Mechanotransduction translates mechanical signals into biochemical signals. It is based on the soft-matter properties of biomolecules or membranes that deform in response to mechanical loads to trigger activation of biochemical reactions. The study of mechanotransductive processes in cell-structure organization has been initiated in vitro in many biological contexts, such as examining cells' response to substrate rigidity increases associated with tumor fibrosis and to blood flow pressure. In vivo, the study of mechanotransduction in regulating physiological processes has focused primarily on the context of embryogenesis, with an increasing number of examples demonstrating its importance for both differentiation and morphogenesis. The conservation across species of mechanical induction in early embryonic patterning now suggests that major animal transitions, such as mesoderm emergence, may have been based on mechanotransduction pathways. In adult animal tissues, permanent stiffness and tissue growth pressure contribute to tumorigenesis and appear to reactivate such conserved embryonic mechanosensitive pathways.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Alexander NR, Branch KM, Parekh A, Clark ES, Lwueke LC. et al. 2008. Extracellular matrix rigidity promotes invadopodia activity. Curr. Biol. 18:1295–99 [Google Scholar]
  2. Aliee M, Roper JC, Landsberg KP, Pentzold C, Widmann TJ. et al. 2012. Physical mechanisms shaping the Drosophila dorsoventral compartment boundary. Curr. Biol. 22:967–76 [Google Scholar]
  3. Anderson PAV. 1989. Evolution of the First Nervous Systems New York: Plenum [Google Scholar]
  4. Aragona M, Panciera T, Manfrin A, Giulitti S, Michielin F. et al. 2013. A mechanical checkpoint controls multicellular growth through YAP/TAZ regulation by actin-processing factors. Cell 154:1047–59 [Google Scholar]
  5. Arendt D. 2004. Comparative aspects of gastrulation. Gastrulation: From Cells to Embryo CD Stern 679–94 Cold Spring Harbor, NY: Cold Spring Harb. Lab. Press [Google Scholar]
  6. Azzolin L, Panciera T, Soligo S, Enzo E, Bicciato S. et al. 2014. YAP/TAZ incorporation in the β-catenin destruction complex orchestrates the Wnt response. Cell 158:157–70 [Google Scholar]
  7. Bardet PL, Guirao B, Paoletti C, Serman F, Leopold V. et al. 2013. PTEN controls junction lengthening and stability during cell rearrangement in epithelial tissue. Dev. Cell 25:534–46 [Google Scholar]
  8. Basan M, Risler T, Joanny JF, Sastre-Garau X, Prost J. 2009. Homeostatic competition drives tumor growth and metastasis nucleation. HFSP J. 3:265–72 [Google Scholar]
  9. Bechard M, Dalton S. 2009. Subcellular localization of glycogen synthase kinase 3beta controls embryonic stem cell self-renewal. Mol. Cell. Biol. 29:82092–104 [Google Scholar]
  10. Beloussov LV, Dorfman JG, Cherdantzev VG. 1975. Mechanical stresses and morphological patterns in amphibian embryos. J. Embryol. Exp. Morphol. 34:559–74 [Google Scholar]
  11. Benham-Pyle BW, Pruitt BL, Nelson WJ. 2015. Cell adhesion. Mechanical strain induces E-cadherin-dependent Yap1 and beta-catenin activation to drive cell cycle entry. Science 348:1024–27 [Google Scholar]
  12. Bershadsky AD, Balaban NQ, Geiger B. 2003. Adhesion-dependent cell mechanosensitivity. Annu. Rev. Cell Dev. Biol. 19:677–95 [Google Scholar]
  13. Bertet C, Sulak L, Lecuit T. 2004. Myosin-dependent junction remodelling controls planar cell intercalation and axis elongation. Nature 429:667–71 [Google Scholar]
  14. Bissell MJ, Radisky D. 2001. Putting tumours in context. Nat. Rev. Cancer 1:46–54 [Google Scholar]
  15. Blankenship JT, Backovic ST, Sanny JS, Weitz O, Zallen JA. 2006. Multicellular rosette formation links planar cell polarity to tissue morphogenesis. Dev. Cell 11:459–70 [Google Scholar]
  16. Borghi N, Sorokina M, Shcherbakova OG, Weis WI, Pruitt BL. et al. 2012. E-cadherin is under constitutive actomyosin-generated tension that is increased at cell-cell contacts upon externally applied stretch. PNAS 109:12568–73 [Google Scholar]
  17. Bouclet A, Driquez B, Farge E. 2011. Mechanotransduction in mechanically coupled pulsating cells: transition to collective constriction and mesoderm invagination simulation. Phys. Biol. 8:066007 [Google Scholar]
  18. Bowdish KS, Yuan HE, Mitchell AP. 1994. Analysis of RIM11, a yeast protein kinase that phosphorylates the meiotic activator IME1. Mol. Cell. Biol. 14:127909–19 [Google Scholar]
  19. Bozic B, Derganc J, Svetina S. 2006. Blastula wall invagination examined on the basis of shape behavior of vesicular objects with laminar envelopes. Int. J. Dev. Biol. 50:143–50 [Google Scholar]
  20. Brabletz T, Jung A, Spaderna S, Hlubek F, Kirchner T. 2005. Opinion: Migrating cancer stem cells—an integrated concept of malignant tumour progression. Nat. Rev. Cancer 5:744–49 [Google Scholar]
  21. Brazill DT, Thorner J, Martin GS. 1997. Mck1, a member of the glycogen synthase kinase 3 family of protein kinases, is a negative regulator of pyruvate kinase in the yeast Saccharomyces cerevisiae. J. Bacteriol. 179:134415–18 [Google Scholar]
  22. Brunet T, Bouclet A, Ahmadi P, Mitrossilis D, Driquez B. et al. 2013. Evolutionary conservation of early mesoderm specification by mechanotransduction in Bilateria. Nat. Commun. 4:2821 [Google Scholar]
  23. Buckley CD, Tan J, Anderson KL, Hanein D, Volkmann N. et al. 2014. Cell adhesion. The minimal cadherin-catenin complex binds to actin filaments under force. Science 346:62091254211 [Google Scholar]
  24. Butcher DT, Alliston T, Weaver VM. 2009. A tense situation: forcing tumour progression. Nat. Rev. Cancer 9:108–22 [Google Scholar]
  25. Butler LC, Blanchard GB, Kabla AJ, Lawrence NJ, Welchman DP. et al. 2009. Cell shape changes indicate a role for extrinsic tensile forces in Drosophila germ-band extension. Nat. Cell Biol. 11:859–64 [Google Scholar]
  26. Cavard C, Colnot S, Audard V, Benhamouche S, Finzi L. et al. 2008. Wnt/β-catenin pathway in hepatocellular carcinoma pathogenesis and liver physiology. Future Oncol. 4:647–60 [Google Scholar]
  27. Chalfie M. 2009. Neurosensory mechanotransduction. Nat. Rev. Mol. Cell Biol. 10:44–52 [Google Scholar]
  28. Chassot AA, Lossaint G, Turchi L, Meneguzzi G, Fisher D. et al. 2008. Confluence-induced cell cycle exit involves pre-mitotic CDK inhibition by p27(Kip1) and cyclin D1 downregulation. Cell Cycle 7:2038–46 [Google Scholar]
  29. Colnot S, Decaens T, Niwa-Kawakita M, Godard C, Hamard G. et al. 2004. Liver-targeted disruption of Apc in mice activates β-catenin signaling and leads to hepatocellular carcinomas. PNAS 101:17216–21 [Google Scholar]
  30. Connelly JT, Gautrot JE, Trappmann B, Tan DW-M, Donati G. et al. 2010. Actin and serum response factor transduce physical cues from the microenvironment to regulate epidermal stem cell fate decisions. Nat. Cell Biol. 12:711–18 [Google Scholar]
  31. Coste B, Mathur J, Schmidt M, Earley TJ, Ranade S. et al. 2010. Piezo1 and Piezo2 are essential components of distinct mechanically activated cation channels. Science 330:55–60 [Google Scholar]
  32. Coste B, Xiao B, Santos JS, Syeda R, Grandl J. et al. 2012. Piezo proteins are pore-forming subunits of mechanically activated channels. Nature 483:176–81 [Google Scholar]
  33. Daugherty RL, Gottardi CJ. 2007. Phospho-regulation of β-catenin adhesion and signaling functions. Physiology 22:303–9 [Google Scholar]
  34. Dawes-Hoang RE, Parmar KM, Christiansen AE, Phelps CB, Brand AH, Wieschaus EF. 2005. folded gastrulation, cell shape change and the control of myosin localization. Development 132:4165–78 [Google Scholar]
  35. Dayel MJ, Alegado RA, Fairclough SR, Levin TC, Nichols SA. et al. 2011. Cell differentiation and morphogenesis in the colony-forming choanoflagellate Salpingoeca rosetta. Dev. Biol. 357:73–82 [Google Scholar]
  36. Del Rio A, Perez-Jimenez R, Liu R, Roca-Cusachs P, Fernandez JM, Sheetz MP. 2009. Stretching single talin rod molecules activates vinculin binding. Science 323:638–41 [Google Scholar]
  37. Delarue M, Montel F, Vignjevic D, Prost J, Joanny JF, Cappello G. 2014. Compressive stress inhibits proliferation in tumor spheroids through a volume limitation. Biophys. J. 107:1821–8 [Google Scholar]
  38. Desprat N, Supatto W, Pouille P-A, Beaurepaire E, Farge E. 2008. Tissue deformation modulates Twist expression to determine anterior midgut differentiation in Drosophila embryos. Dev. Cell 15:470–77 [Google Scholar]
  39. Di-Poi N, Montoya-Burgos JI, Miller H, Pourquie O, Milinkovitch MC, Duboule D. 2010. Changes in Hox genes' structure and function during the evolution of the squamate body plan. Nature 464:99–103 [Google Scholar]
  40. Dong J, Feldmann G, Huang J, Wu S, Zhang N. et al. 2007. Elucidation of a universal size-control mechanism in Drosophila and mammals. Cell 130:1120–33 [Google Scholar]
  41. Dufort CC, Paszek MJ, Weaver VM. 2011. Balancing forces: architectural control of mechanotransduction. Nat. Rev. Mol. Cell Biol. 12:308–19 [Google Scholar]
  42. Dupont S, Morsut L, Aragona M, Enzo E, Giulitti S. et al. 2011. Role of YAP/TAZ in mechanotransduction. Nature 474:179–83 [Google Scholar]
  43. Edwards CM, Chapman SJ. 2007. Biomechanical modelling of colorectal crypt budding and fission. Bull. Math. Biol. 69:1927–42 [Google Scholar]
  44. Elsharkawy AM, Mann DA. 2007. Nuclear factor-κB and the hepatic inflammation-fibrosis-cancer axis. Hepatology 46:590–7 [Google Scholar]
  45. Engler AJ, Sen S, Sweeney HL, Discher DE. 2006. Matrix elasticity directs stem cell lineage specification. Cell 126:677–89 [Google Scholar]
  46. Farge E. 2003. Mechanical induction of Twist in the Drosophila foregut/stomodeal primordium. Curr. Biol. 13:1365–77 [Google Scholar]
  47. Fernandez-Gonzalez R, de Matos Simoes S, Roper JC, Eaton S, Zallen JA. 2009. Myosin II dynamics are regulated by tension in intercalating cells. Dev. Cell 17:736–43 [Google Scholar]
  48. Fernandez-Sanchez ME, Barbier S, Whitehead J, Bealle G, Michel A. et al. 2015. Mechanical induction of the tumorigenic beta-catenin pathway by tumour growth pressure. Nature 523:92–95 [Google Scholar]
  49. Filas BA, Bayly PV, Taber LA. 2011. Mechanical stress as a regulator of cytoskeletal contractility and nuclear shape in embryonic epithelia. Ann. Biomed. Eng. 39:443–54 [Google Scholar]
  50. Fodde R, Edelmann W, Yang K, Vanleeuwen C, Carlson C. et al. 1994. A targeted chain-termination mutation in the mouse Apc gene results in multiple intestinal tumors. PNAS 91:8969–73 [Google Scholar]
  51. Foe VE. 1989. Mitotic domains reveal early commitment of cells in Drosophila embryos. Development 107:1–22 [Google Scholar]
  52. Gao Y, Shi Q, Xu S, Du C, Liang L. et al. 2014. Curcumin promotes KLF5 proteasome degradation through downregulating YAP/TAZ in bladder cancer cells. Int. J. Mol. Sci. 15:15173–87 [Google Scholar]
  53. García Fernández BG, Gaspar P, Brás-Pereira C, Jezowska B, Rebelo SR, Janody F. 2011. Actin-capping protein and the Hippo pathway regulate F-actin and tissue growth in Drosophila. Development 138:2337–46 [Google Scholar]
  54. Geiger B, Spatz JP, Bershadsky AD. 2009. Environmental sensing through focal adhesions. Nat. Rev. Mol. Cell Biol. 10:21–33 [Google Scholar]
  55. Ghajar CM, Bissell MJ. 2008. Extracellular matrix control of mammary gland morphogenesis and tumorigen-esis: insights from imaging. Histochem. Cell Biol. 130:1105–18 [Google Scholar]
  56. Gospodarowicz D, Greenburg G, Birdwell CR. 1978. Determination of cellular shape by the extracellular matrix and its correlation with the control of cellular growth. Cancer Res. 38:4155–71 [Google Scholar]
  57. Grashoff C, Hoffman BD, Brenner MD, Zhou R, Parsons M. et al. 2010. Measuring mechanical tension across vinculin reveals regulation of focal adhesion dynamics. Nature 466:263–66 [Google Scholar]
  58. Guo TB, Chan KC, Hakovirta H, Xiao Y, Toppari J. et al. 2003. Evidence for a role of glycogen synthase kinase-3 beta in rodent spermatogenesis. J. Androl. 24:3332–42 [Google Scholar]
  59. Haeckel E. 1874. Die Gastraea-Theorie, die phylogenetische Klassifikation des Tierreichs, und die Homologie der Keimblätter. Z. Naturwiss. Jena 8:1–55 [Google Scholar]
  60. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M. et al. 2008. Developmental patterning by mechanical signals in Arabidopsis. Science 322:1650–55 [Google Scholar]
  61. Hanahan D, Weinberg RA. 2011. Hallmarks of cancer: the next generation. Cell 144:646–74 [Google Scholar]
  62. Hannezo E, Prost J, Joanny JF. 2011. Instabilities of monolayered epithelia: shape and structure of villi and crypts. Phys. Rev. Lett. 107:078104 [Google Scholar]
  63. Harvey KF, Zhang X, Thomas DM. 2013. The Hippo pathway and human cancer. Nat. Rev. Cancer 13:246–57 [Google Scholar]
  64. He B, Doubrovinski K, Polyakov O, Wieschaus E. 2014. Apical constriction drives tissue-scale hydrodynamic flow to mediate cell elongation. Nature 508:392–96 [Google Scholar]
  65. Hens JR, Wilson KM, Dann P, Chen X, Horowitz MC, Wysolmerski JJ. 2005. TOPGAL mice show that the canonical Wnt signaling pathway is active during bone development and growth and is activated by mechanical loading in vitro. J. Bone Miner. Res. 20:1103–13 [Google Scholar]
  66. Hiramatsu R, Matsuoka T, Kimura-Yoshida C, Han SW, Mochida K. et al. 2013. External mechanical cues trigger the establishment of the anterior-posterior axis in early mouse embryos. Dev. Cell 27:131–44 [Google Scholar]
  67. Hirata Y, Andoh T, Asahara T, Kikuchi A. 2003. Yeast glycogen synthase kinase-3 activates Msn2p-dependent transcription of stress responsive genes. Mol. Biol. Cell 14:1302–12 [Google Scholar]
  68. Hove JR, Koster RW, Forouhar AS, Acevedo-Bolton G, Fraser SE, Gharib M. 2003. Intracardiac fluid forces are an essential epigenetic factor for embryonic cardiogenesis. Nature 421:172–77 [Google Scholar]
  69. Hsu YL, Hung JY, Chou SH, Huang MS, Tsai MJ. et al. 2015. Angiomotin decreases lung cancer progression by sequestering oncogenic YAP/TAZ and decreasing Cyr61 expression. Oncogene 344056–68 [Google Scholar]
  70. Huang S, Ingber DE. 2000. Shape-dependent control of cell growth, differentiation, and apoptosis: switching between attractors in cell regulatory networks. Exp. Cell Res. 261:91–103 [Google Scholar]
  71. Hufnagel L, Teleman AA, Rouault H, Cohen SM, Shraiman BI. 2007. On the mechanism of wing size determination in fly development. PNAS 104:3835–40 [Google Scholar]
  72. Huh D, Matthews BD, Mammoto A, Montoya-Zavala M, Hsin HY, Ingber DE. 2010. Reconstituting organ-level lung functions on a chip. Science 328:1662–68 [Google Scholar]
  73. Idema T, Dubuis JO, Kang L, Manning ML, Nelson PC. et al. 2013. The syncytial Drosophila embryo as a mechanically excitable medium. PLOS ONE 8:e77216 [Google Scholar]
  74. Jaalouk DE, Lammerding J. 2009. Mechanotransduction gone awry. Nat. Rev. Mol. Cell. Biol. 10:63–73 [Google Scholar]
  75. Jaegerstem G. 1956. The early phylogeny of the metazoa. The bilaterogastrea theory. Zool. Bidrag. 30:321–54 [Google Scholar]
  76. Jin AJ, Nossal R. 2000. Rigidity of triskelion arms and clathrin nets. Biophys. J. 78:1183–94 [Google Scholar]
  77. Kahn J, Shwartz Y, Blitz E, Krief S, Sharir A. et al. 2009. Muscle contraction is necessary to maintain joint progenitor cell fate. Dev. Cell 16:734–43 [Google Scholar]
  78. Kalamegham R, Sturgill D, Siegfried E, Oliver B. 2007. Drosophila mojoless, a retroposed GSK-3, has functionally diverged to acquire an essential role in male fertility. Mol. Biol. Evol. 24:3732–42 [Google Scholar]
  79. Kassir Y, Rubin-Bejerano I, Mandel-Gutfreund Y. 2006. The Saccharomyces cerevisiae GSK-3 beta homologs. Curr. Drug Targets 7:111455–65 [Google Scholar]
  80. Keller R, Davidson L, Edlund A, Elul T, Ezin M. et al. 2000. Mechanisms of convergence and extension by cell intercalation. Philos. Trans. R. Soc. B 355:897–922 [Google Scholar]
  81. Kim K, Ossipova O, Sokol SY. 2014. Neural crest specification by inhibition of the ROCK/Myosin II pathway. Stem Cells 33:3674–85 [Google Scholar]
  82. King N, Westbrook MJ, Young SL, Kuo A, Abedin M. et al. 2008. The genome of the choanoflagellate Monosiga brevicollis and the origin of metazoans. Nature 451:783–88 [Google Scholar]
  83. Kirchner T, Brabletz T. 2000. Patterning and nuclear β-catenin expression in the colonic adenoma-carcinoma sequence. Analogies with embryonic gastrulation. Am. J. Pathol. 157:1113–21 [Google Scholar]
  84. Kris AS, Kamm RD, Sieminski AL. 2008. VASP involvement in force-mediated adherens junction strengthening. Biochem. Biophys. Res. Commun. 375:134–38 [Google Scholar]
  85. Landsberg KP, Farhadifar R, Ranft J, Umetsu D, Widmann TJ. et al. 2009. Increased cell bond tension governs cell sorting at the Drosophila anteroposterior compartment boundary. Curr. Biol. 19:1950–55 [Google Scholar]
  86. Leckband DE, Le Duc Q, Wang N, de Rooij J. 2011. Mechanotransduction at cadherin-mediated adhesions. Curr. Opin. Cell Biol. 23:523–30 [Google Scholar]
  87. Legoff L, Rouault H, Lecuit T. 2013. A global pattern of mechanical stress polarizes cell divisions and cell shape in the growing Drosophila wing disc. Development 140:4051–59 [Google Scholar]
  88. Li J, Hou B, Tumova S, Muraki K, Bruns A. et al. 2014. Piezo1 integration of vascular architecture with physiological force. Nature 515:279–82 [Google Scholar]
  89. Liang K, Zhou G, Zhang Q, Li J, Zhang C. 2014. Expression of Hippo pathway in colorectal cancer. Saudi J. Gastroenterol. 20:188–94 [Google Scholar]
  90. Linnewiel-Hermoni K, Motro Y, Miller Y, Levy J, Sharoni Y. 2014. Carotenoid derivatives inhibit nuclear factor κB activity in bone and cancer cells by targeting key thiol groups. Free Radic. Biol. Med. 75:105–20 [Google Scholar]
  91. Liu H, Yin J, Wang H, Jiang G, Deng M. et al. 2015. FOXO3a modulates WNT/β-catenin signaling and suppresses epithelial-to-mesenchymal transition in prostate cancer cells. Cell Signal. 27:3510–18 [Google Scholar]
  92. Liu Z, Tan JL, Cohen DM, Yang MT, Sniadecki NJ. et al. 2010. Mechanical tugging force regulates the size of cell-cell junctions. PNAS 107:9944–49 [Google Scholar]
  93. Mammoto T, Mammoto A, Torisawa YS, Tat T, Gibbs A. et al. 2011. Mechanochemical control of mesenchymal condensation and embryonic tooth organ formation. Dev. Cell 21:758–69 [Google Scholar]
  94. Manning AJ, Peters KA, Peifer M, Rogers SL. 2013. Regulation of epithelial morphogenesis by the G protein–coupled receptor Mist and its ligand Fog. Sci. Signal. 6ra98 [Google Scholar]
  95. Mao Y, Ge X, Frank CL, Madison JM, Koehler AN. et al. 2009. Disrupted in Schizophrenia 1 regulates neuronal progenitor proliferation via modulation of GSK3β/β-catenin signaling. Cell 136:61017–31 [Google Scholar]
  96. Mao Y, Tournier AL, Hoppe A, Kester L, Thompson BJ, Tapon N. 2013. Differential proliferation rates generate patterns of mechanical tension that orient tissue growth. EMBO J. 32:2790–803 [Google Scholar]
  97. Martin AC, Kaschube M, Wieschaus EF. 2009. Pulsed contractions of an actin-myosin network drive apical constriction. Nature 457:495–99 [Google Scholar]
  98. Martin AC. 2009. Pulsation and stabilization: contractile forces that underlie morphogenesis. Dev. Biol. 341:114–25 [Google Scholar]
  99. Mason FM, Tworoger M, Martin AC. 2013. Apical domain polarization localizes actin-myosin activity to drive ratchet-like apical constriction. Nat. Cell Biol. 15:926–36 [Google Scholar]
  100. Matsuoka T, Yashiro M. 2014. Rho/ROCK signaling in motility and metastasis of gastric cancer. World J. Gastroenterol. 20:13756–66 [Google Scholar]
  101. McBeath R, Pirone DM, Nelson CM, Bhadriraju K, Chen CS. 2004. Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev. Cell 6:483–95 [Google Scholar]
  102. McGrail DJ, Kieu QMN, Dawson MR. 2014. The malignancy of metastatic ovarian cancer cells is increased on soft matrices through a mechanosensitive Rho-ROCK pathway. J. Cell Sci. 127:2621–26 [Google Scholar]
  103. Monier B, Gettings M, Gay G, Mangeat T, Schott S. et al. 2015. Apico-basal forces exerted by apoptotic cells drive epithelium folding. Nature 518:245–48 [Google Scholar]
  104. Monier B, Pelissier-Monier A, Brand AH, Sanson B. 2010. An actomyosin-based barrier inhibits cell mixing at compartmental boundaries in Drosophila embryos. Nat. Cell Biol. 12:60–65 [Google Scholar]
  105. Morize P, Christiansen AE, Costa M, Parks S, Wieschaus E. 1998. Hyperactivation of the folded gastrulation pathway induces specific cell shape changes. Development 125:589–97 [Google Scholar]
  106. Mouw JK, Yui Y, Damiano L, Bainer RO, Lakins JN. et al. 2014. Tissue mechanics modulate microRNA-dependent PTEN expression to regulate malignant progression. Nat. Med. 20:360–67 [Google Scholar]
  107. Nassoy P, Lamaze C. 2012. Stressing caveolae new role in cell mechanics. Trends Cell Biol. 22:381–89 [Google Scholar]
  108. Neigeborn L, Mitchell AP. 1991. The yeast MCK1 gene encodes a protein kinase homolog that activates early meiotic gene expression. Genes Dev. 5:4533–48 [Google Scholar]
  109. Nichols SA, Roberts BW, Richter DJ, Fairclough SR, King N. 2012. Origin of metazoan cadherin diversity and the antiquity of the classical cadherin/β-catenin complex. Proc. Natl. Acad. Sci. USA 109:13046–51 [Google Scholar]
  110. Nielsen C. 2012. Animal Evolution: Interrelationships of the Living Phyla Oxford, UK: Oxford Univ. Press [Google Scholar]
  111. Nienhaus U, Aegerter-Wilmsen T, Aegerter CM. 2009. Determination of mechanical stress distribution in Drosophila wing discs using photoelasticity. Mech. Dev. 126:942–49 [Google Scholar]
  112. Nusse R. 2015. Wnt target genes. The Wnt Homepage, updated May 2015. http://web.stanford.edu/group/nusselab/cgi-bin/wnt/target_genes
  113. Odell GM, Oster G, Alberch P, Burnside B. 1981. The mechanical basis of morphogenesis. I. Epithelial folding and invagination. Dev. Biol. 85:446–62 [Google Scholar]
  114. Oh H, Irvine KD. 2008. In vivo regulation of Yorkie phosphorylation and localization. Development 135:1081–88 [Google Scholar]
  115. Ohteki T, Parsons M, Zakarian A, Jones RG, Nguyen LT. et al. 2000. Negative regulation of T cell proliferation and interleukin 2 production by the serine threonine kinase Gsk-3. J. Exp. Med. 192:199–104 [Google Scholar]
  116. Papusheva E, Heisenberg C-P. 2010. Spatial organization of adhesion: force-dependent regulation and function in tissue morphogenesis. EMBO J. 29:2753–68 [Google Scholar]
  117. Pare AC, Vichas A, Fincher CT, Mirman Z, Farrell DL. et al. 2014. A positional Toll receptor code directs convergent extension in Drosophila. Nature 515:523–27 [Google Scholar]
  118. Paszek MJ, Zahir N, Johnson KR, Lakins JN, Rozenberg GI. et al. 2005. Tensional homeostasis and the malignant phenotype. Cancer Cell 8:241–54 [Google Scholar]
  119. Pickup MW, Mouw JK, Weaver VM. 2014. The extracellular matrix modulates the hallmarks of cancer. EMBO Rep. 15:1243–53 [Google Scholar]
  120. Pirone DM, Liu WF, Ruiz SA, Gao L, Raghavan S. et al. 2006. An inhibitory role for FAK in regulating proliferation: a link between limited adhesion and RhoA-ROCK signaling. J. Cell Biol. 174:277–88 [Google Scholar]
  121. Pouille PA, Ahmadi P, Brunet AC, Farge E. 2009. Mechanical signals trigger myosin II redistribution and mesoderm invagination in Drosophila embryos. Sci. Signal 2:ra16 [Google Scholar]
  122. Pouille PA, Farge E. 2008. Hydrodynamic simulation of multicellular embryo invagination. Phys. Biol. 5:15005 [Google Scholar]
  123. Ranade SS, Woo S-H, Dubin AE, Moshourab RA, Wetzel C. et al. 2014. Piezo2 is the major transducer of mechanical forces for touch sensation in mice. Nature 516:121–25 [Google Scholar]
  124. Rauch C, Brunet AC, Deleule J, Farge E. 2002. C2C12 myoblast/osteoblast transdifferentiation steps enhanced by epigenetic inhibition of BMP2 endocytosis. Am. J. Physiol. Cell Physiol. 283:C235–43 [Google Scholar]
  125. Rauch C, Farge E. 2000. Endocytosis switch controlled by transmembrane osmotic pressure and phospholipid number asymmetry. Biophys. J. 78:3036–47 [Google Scholar]
  126. Raucher D, Sheetz MP. 1999. Membrane expansion increases endocytosis rate during mitosis. J. Cell Biol. 144:497–506 [Google Scholar]
  127. Rentzsch F, Hobmayer B, Holstein TW. 2005. Glycogen synthase kinase 3 has a proapoptotic function in Hydra gametogenesis. Dev. Biol. 278:11–12 [Google Scholar]
  128. Resnick N, Collins T, Atkinson W, Bonthron DT, Dewey CF Jr, Gimbrone MA Jr. 1993. Platelet-derived growth factor B chain promoter contains a cis-acting fluid shear-stress-responsive element. PNAS 90:4591–95 [Google Scholar]
  129. Riveline D, Zamir E, Balaban NQ, Schwarz US, Ishizaki T. et al. 2001. Focal contacts as mechanosensors: externally applied local mechanical force induces growth of focal contacts by an mDia1-dependent and ROCK-independent mechanism. J. Cell Biol. 153:1175–86 [Google Scholar]
  130. Roura S, Miravet S, Piedra J, Garcia de Herreros A, Dunach M. 1999. Regulation of E-cadherin/Catenin association by tyrosine phosphorylation. J. Biol. Chem. 274:36734–40 [Google Scholar]
  131. Rubashkin MG, Cassereau L, Bainer R, Dufort CC, Yui Y. et al. 2014. Force engages vinculin and promotes tumor progression by enhancing PI3K activation of phosphatidylinositol (3,4,5)-triphosphate. Cancer Res. 74:4597–611 [Google Scholar]
  132. Saidi Y, Hearn TJ, Coates JC. 2012. Function and evolution of “green” GSK3/Shaggy-like kinases. Trends Plant Sci. 17:139–46 [Google Scholar]
  133. Samuel MS, Lopez JI, McGhee EJ, Croft DR, Strachan D. et al. 2011. Actomyosin-mediated cellular tension drives increased tissue stiffness and β-catenin activation to induce epidermal hyperplasia and tumor growth. Cancer Cell 19:776–91 [Google Scholar]
  134. Sansores-Garcia L, Bossuyt W, Wada K-I, Yonemura S, Tao C. et al. 2011. Modulating F-actin organization induces organ growth by affecting the Hippo pathway. EMBO J. 30:2325–35 [Google Scholar]
  135. Sawada Y, Tamada M, Dubin-Thaler BJ, Cherniavskaya O, Sakai R. et al. 2006. Force sensing by mechanical extension of the Src family kinase substrate p130Cas. Cell 127:1015–26 [Google Scholar]
  136. Schilde C, Araki T, Williams H, Harwood A, Williams JG. 2004. GSK3 is a multifunctional regulator of Dictyostelium development. Development 131:184555–65 [Google Scholar]
  137. Sebé-Pedrós A, Irimia M, Campo JD, Parra-Acero H, Russ C. et al. 2013. Regulated aggregative multicellularity in a close unicellular relative of metazoa. eLife 2:e01287 [Google Scholar]
  138. Sebé-Pedrós A, Roger AJ, Lang FB, King N, Ruiz-Trillo I. 2010. Ancient origin of the integrin-mediated adhesion and signaling machinery. PNAS 107:10142–47 [Google Scholar]
  139. Sebio A, Gerger A, Matsusaka S, Yang D, Zhang W. et al. 2014. Genetic variants within obesity-related genes are associated with tumor recurrence in patients with stages II/III colon cancer. Pharmacogenet. Genomics 25:30–37 [Google Scholar]
  140. Seher TC, Narasimha M, Vogelsang E, Leptin M. 2007. Analysis and reconstitution of the genetic cascade controlling early mesoderm morphogenesis in the Drosophila embryo. Mech. Dev. 124:167–79 [Google Scholar]
  141. Shivashankar GV. 2011. Mechanosignaling to the cell nucleus and gene regulation. Annu. Rev. Biophys. 40:361–78 [Google Scholar]
  142. Shraiman BI. 2005. Mechanical feedback as a possible regulator of tissue growth. PNAS 102:3318–23 [Google Scholar]
  143. Spudich JA. 2006. Molecular motors take tension in stride. Cell 126:242–4 [Google Scholar]
  144. St. Johnston D, Nusslein-Volhard C. 1992. The origin of pattern and polarity in the Drosophila embryo. Cell 68:201–19 [Google Scholar]
  145. Suga H, Chen Z, de Mendoza A, Sebé-Pedrós A, Brown MW. et al. 2013. The Capsaspora genome reveals a complex unicellular prehistory of animals. Nat. Commun. 4:2325 [Google Scholar]
  146. Swift J, Ivanovska IL, Buxboim A, Harada T, Dingal PC. et al. 2013. Nuclear lamin-A scales with tissue stiffness and enhances matrix-directed differentiation. Science 341:1240104 [Google Scholar]
  147. Tan Y, Tajik A, Chen J, Jia Q, Chowdhury F. et al. 2014. Matrix softness regulates plasticity of tumour-repopulating cells via H3K9 demethylation and Sox2 expression. Nat. Commun. 5:4619 [Google Scholar]
  148. Thompson DAW. 1917. On Growth and Form Cambridge, UK: Cambridge Univ. Press [Google Scholar]
  149. Tokoyama Y, Peralta XG, Wells AR, Kierart DP, Edwards GS. 2008. Apoptotic force and tissue dynamics during Drosophila embryogenesis. Science 321:1683–86 [Google Scholar]
  150. Tseng A-S, Engel FB, Keating MT. 2006. The GSK-3 inhibitor BIO promotes proliferation in mammalian cardiomyocytes. Chem. Biol. 13:9957–63 [Google Scholar]
  151. Ukena TE, Goldman E, Benjamin TL, Karnovsky MJ. 1976. Lack of correlation between agglutinability, the surface distribution of con A and post-confluence inhibition of cell division in ten cell lines. Cell 7:213–22 [Google Scholar]
  152. Uyttewaal M, Burian A, Alim K, Landrein B, Borowska-Wykret D. et al. 2012. Mechanical stress acts via katanin to amplify differences in growth rate between adjacent cells in Arabidopsis. Cell 149:439–51 [Google Scholar]
  153. Veelen WV, Le NH, Helvensteijn W, Blonden L, Theeuwes M. et al. 2011. β-Catenin tyrosine 654 phosphorylation increases Wnt signalling and intestinal tumorigenesis. Gut 60:1204–12 [Google Scholar]
  154. Vermot J, Forouhar AS, Liebling M, Wu D, Plummer D. et al. 2009. Reversing blood flows act through klf2a to ensure normal valvulogenesis in the developing heart. PLOS Biol. 7:e1000246 [Google Scholar]
  155. Wada KI, Itoga K, Okano T, Yonemura S, Sasaki H. 2011. Hippo pathway regulation by cell morphology and stress fibers. Development 138:3907–14 [Google Scholar]
  156. Wang N, Tytell JD, Ingber DE. 2009. Mechanotransduction at a distance: mechanically coupling the extracellular matrix with the nucleus. Nat. Rev. Mol. Cell Biol. 10:75–82 [Google Scholar]
  157. Wang Y, Riechmann V. 2007. The role of the actomyosin cytoskeleton in coordination of tissue growth during Drosophila oogenesis. Curr. Biol. 17:1349–55 [Google Scholar]
  158. Wartlick O, Mumcu P, Julicher F, Gonzalez-Gaitan M. 2011. Understanding morphogenetic growth control—lessons from flies. Nat. Rev. Mol. Cell Biol. 12:594–604 [Google Scholar]
  159. Whitehead J, Vignjevic D, Fuetterer C, Beaurepaire E, Robine S, Farge E. 2008. Mechanical factors activate β-catenin–dependent oncogene expression in APC1638N/+mouse colon. HFSP J. 2:286–94 [Google Scholar]
  160. Williams F, Tew HA, Paul CE, Adams JC. 2014. The predicted secretomes of Monosiga brevicollis and Capsaspora owczarzaki, close unicellular relatives of metazoans, reveal new insights into the evolution of the metazoan extracellular matrix. Matrix Biol. 37:60–68 [Google Scholar]
  161. Wolpert L. 1992. Gastrulation and the evolution of development. Development 1992:Suppl.7–13 [Google Scholar]
  162. Wozniak MA, Chen CS. 2009. Mechanotransduction in development: a growing role for contractility. Nat. Rev. Mol. Cell Biol. 10:34–43 [Google Scholar]
  163. Xie S, Martin AC. 2015. Intracellular signalling and intercellular coupling coordinate heterogeneous contractile events to facilitate tissue folding. Nat. Commun. 6:7161 [Google Scholar]
  164. Yonemura S. 2011. A mechanism of mechanotransduction at the cell-cell interface: emergence of α-catenin as the center of a force-balancing mechanism for morphogenesis in multicellular organisms. BioEssays 33:732–36 [Google Scholar]
  165. Yonemura S, Wada Y, Watanabe T, Nagafuchi A, Shibata M. 2010. α-Catenin as a tension transducer that induces adherens junction development. Nat. Cell Biol. 12:533–42 [Google Scholar]
  166. Young PE, Pesacreta TC, Kiehart DP. 1991. Dynamic changes in the distribution of cytoplasmic myosin during Drosophila embryogenesis. Development 111:1–14 [Google Scholar]
  167. Yu H, Mouw JK, Weaver VM. 2011. Forcing form and function: biomechanical regulation of tumor evolution. Trends Cell Biol. 21:47–56 [Google Scholar]
  168. Zhang H, Landmann F, Zahreddine H, Rodriguez D, Koch M, Labouesse M. 2011. A tension-induced mechanotransduction pathway promotes epithelial morphogenesis. Nature 471:99–103 [Google Scholar]
  169. Zhao B, Li L, Wang L, Wang CY, Yu J, Guan KL. 2012. Cell detachment activates the Hippo pathway via cytoskeleton reorganization to induce anoikis. Genes Dev. 26:54–68 [Google Scholar]
  170. Zhao B, Wei X, Li W, Udan RS, Yang Q. et al. 2007. Inactivation of YAP oncoprotein by the Hippo pathway is involved in cell contact inhibition and tissue growth control. Genes Dev. 21:2747–61 [Google Scholar]
  171. Zhu X, Assoian RK. 1995. Integrin-dependent activation of MAP kinase: a link to shape-dependent cell proliferation. Mol. Biol. Cell. 6:273–82 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error