cell entry. PLOS Pathog. 9:e1003770 [Google Scholar]
  93. Liu Y, Tewari R, Ning J, Blagborough AM, Garbom S. et al. 2008. The conserved plant sterility gene HAP2 functions after attachment of fusogenic membranes in Chlamydomonas and Plasmodium gametes. Genes Dev. 22:1051–68 [Google Scholar]
  94. Losick VP, Fox DT, Spradling AC. 2013. Polyploidization and cell fusion contribute to wound healing in the adult Drosophila epithelium. Curr. Biol. 23:2224–32 [Google Scholar]
  95. Margalit A, Neufeld E, Feinstein N, Wilson KL, Podbilewicz B, Gruenbaum Y. 2007. Barrier to autointegration factor blocks premature cell fusion and maintains adult muscle integrity in C. elegans. J. Cell Biol. 178:661–73 [Google Scholar]
  96. Marston DJ, Goldstein B. 2006. Actin-based forces driving embryonic morphogenesis in Caenorhabditis elegans. Curr. Opin. Genet. Dev. 16:392–98 [Google Scholar]
  97. Mason DA, Rabinowitz JS, Portman DS. 2008. dmd-3, a doublesex-related gene regulated by tra-1, governs sex-specific morphogenesis in C. elegans. Development 135:2373–82 [Google Scholar]
  98. Maurer UE, Zeev-Ben-Mordehai T, Pandurangan AP, Cairns TM, Hannah BP. et al. 2013. The structure of herpesvirus fusion glycoprotein B-bilayer complex reveals the protein-membrane and lateral protein-protein interaction. Structure 21:1396–405 [Google Scholar]
  99. Melikyan GB. 2011. Membrane fusion mediated by human immunodeficiency virus envelope glycoprotein. Curr. Top. Membr. 68:81–106 [Google Scholar]
  100. Melikyan GB, White JM, Cohen FS. 1995. GPI-anchored influenza hemagglutinin induces hemifusion to both red blood cell and planar bilayer membranes. J. Cell Biol. 131:679–91 [Google Scholar]
  101. Mi S, Lee X, Li X-p, Veldman GM, Finnerty H. et al. 2000. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature 403:785–89 [Google Scholar]
  102. Miyauchi K, Kim Y, Latinovic O, Morozov V, Melikyan GB. 2009. HIV enters cells via endocytosis and dynamin-dependent fusion with endosomes. Cell 137:433–44 [Google Scholar]
  103. Modis Y, Ogata S, Clements D, Harrison SC. 2003. A ligand-binding pocket in the dengue virus envelope glycoprotein. Proc. Natl. Acad. Sci. USA 100:6986–91 [Google Scholar]
  104. Modis Y, Ogata S, Clements D, Harrison SC. 2004. Structure of the dengue virus envelope protein after membrane fusion. Nature 427:313–19 [Google Scholar]
  105. Mohler WA, Shemer G, del Campo J, Valansi C, Opoku-Serebuoh E. et al. 2002. The type I membrane protein EFF-1 is essential for developmental cell fusion in C. elegans. Dev. Cell 2:355–62 [Google Scholar]
  106. Mohler WA, Simske JS, Williams-Masson EM, Hardin JD, White JG. 1998. Dynamics and ultrastructure of developmental cell fusions in the Caenorhabditis elegans hypodermis. Curr. Biol. 8:1087–90 [Google Scholar]
  107. Muñoz-Barroso I, Salzwedel K, Hunter E, Blumenthal R. 1999. Role of the membrane-proximal domain in the initial stages of human immunodeficiency virus type 1 envelope glycoprotein-mediated membrane fusion. J. Virol. 73:6089–92 [Google Scholar]
  108. Neumann B, Nguyen KC, Hall DH, Ben-Yakar A, Hilliard MA. 2011. Axonal regeneration proceeds through specific axonal fusion in transected C. elegans neurons. Dev. Dyn. 240:1365–72 [Google Scholar]
  109. Nguyen CQ, Hall DH, Yang Y, Fitch DHA. 1999. Morphogenesis of the Caenorhabditis elegans male tail tip. Dev. Biol. 207:86–106 [Google Scholar]
  110. Nour AM, Li Y, Wolenski J, Modis Y. 2013. Viral membrane fusion and nucleocapsid delivery into the cytoplasm are distinct events in some flaviviruses. PLOS Pathog. 9:e1003585 [Google Scholar]
  111. Onel SF, Renkawitz-Pohl R. 2009. FuRMAS: triggering myoblast fusion in Drosophila. Dev. Dyn. 238:1513–25 [Google Scholar]
  112. Oren M. 2012. Mechanisms of neuronal branching PhD Thesis, Technion–Israel Inst. Technol., Haifa. 103
  113. Oren-Suissa M, Hall D, Treinin M, Shemer G, Podbilewicz B. 2010. The fusogen EFF-1 controls sculpting of mechanosensory dendrites. Science 328:1285–88 [Google Scholar]
  114. Oren-Suissa M, Podbilewicz B. 2010. Evolution of programmed cell fusion: common mechanisms and distinct functions. Dev. Dyn. 239:1515–28 [Google Scholar]
  115. Orso G, Pendin D, Liu S, Tosetto J, Moss TJ. et al. 2009. Homotypic fusion of ER membranes requires the dynamin-like GTPase atlastin. Nature 460:978–83 [Google Scholar]
  116. Pasque V, Miyamoto K, Gurdon JB. 2010. Efficiencies and mechanisms of nuclear reprogramming. Cold Spring Harb. Symp. Quant. Biol. 75:189–200 [Google Scholar]
  117. Patel FB, Bernadskaya YY, Chen E, Jobanputra A, Pooladi Z. et al. 2008. The WAVE/SCAR complex promotes polarized cell movements and actin enrichment in epithelia during C. elegans embryogenesis. Dev. Biol. 324:297–309 [Google Scholar]
  118. Pellegrino MW, Farooqui S, Fröhli E, Rehrauer H, Kaeser-Pebernard S. et al. 2011. LIN-39 and the EGFR/RAS/MAPK pathway regulate C. elegans vulval morphogenesis via the VAB-23 zinc finger protein. Development 138:4649–60 [Google Scholar]
  119. Peng X, Pan J, Gong R, Liu Y, Kang S. et al. 2007. Functional characterization of syncytin-A, a newly murine endogenous virus envelope protein. Implication for its fusion mechanism. J. Biol. Chem. 282:381–89 [Google Scholar]
  120. Pérez-Vargas J, Krey T, Valansi C, Avinoam O, Haouz A. et al. 2014. Structural basis of eukaryotic cell-cell fusion. Cell 157:407–19 [Google Scholar]
  121. Podbilewicz B, Leikina E, Sapir A, Valansi C, Suissa M. et al. 2006. The C. elegans developmental fusogen EFF-1 mediates homotypic fusion in heterologous cells and in vivo. Dev. Cell 11:471–81 [Google Scholar]
  122. Podbilewicz B, White JG. 1994. Cell fusions in the developing epithelia of C. elegans. Dev. Biol. 161:408–24 [Google Scholar]
  123. Powell AE, Anderson EC, Davies PS, Silk AD, Pelz C. et al. 2011. Fusion between intestinal epithelial cells and macrophages in a cancer context results in nuclear reprogramming. Cancer Res. 71:1497–505 [Google Scholar]
  124. Procko C, Lu Y, Shaham S. 2011. Glia delimit shape changes of sensory neuron receptive endings in C. elegans. Development 138:1371–81 [Google Scholar]
  125. Qin ZL, Zheng Y, Kielian M. 2009. Role of conserved histidine residues in the low-pH dependence of the Semliki Forest virus fusion protein. J. Virol. 83:4670–77 [Google Scholar]
  126. Rao PN, Johnson RT. 1970. Mammalian cell fusion: studies on the regulation of DNA synthesis and mitosis. Nature 225:159–64 [Google Scholar]
  127. Rasmussen JP, English K, Tenlen JR, Priess JR. 2008. Notch signaling and morphogenesis of single-cell tubes in the C. elegans digestive tract. Dev. Cell 14:559–69 [Google Scholar]
  128. Renard M, Varela PF, Letzelter C, Duquerroy S, Rey FA, Heidmann T. 2005. Crystal structure of a pivotal domain of human syncytin-2, a 40 million years old endogenous retrovirus fusogenic envelope gene captured by primates. J. Mol. Biol. 352:1029–34 [Google Scholar]
  129. Rey FA, Heinz FX, Mandl C, Kunz C, Harrison SC. 1995. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature 375:291–98 [Google Scholar]
  130. Richard JP, Leikina E, Langen R, Henne WM, Popova M. et al. 2011. Intracellular curvature-generating proteins in cell-to-cell fusion. Biochem. J. 440:185–93 [Google Scholar]
  131. Roche S, Bressanelli S, Rey FA, Gaudin Y. 2006. Crystal structure of the low-pH form of the vesicular stomatitis virus glycoprotein G. Science 313:187–91 [Google Scholar]
  132. Roche S, Rey FA, Gaudin Y, Bressanelli S. 2007. Structure of the prefusion form of the vesicular stomatitis virus glycoprotein G. Science 315:843–48 [Google Scholar]
  133. Rothman JE, Urbani LJ, Brands R. 1984. Transport of protein between cytoplasmic membranes of fused cells: correspondence to processes reconstituted in a cell-free system. J. Cell Biol. 99:248–59 [Google Scholar]
  134. Ruebner M, Langbein M, Strissel PL, Henke C, Schmidt D. et al. 2012. Regulation of the human endogenous retroviral Syncytin-1 and cell-cell fusion by the nuclear hormone receptors PPARγ/RXRα in placentogenesis. J. Cell. Biochem. 113:2383–96 [Google Scholar]
  135. Sapir A, Avinoam O, Podbilewicz B, Chernomordik LV. 2008. Viral and developmental cell fusion mechanisms: conservation and divergence. Dev. Cell 14:11–21 [Google Scholar]
  136. Sapir A, Choi J, Leikina E, Avinoam O, Valansi C. et al. 2007. AFF-1, a FOS-1-regulated fusogen, mediates fusion of the anchor cell in C. elegans. Dev. Cell 12:683–98 [Google Scholar]
  137. Schierenberg E. 1984. Altered cell-division rates after laser-induced cell fusion in nematode embryos. Dev. Biol. 101:240–45 [Google Scholar]
  138. Sens KL, Zhang S, Jin P, Duan R, Zhang G. et al. 2010. An invasive podosome-like structure promotes fusion pore formation during myoblast fusion. J. Cell Biol. 191:1013–27 [Google Scholar]
  139. Sharma-Kishore R, White JG, Southgate E, Podbilewicz B. 1999. Formation of the vulva in C. elegans: a paradigm for organogenesis. Development 126:691–99 [Google Scholar]
  140. Sharp MD, Pogliano K. 2003. The membrane domain of SpoIIIE is required for membrane fusion during Bacillus subtilis sporulation. J. Bacteriol. 185:2005–8 [Google Scholar]
  141. Shemer G, Podbilewicz B. 2000. Fusomorphogenesis: cell fusion in organ formation. Dev. Dyn. 218:30–51 [Google Scholar]
  142. Shemer G, Podbilewicz B. 2002. LIN-39/Hox triggers cell division and represses EFF-1/Fusogen-dependent vulval cell fusion. Genes Dev. 16:3136–41 [Google Scholar]
  143. Shemer G, Suissa M, Kolotuev I, Nguyen KCQ, Hall DH, Podbilewicz B. 2004. EFF-1 is sufficient to initiate and execute tissue-specific cell fusion in C. elegans. Curr. Biol. 14:1587–91 [Google Scholar]
  144. Shi L, Shen QT, Kiel A, Wang J, Wang HW. et al. 2012. SNARE proteins: one to fuse and three to keep the nascent fusion pore open. Science 335:1355–59 [Google Scholar]
  145. Shilagardi K, Li S, Luo F, Marikar F, Duan R. et al. 2013. Actin-propelled invasive membrane protrusions promote fusogenic protein engagement during cell-cell fusion. Science 340:359–63 [Google Scholar]
  146. Shinn-Thomas JH, Mohler WA. 2011. New insights into the mechanisms and roles of cell-cell fusion. Int. Rev. Cell Mol. Biol. 289:149–209 [Google Scholar]
  147. Shmulevitz M, Duncan R. 2000. A new class of fusion-associated small transmembrane (FAST) proteins encoded by the non-enveloped fusogenic reoviruses. EMBO J. 19:902–12 [Google Scholar]
  148. Soe K, Andersen TL, Hobolt-Pedersen AS, Bjerregaard B, Larsson LI, Delaisse JM. 2011. Involvement of human endogenous retroviral syncytin-1 in human osteoclast fusion. Bone 48:837–46 [Google Scholar]
  149. Stampfer SD, Lou H, Cohen GH, Eisenberg RJ, Heldwein EE. 2010. Structural basis of local, pH-dependent conformational changes in glycoprotein B from herpes simplex virus type 1. J. Virol. 84:12924–33 [Google Scholar]
  150. Stegmann T, White JM, Helenius A. 1990. Intermediates in influenza induced membrane fusion. EMBO J. 9:4231–41 [Google Scholar]
  151. Steinhauer DA, Plemper RK. 2012. Structure of the primed paramyxovirus fusion protein. Proc. Natl. Acad. Sci. USA 109:16404–5 [Google Scholar]
  152. Stiasny K, Allison SL, Marchler-Bauer A, Kunz C, Heinz FX. 1996. Structural requirements for low-pH-induced rearrangements in the envelope glycoprotein of tick-borne encephalitis virus. J. Virol. 70:8142–47 [Google Scholar]
  153. Stone CE, Hall DH, Sundaram MV. 2009. Lipocalin signaling controls unicellular tube development in the Caenorhabditis elegans excretory system. Dev. Biol. 329:201–11 [Google Scholar]
  154. Sulston JE, Schierenberg E, White JG, Thomson JN. 1983. The embryonic cell lineage of the nematode Caenorhabditis elegans. Dev. Biol. 100:64–119 [Google Scholar]
  155. Thoennes S, Li ZN, Lee BJ, Langley WA, Skehel JJ. et al. 2008. Analysis of residues near the fusion peptide in the influenza hemagglutinin structure for roles in triggering membrane fusion. Virology 370:403–14 [Google Scholar]
  156. Top D, Read JA, Dawe SJ, Syvitski RT, Duncan R. 2012. Cell-cell membrane fusion induced by p15 fusion-associated small transmembrane (FAST) protein requires a novel fusion peptide motif containing a myristoylated polyproline type II helix. J. Biol. Chem. 287:3403–14 [Google Scholar]
  157. Toufaily C, Vargas A, Lemire M, Lafond J, Rassart E, Barbeau B. 2013. MFSD2a, the Syncytin-2 receptor, is important for trophoblast fusion. Placenta 34:85–88 [Google Scholar]
  158. Umashankar M, Sánchez-San Martín C, Liao M, Reilly B, Guo A. et al. 2008. Differential cholesterol binding by class II fusion proteins determines membrane fusion properties. J. Virol. 82:9245–53 [Google Scholar]
  159. Vitu E, Sharma S, Stampfer SD, Heldwein EE. 2013. Extensive mutagenesis of the HSV-1 gB ectodomain reveals remarkable stability of its postfusion form. J. Mol. Biol. 425:2056–71 [Google Scholar]
  160. Wahlberg JM, Bron R, Wilschut J, Garoff H. 1992. Membrane fusion of Semliki Forest virus involves homotrimers of the fusion protein. J. Virol. 66:7309–18 [Google Scholar]
  161. Walser CB, Battu G, Hoier EF, Hajnal A. 2006. Distinct roles of the Pumilio and FBF translational repressors during C. elegans vulval development. Development 133:3461–71 [Google Scholar]
  162. Weinstein N, Mendoza L. 2013. A network model for the specification of vulval precursor cells and cell fusion control in Caenorhabditis elegans. Front. Genet. 4:112 [Google Scholar]
  163. Weissenhorn W, Hinz A, Gaudin Y. 2007. Virus membrane fusion. FEBS Lett. 581:2150–55 [Google Scholar]
  164. Welch BD, Liu Y, Kors CA, Leser GP, Jardetzky TS, Lamb RA. 2012. Structure of the cleavage-activated prefusion form of the parainfluenza virus 5 fusion protein. Proc. Natl. Acad. Sci. USA 109:16672–77 [Google Scholar]
  165. White J, Helenius A, Gething MJ. 1982. Haemagglutinin of influenza virus expressed from a cloned gene promotes membrane fusion. Nature 300:658–59 [Google Scholar]
  166. White J, Matlin K, Helenius A. 1981. Cell fusion by Semliki Forest, influenza, and vesicular stomatitis viruses. J. Cell Biol. 89:674–79 [Google Scholar]
  167. White JM, Delos SE, Brecher M, Schornberg K. 2008. Structures and mechanisms of viral membrane fusion proteins: multiple variations on a common theme. Crit. Rev. Biochem. Mol. Biol. 43:189–219 [Google Scholar]
  168. Whitt MA, Zagouras P, Crise B, Rose JK. 1990. A fusion-defective mutant of the vesicular stomatitis virus glycoprotein. J. Virol. 64:4907–13 [Google Scholar]
  169. Wilson IA, Skehel JJ, Wiley DC. 1981. Structure of the haemagglutinin membrane glycoprotein of influenza virus at 3 Å resolution. Nature 289:366–73 [Google Scholar]
  170. Wurmser AE, Gage FH. 2002. Stem cells: Cell fusion causes confusion. Nature 416:485–87 [Google Scholar]
  171. Xiong H, Mohler WA, Soto MC. 2011. The branched actin nucleator Arp2/3 promotes nuclear migrations and cell polarity in the C. elegans zygote. Dev. Biol. 357:356–69 [Google Scholar]
  172. Yamanaka S, Blau HM. 2010. Nuclear reprogramming to a pluripotent state by three approaches. Nature 465:704–12 [Google Scholar]
  173. Yang X, Kurteva S, Ren X, Lee S, Sodroski J. 2005. Stoichiometry of envelope glycoprotein trimers in the entry of human immunodeficiency virus type 1. J. Virol. 79:12132–47 [Google Scholar]
  174. Yin HS, Paterson RG, Wen X, Lamb RA, Jardetzky TS. 2005. Structure of the uncleaved ectodomain of the paramyxovirus (hPIV3) fusion protein. Proc. Natl. Acad. Sci. USA 102:9288–93 [Google Scholar]
  175. Yin HS, Wen X, Paterson RG, Lamb RA, Jardetzky TS. 2006. Structure of the parainfluenza virus 5 F protein in its metastable, prefusion conformation. Nature 439:38–44 [Google Scholar]
  176. Zagouras P, Rose JK. 1993. Dynamic equilibrium between vesicular stomatitis virus glycoprotein monomers and trimers in the Golgi and at the cell surface. J. Virol. 67:7533–38 [Google Scholar]
  177. Zaitseva E, Yang ST, Melikov K, Pourmal S, Chernomordik LV. 2010. Dengue virus ensures its fusion in late endosomes using compartment-specific lipids. PLOS Pathog. 6:e1001131 [Google Scholar]
  178. Zhuang XW, Li J, Brost BC, Xia XY, Wang CX, Jiang SW. 2014. Decreased expression and altered methylation of syncytin-1 gene in human placentas associated with preeclampsia. Curr. Pharm. Des. 20:1796–802 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error