Plant-pathogen interactions can result in dramatic visual changes in the host, such as galls, phyllody, pseudoflowers, and altered root-system architecture, indicating that the invading microbe has perturbed normal plant growth and development. These effects occur on a cellular level but range up to the organ scale, and they commonly involve attenuation of hormone homeostasis and deployment of effector proteins with varying activities to modify host cell processes. This review focuses on the cellular-reprogramming mechanisms of filamentous and bacterial plant pathogens that exhibit a biotrophic lifestyle for part, if not all, of their lifecycle in association with the host. We also highlight strategies for exploiting our growing knowledge of microbial host reprogramming to study plant processes other than immunity and to explore alternative strategies for durable plant resistance.


Article metrics loading...

Loading full text...

Full text loading...


Literature Cited

  1. Agrios GN. 2005. Plant Pathology Waltham, MA: Elsevier Acad.
  2. Antony G, Zhou J, Huang S, Li T, Liu B. et al. 2010. Rice xa13 recessive resistance to bacterial blight is defeated by induction of the disease susceptibility gene Os-11N3. Plant Cell 22:3864–76 [Google Scholar]
  3. Aragon IM, Perez-Martinez I, Moreno-Perez A, Cerezo M, Ramos C. 2014. New insights into the role of indole-3-acetic acid in the virulence of Pseudomonas savastanoi pv. savastanoi. FEMS Microbiol. Lett. 356:184–92 [Google Scholar]
  4. Ariel F, Brault-Hernandez M, Laffont C, Huault E, Brault M. et al. 2012. Two direct targets of cytokinin signaling regulate symbiotic nodulation in Medicago truncatula. Plant Cell 24:3838–52 [Google Scholar]
  5. Bartetzko V, Sonnewald S, Vogel F, Hartner K, Stadler R. et al. 2009. The Xanthomonas campestris pv. vesicatoria type III effector protein XopJ inhibits protein secretion: evidence for interference with cell wall–associated defense responses. Mol. Plant Microbe Interact. 22:655–64 [Google Scholar]
  6. Bauer R, Garnica S, Oberwinkler F, Riess K, Weiß M, Begerow D. 2015. Entorrhizomycota: A new fungal phylum reveals new perspectives on the evolution of Fungi. PLOS ONE 10:7e0128183 [Google Scholar]
  7. Bernoux M, Timmers T, Jauneau A, Briere C, de Wit PJ. et al. 2008. RD19, an Arabidopsis cysteine protease required for RRS1-R–mediated resistance, is relocalized to the nucleus by the Ralstonia solanacearum PopP2 effector. Plant Cell 20:2252–64 [Google Scholar]
  8. Bhattacharya A, Kourmpetli S, Ward DA, Thomas SG, Gong F. et al. 2012. Characterization of the fungal gibberellin desaturase as a 2-oxoglutarate–dependent dioxygenase and its utilization for enhancing plant growth. Plant Physiol. 160:837–45 [Google Scholar]
  9. Block A, Guo M, Li G, Elowsky C, Clemente TE, Alfano JR. 2010. The Pseudomonas syringae type III effector HopG1 targets mitochondria, alters plant development and suppresses plant innate immunity. Cell. Microbiol. 12:318–30 [Google Scholar]
  10. Boch J, Bonas U, Lahaye T. 2014. TAL effectors—pathogen strategies and plant resistance engineering. New Phytol. 204:823–32 [Google Scholar]
  11. Boch J, Scholze H, Schornack S, Landgraf A, Hahn S. et al. 2009. Breaking the code of DNA binding specificity of TAL-type III effectors. Science 326:1509–12 [Google Scholar]
  12. Bomke C, Rojas MC, Gong F, Hedden P, Tudzynski B. 2008. Isolation and characterization of the gibberellin biosynthetic gene cluster in Sphaceloma manihoticola. Appl. Environ. Microbiol. 74:5325–39 [Google Scholar]
  13. Bomke C, Tudzynski B. 2009. Diversity, regulation, and evolution of the gibberellin biosynthetic pathway in fungi compared to plants and bacteria. Phytochemistry 70:1876–93 [Google Scholar]
  14. Bonhomme M, André O, Badis Y, Ronfort J, Burgarella C. et al. 2014. High-density genome-wide association mapping implicates an F-box encoding gene in Medicago truncatula resistance to Aphanomyces euteiches. New Phytol. 201:1328–42 [Google Scholar]
  15. Bos JIB, Armstrong MR, Gilroy EM, Boevink PC, Hein I. et al. 2010. Phytophthora infestans effector AVR3a is essential for virulence and manipulates plant immunity by stabilizing host E3 ligase CMPG1. PNAS 107:9909–14 [Google Scholar]
  16. Bozkurt TO, Belhaj K, Dagdas YF, Chaparro-Garcia A, Wu CH. et al. 2015. Rerouting of plant late endocytic trafficking toward a pathogen interface. Traffic 16:204–26 [Google Scholar]
  17. Bozkurt TO, Schornack S, Win J, Shindo T, Ilyas M. et al. 2011. Phytophthora infestans effector AVRblb2 prevents secretion of a plant immune protease at the haustorial interface. PNAS 108:20832–7 [Google Scholar]
  18. Bruce SA, Saville BJ, Neil Emery RJ. 2011. Ustilago maydis produces cytokinins and abscisic acid for potential regulation of tumor formation in maize. J. Plant Growth Regul. 30:51–63 [Google Scholar]
  19. Buschges R, Hollricher K, Panstruga R, Simons G, Wolter M. et al. 1997. The barley mlo gene: a novel control element of plant pathogen resistance. Cell 88:695–705 [Google Scholar]
  20. Büttner D, He SY. 2009. Type III protein secretion in plant pathogenic bacteria. Plant Physiol. 150:1656–64 [Google Scholar]
  21. Caillaud M-C, Piquerez SJM, Fabro G, Steinbrenner J, Ishaque N. et al. 2012. Subcellular localization of the Hpa RxLR effector repertoire identifies a tonoplast-associated protein HaRxL17 that confers enhanced plant susceptibility. Plant J. 69:252–65 [Google Scholar]
  22. Caillaud MC, Asai S, Rallapalli G, Piquerez S, Fabro G, Jones JD. 2013. A downy mildew effector attenuates salicylic acid–triggered immunity in Arabidopsis by interacting with the host mediator complex. PLOS Biol. 11:e1001732 [Google Scholar]
  23. Cano LM, Raffaele S, Haugen RH, Saunders DGO, Leonelli L. et al. 2013. Major transcriptome reprogramming underlies floral mimicry induced by the rust fungus Puccinia monoica in Boechera stricta. PLOS ONE 8:75293 [Google Scholar]
  24. Catoira R, Galera C, de Billy F, Penmetsa RV, Journet EP. et al. 2000. Four genes of Medicago truncatula controlling components of a Nod factor transduction pathway. Plant Cell 12:1647–66 [Google Scholar]
  25. Chaves FC, Gianfagna TJ. 2006. Necrotrophic phase of Moniliophthora perniciosa causes salicylic acid accumulation in infected stems of cacao. Physiol. Mol. Plant Pathol. 69:104–8 [Google Scholar]
  26. Chen X. 2010. Small RNAs—secrets and surprises of the genome. Plant J. 61:941–58 [Google Scholar]
  27. Chen Z, Agnew JL, Cohen JD, He P, Shan L. et al. 2007. Pseudomonas syringae type III effector AvrRpt2 alters Arabidopsis thaliana auxin physiology. PNAS 104:20131–36 [Google Scholar]
  28. Chung KR, Tzeng DD. 2004. Biosynthesis of indole-3-acetic acid by the gall-inducing fungus Ustilago esculenta. J. Biol. Sci. 4:744–50 [Google Scholar]
  29. Cissé OH, Almeida JM, Fonseca A, Kumar AA, Salojarvi J. et al. 2013. Genome sequencing of the plant pathogen Taphrina deformans, the causal agent of peach leaf curl. mBio 4:e00055–13 [Google Scholar]
  30. Cui F, Wu S, Sun W, Coaker G, Kunkel B. et al. 2013. The Pseudomonas syringae type III effector AvrRpt2 promotes pathogen virulence via stimulating Arabidopsis auxin/indole acetic acid protein turnover. Plant Physiol. 162:1018–29 [Google Scholar]
  31. Czaja LF, Hogekamp C, Lamm P, Maillet F, Martinez EA. et al. 2012. Transcriptional responses toward diffusible signals from symbiotic microbes reveal MtNFP- and MtDMI3-dependent reprogramming of host gene expression by arbuscular mycorrhizal fungal lipochitooligosaccharides. Plant Physiol. 159:1671–85 [Google Scholar]
  32. Dawkins R. 1999. The Extended Phenotype: The Long Reach of the Gene Oxford, UK: Oxford Univ. Press.
  33. de Jonge R, van Esse HP, Kombrink A, Shinya T, Desaki Y. et al. 2010. Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–55 [Google Scholar]
  34. Deganello J, Leal GA, Rossi ML, Peres LEP, Figueira A. 2014. Interaction of Moniliophthora perniciosa biotypes with Micro-Tom tomato: a model system to investigate the witches' broom disease of Theobroma cacao. Plant Pathol. 63:1251–63 [Google Scholar]
  35. Dernoeden PH, Jackson N. 1980. Infection and mycelial colonization of gramineous hosts by Sclerophthora macrospora. Phytopathology 70:1009–13 [Google Scholar]
  36. Deshmukh S, Huckelhoven R, Schafer P, Imani J, Sharma M. et al. 2006. The root endophytic fungus Piriformospora indica requires host cell death for proliferation during mutualistic symbiosis with barley. PNAS 103:18450–57 [Google Scholar]
  37. Deslandes L, Rivas S. 2012. Catch me if you can: bacterial effectors and plant targets. Trends Plant Sci. 17:644–55 [Google Scholar]
  38. Djamei A, Schipper K, Rabe F, Ghosh A, Vincon V. et al. 2011. Metabolic priming by a secreted fungal effector. Nature 478:395–98 [Google Scholar]
  39. Djébali N, Aribi S, Taamalli W, Arraouadi S, Aouani ME, Badri M. 2013. Natural variation of Medicago truncatula resistance to Aphanomyces euteiches. Eur. J. Plant Pathol. 135:831–43 [Google Scholar]
  40. Djébali N, Jauneau A, Ameline-Torregrosa C, Chardon F, Jaulneau V. et al. 2009. Partial resistance of Medicago truncatula to Aphanomyces euteiches is associated with protection of the root stele and is controlled by a major QTL rich in proteasome-related genes. Mol. Plant Microbe Interact. 22:1043–55 [Google Scholar]
  41. Eichmann R, Bischof M, Weis C, Shaw J, Lacomme C. et al. 2010. BAX INHIBITOR-1 is required for full susceptibility of barley to powdery mildew. Mol. Plant Microbe Interact. 23:1217–27 [Google Scholar]
  42. Ellendorff U, Fradin EF, de Jonge R, Thomma BPHJ. 2009. RNA silencing is required for Arabidopsis defence against Verticillium wilt disease. J. Exp. Bot. 60:591–602 [Google Scholar]
  43. Evangelisti E, Govetto B, Minet-Kebdani N, Kuhn ML, Attard A. et al. 2013. The Phytophthora parasitica RXLR effector penetration-specific effector 1 favours Arabidopsis thaliana infection by interfering with auxin physiology. New Phytol. 199:476–89 [Google Scholar]
  44. Fahraeus G. 1957. The infection of clover root hairs by nodule bacteria studied by a simple glass slide technique. J. Gen. Microbiol. 16:374–81 [Google Scholar]
  45. Fineran JM. 1980. The structure of galls induced by Entorrhiza C. Weber (Ustilaginales) on roots of the Cyperaceae and Juncaceae. Nova Hedwig. 32:265–84 [Google Scholar]
  46. Fujita N, Aonuma W, Shimizu Y, Yamanaka K, Hirata A. et al. 2012. A petalless flower caused by a Microbotryum violaceum mutant. Int. J. Plant Sci. 173:464–73 [Google Scholar]
  47. Genre A, Chabaud M, Balzergue C, Puech-Pagès V, Novero M. et al. 2013. Short-chain chitin oligomers from arbuscular mycorrhizal fungi trigger nuclear Ca2+ spiking in Medicago truncatula roots and their production is enhanced by strigolactone. New Phytol. 198:190–202 [Google Scholar]
  48. Genre A, Ortu G, Bertoldo C, Martino E, Bonfante P. 2009. Biotic and abiotic stimulation of root epidermal cells reveals common and specific responses to arbuscular mycorrhizal fungi. Plant Physiol. 149:1424–34 [Google Scholar]
  49. Gimenez-Ibanez S, Boter M, Fernandez-Barbero G, Chini A, Rathjen JP, Solano R. 2014. The bacterial effector HopX1 targets JAZ transcriptional repressors to activate jasmonate signaling and promote infection in Arabidopsis. PLOS Biol. 12:e1001792 [Google Scholar]
  50. Giraldo MC, Valent B. 2013. Filamentous plant pathogen effectors in action. Nat. Rev. Microbiol. 11:800–14 [Google Scholar]
  51. Gonzalez-Rizzo S, Crespi M, Frugier F. 2006. The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–93 [Google Scholar]
  52. Gough C, Cullimore J. 2011. Lipo-chitooligosaccharide signaling in endosymbiotic plant-microbe interactions. Mol. Plant Microbe Interact. 24:867–78 [Google Scholar]
  53. Gravel V, Antoun H, Tweddell RJ. 2007. Growth stimulation and fruit yield improvement of greenhouse tomato plants by inoculation with Pseudomonas putida or Trichoderma atroviride: possible role of indole acetic acid (IAA). Soil Biol. Biochem. 39:1968–77 [Google Scholar]
  54. Griffis AH, Groves NR, Zhou X, Meier I. 2014. Nuclei in motion: movement and positioning of plant nuclei in development, signaling, symbiosis, and disease. Front. Plant Sci. 5:129 [Google Scholar]
  55. Gust AA, Willmann R, Desaki Y, Grabherr HM, Nürnberger T. 2012. Plant LysM proteins: modules mediating symbiosis and immunity. Trends Plant Sci. 17:495–502 [Google Scholar]
  56. Hann DR, Domínguez-Ferreras A, Motyka V, Dobrev PI, Schornack S. et al. 2014. The Pseudomonas type III effector HopQ1 activates cytokinin signaling and interferes with plant innate immunity. New Phytol. 201:585–98 [Google Scholar]
  57. Hansjakob A, Riederer M, Hildebrandt U. 2011. Wax matters: absence of very-long-chain aldehydes from the leaf cuticular wax of the glossy11 mutant of maize compromises the prepenetration processes of Blumeria graminis. Plant Pathol. 60:1151–61 [Google Scholar]
  58. Hemetsberger C, Herrberger C, Zechmann B, Hillmer M, Doehlemann G. 2012. The Ustilago maydis effector Pep1 suppresses plant immunity by inhibition of host peroxidase activity. PLOS Pathog. 8:e1002684 [Google Scholar]
  59. Hemetsberger C, Mueller AN, Matei A, Herrberger C, Hensel G. et al. 2015. The fungal core effector Pep1 is conserved across smuts of dicots and monocots. New Phytol. 206:1116–26 [Google Scholar]
  60. Hermosa R, Viterbo A, Chet I, Monte E. 2012. Plant-beneficial effects of Trichoderma and of its genes. Microbiology 158:17–25 [Google Scholar]
  61. Hogenhout SA, Oshima K, Ammar el D, Kakizawa S, Kingdom HN, Namba S. 2008. Phytoplasmas: bacteria that manipulate plants and insects. Mol. Plant Pathol. 9:403–23 [Google Scholar]
  62. Hogenhout SA, Van der Hoorn RAL, Terauchi R, Kamoun S. 2009. Emerging concepts in effector biology of plant-associated organisms. Mol. Plant Microbe Interact. 22:115–22 [Google Scholar]
  63. Hoshi A, Oshima K, Kakizawa S, Ishii Y, Ozeki J. et al. 2009. A unique virulence factor for proliferation and dwarfism in plants identified from a phytopathogenic bacterium. PNAS 106:6416–21 [Google Scholar]
  64. Hosni T, Moretti C, Devescovi G, Suarez-Moreno ZR, Fatmi MB. et al. 2011. Sharing of quorum-sensing signals and role of interspecies communities in a bacterial plant disease. ISME J. 5:1857–70 [Google Scholar]
  65. Hotson A, Chosed R, Shu H, Orth K, Mudgett MB. 2003. Xanthomonas type III effector XopD targets SUMO-conjugated proteins in planta. Mol. Microbiol. 50:377–89 [Google Scholar]
  66. Hu Y, Zhang JL, Jia HG, Sosso D, Li T. et al. 2014. Lateral organ boundaries 1 is a disease susceptibility gene for citrus bacterial canker disease. PNAS 111:E521–29 [Google Scholar]
  67. Jamir Y, Guo M, Oh HS, Petnicki-Ocwieja T, Chen S. et al. 2004. Identification of Pseudomonas syringae type III effectors that can suppress programmed cell death in plants and yeast. Plant J. 37:554–65 [Google Scholar]
  68. Jansen C, von Wettstein D, Schafer W, Kogel KH, Felk A, Maier FJ. 2005. Infection patterns in barley and wheat spikes inoculated with wild-type and trichodiene synthase gene disrupted Fusarium graminearum. PNAS 102:16892–97 [Google Scholar]
  69. Jarosch B, Kogel KH, Schaffrath U. 1999. The ambivalence of the barley Mlo locus: Mutations conferring resistance against powdery mildew (Blumeria graminis f. sp. hordei) enhance susceptibility to the rice blast fungus Magnaporthe grisea. Mol. Plant Microbe Interact. 12:508–14 [Google Scholar]
  70. Jelenska J, van Hal JA, Greenberg JT. 2010. Pseudomonas syringae hijacks plant stress chaperone machinery for virulence. PNAS 107:13177–82 [Google Scholar]
  71. Jelenska J, Yao N, Vinatzer BA, Wright CM, Brodsky JL, Greenberg JT. 2007. A J domain virulence effector of Pseudomonas syringae remodels host chloroplasts and suppresses defenses. Curr. Biol. 17:499–508 [Google Scholar]
  72. Judelson HS, Blanco FA. 2005. The spores of Phytophthora: weapons of the plant destroyer. Nat. Rev. Microbiol. 3:47–58 [Google Scholar]
  73. Kale SD, Gu B, Capelluto DG, Dou D, Feldman E. et al. 2010. External lipid PI3P mediates entry of eukaryotic pathogen effectors into plant and animal host cells. Cell 142:284–95 [Google Scholar]
  74. Kay S, Hahn S, Marois E, Hause G, Bonas U. 2007. A bacterial effector acts as a plant transcription factor and induces a cell size regulator. Science 318:648–51 [Google Scholar]
  75. Kazama Y, Fujiwara MT, Koizumi A, Nishihara K, Nishiyama R. et al. 2009. A SUPERMAN-like gene is exclusively expressed in female flowers of the dioecious plant Silene latifolia. Plant Cell Physiol. 50:1127–41 [Google Scholar]
  76. Kazama Y, Koizumi A, Uchida W, Ageez A, Kawano S. 2005. Expression of the floral B-function gene SLM2 in female flowers of Silene latifolia infected with the smut fungus Microbotryum violaceum. Plant Cell Physiol. 46:806–11 [Google Scholar]
  77. Kelley WL. 1998. The J-domain family and the recruitment of chaperone power. Trends Biochem. Sci. 23:222–7 [Google Scholar]
  78. Khang CH, Berruyer R, Giraldo MC, Kankanala P, Park SY. et al. 2010. Translocation of Magnaporthe oryzae effectors into rice cells and their subsequent cell-to-cell movement. Plant Cell 22:1388–403 [Google Scholar]
  79. Kilaru A, Bailey BA, Hasenstein KH. 2007. Moniliophthora perniciosa produces hormones and alters endogenous auxin and salicylic acid in infected cocoa leaves. FEMS Microbiol. Lett. 274:238–44 [Google Scholar]
  80. Kim H-S, Desveaux D, Singer AU, Patel P, Sondek J, Dangl JL. 2005. The Pseudomonas syringae effector AvrRpt2 cleaves its C-terminally acylated target, RIN4, from Arabidopsis membranes to block RPM1 activation. PNAS 102:6496–501 [Google Scholar]
  81. King RW, Mander LN, Asp T, MacMillan CP, Blundell CA, Evans LT. 2008. Selective deactivation of gibberellins below the shoot apex is critical to flowering but not to stem elongation of Lolium. Mol. Plant 1:295–307 [Google Scholar]
  82. Kloppholz S, Kuhn H, Requena N. 2011. A secreted fungal effector of Glomus intraradices promotes symbiotic biotrophy. Curr. Biol. 21:1204–9 [Google Scholar]
  83. Kumar J, Huckelhoven R, Beckhove U, Nagarajan S, Kogel KH. 2001. A compromised Mlo pathway affects the response of barley to the necrotrophic fungus Bipolaris sorokiniana (teleomorph: Cochliobolus sativus) and its toxins. Phytopathology 91:127–33 [Google Scholar]
  84. Laffont C, Rey T, André O, Novero M, Kazmierczak T. et al. 2015. The CRE1 cytokinin pathway is differentially recruited depending on Medicago truncatula root environments and negatively regulates resistance to a pathogen. PLOS ONE 10:e0116819 [Google Scholar]
  85. Larkin RP, English JT, Mihail JD. 1994. Effects of infection by Pythium spp. on root system morphology of alfalfa seedlings. Phytopathology 85:430–35 [Google Scholar]
  86. Lee AHY, Hurley B, Felsensteiner C, Yea C, Ckurshumova W. et al. 2012. A bacterial acetyltransferase destroys plant microtubule networks and blocks secretion. PLOS Pathog. 8:e1002523 [Google Scholar]
  87. Liang Y, Cao Y, Tanaka K, Thibivilliers S, Wan J. et al. 2013. Nonlegumes respond to rhizobial Nod factors by suppressing the innate immune response. Science 341:1384–87 [Google Scholar]
  88. Lin YL, Lin CH. 1990. Involvement of transfer-RNA bound cytokinin on the gall formation in Zizania. J. Exp. Bot. 41:277–81 [Google Scholar]
  89. Liu T, Song T, Zhang X, Yuan H, Su L. et al. 2014. Unconventionally secreted effectors of two filamentous pathogens target plant salicylate biosynthesis. Nat. Commun. 5:4686 [Google Scholar]
  90. Lopez-Solanilla E, Bronstein PA, Schneider AR, Collmer A. 2004. HopPtoN is a Pseudomonas syringae Hrp (type III secretion system) cysteine protease effector that suppresses pathogen-induced necrosis associated with both compatible and incompatible plant interactions. Mol. Microbiol. 54:353–65 [Google Scholar]
  91. Lu Y-J, Schornack S, Spallek T, Geldner N, Chory J. et al. 2012. Patterns of plant subcellular responses to successful oomycete infections reveal differences in host cell reprogramming and endocytic trafficking. Cell. Microbiol. 14:682–97 [Google Scholar]
  92. Ludwig-Müller J. 2015. Bacteria and fungi controlling plant growth by manipulating auxin: balance between development and defense. J. Plant Physiol. 172:4–12 [Google Scholar]
  93. Ludwig-Müller J, Schuller A. 2008. What can we learn from clubroots: alterations in host roots and hormone homeostasis caused by Plasmodiophora brassicae. Eur. J. Plant Pathol. 121:291–302 [Google Scholar]
  94. Mackey D, Belkhadir Y, Alonso JM, Ecker JR, Dangl JL. 2003. Arabidopsis RIN4 is a target of the type III virulence effector AvrRpt2 and modulates RPS2-mediated resistance. Cell 112:379–89 [Google Scholar]
  95. MacLean AM, Orlovskis Z, Kowitwanich K, Zdziarska AM, Angenent GC. et al. 2014. Phytoplasma effector SAP54 hijacks plant reproduction by degrading MADS-box proteins and promotes insect colonization in a RAD23-dependent manner. PLOS Biol. 12:e1001835 [Google Scholar]
  96. Maejima K, Iwai R, Himeno M, Komatsu K, Kitazawa Y. et al. 2014. Recognition of floral homeotic MADS domain transcription factors by a phytoplasmal effector, phyllogen, induces phyllody. Plant J. 78:541–54 [Google Scholar]
  97. Maillet F, Poinsot V, André O, Puech-Pagès V, Haouy A. et al. 2011. Fungal lipochitooligosaccharide symbiotic signals in arbuscular mycorrhiza. Nature 469:58–63 [Google Scholar]
  98. Makepeace JC, Oxley SJP, Havis ND, Hackett R, Burke JI, Brown JKM. 2007. Associations between fungal and abiotic leaf spotting and the presence of mlo alleles in barley. Plant Pathol. 56:934–42 [Google Scholar]
  99. Marcone C. 2014. Molecular biology and pathogenicity of phytoplasmas. Ann. Appl. Biol. 165:199–221 [Google Scholar]
  100. Marelli J-P, Maximova SN, Gramacho KP, Kang S, Guilinan MJ. 2009. Infection biology of Moniliophthora perniciosa on Theobroma cacao and alternate solanaceous hosts. Trop. Plant Biol. 2:149–60 [Google Scholar]
  101. Matveeva TV, Lutova LA. 2014. Horizontal gene transfer from Agrobacterium to plants. Front. Plant Sci. 5:326 [Google Scholar]
  102. McGrann GRD, Stavrinides A, Russell J, Corbitt MM, Booth A. et al. 2014. A trade off between mlo resistance to powdery mildew and increased susceptibility of barley to a newly important disease, Ramularia leaf spot. J. Exp. Bot. 65:1025–37 [Google Scholar]
  103. McLellan H, Boevink PC, Armstrong MR, Pritchard L, Gomez S. et al. 2013. An RxLR effector from Phytophthora infestans prevents re-localisation of two plant NAC transcription factors from the endoplasmic reticulum to the nucleus. PLOS Pathog. 9:e1003670 [Google Scholar]
  104. Mellman I. 1996. Endocytosis and molecular sorting. Annu. Rev. Cell Dev. Biol. 12:575–625 [Google Scholar]
  105. Melvin P, Prabhu SA, Anup CP, Shailasree S, Shetty HS, Kini KR. 2014. Involvement of mitogen-activated protein kinase signalling in pearl millet–downy mildew interaction. Plant Sci. 214:29–37 [Google Scholar]
  106. Mendgen K, Hahn M, Deising H. 1996. Morphogenesis and mechanisms of penetration by plant pathogenic fungi. Annu. Rev. Phytopathol. 34:367–86 [Google Scholar]
  107. Minato N, Himeno M, Hoshi A, Maejima K, Komatsu K, Takebayashi Y. 2014. The phytoplasmal virulence factor TENGU causes plant sterility by downregulating of the jasmonic acid and auxin pathways. Sci. Rep. 4:7399 [Google Scholar]
  108. Miyata K, Kozaki T, Kouzai Y, Ozawa K, Ishii K. et al. 2014. The bifunctional plant receptor, OsCERK1, regulates both chitin-triggered immunity and arbuscular mycorrhizal symbiosis in rice. Plant Cell Physiol. 55:1864–72 [Google Scholar]
  109. Moreau S, Fromentin J, Vailleau F, Vernié T, Huguet S. et al. 2013. The symbiotic transcription factor MtEFD and cytokinins are positively acting in the Medicago truncatula and Ralstonia solanacearum pathogenic interaction. New Phytol. 201:1343–57 [Google Scholar]
  110. Moscou MJ, Bogdanove AJ. 2009. A simple cipher governs DNA recognition by TAL effectors. Science 326:1501 [Google Scholar]
  111. Mueller AN, Ziemann S, Treitschke S, Aßmann D, Doehlemann G. 2013. Compatibility in the Ustilago maydis–maize interaction requires inhibition of host cysteine proteases by the fungal effector Pit2. PLOS Pathog. 9:e1003177 [Google Scholar]
  112. Mukhtar MS, Carvunis AR, Dreze M, Epple P, Steinbrenner J. et al. 2011. Independently evolved virulence effectors converge onto hubs in a plant immune system network. Science 333:596–601 [Google Scholar]
  113. Na R, Yu D, Qutob D, Zhao J, Gijzen M. 2013. Deletion of the Phytophthora sojae avirulence gene Avr1d causes gain of virulence on Rps1d. Mol. Plant Microbe Interact. 26:969–76 [Google Scholar]
  114. Nakagawa T, Kaku H, Shimoda Y, Sugiyama A, Shimamura M. et al. 2011. From defense to symbiosis: limited alterations in the kinase domain of LysM receptor–like kinases are crucial for evolution of legume-Rhizobium symbiosis. Plant J. 65:169–80 [Google Scholar]
  115. Nars A, Lafitte C, Chabaud M, Drouillard S, Mélida H. et al. 2013. Aphanomyces euteiches cell wall fractions containing novel glucan-chitosaccharides induce defense genes and nuclear calcium oscillations in the plant host Medicago truncatula. PLOS ONE 8:e75039 [Google Scholar]
  116. Navarro L, Jay F, Nomura K, He SY, Voinnet O. 2008. Suppression of the microRNA pathway by bacterial effector proteins. Science 321:964–67 [Google Scholar]
  117. Nelson SC. 2009. Rusts of Acacia koa: Atelocauda digitata (Gall Rust). Manoa, HI: Coll. Trop. Agric. Hum. Resour http://www.ctahr.hawaii.edu/oc/freepubs/pdf/PD-63.pdf [Google Scholar]
  118. Nomura K, Debroy S, Lee YH, Pumplin N, Jones J, He SY. 2006. A bacterial virulence protein suppresses host innate immunity to cause plant disease. Science 313:220–23 [Google Scholar]
  119. Nomura K, Mecey C, Lee Y-N, Imboden LA, Chang JH, He SY. 2011. Effector-triggered immunity blocks pathogen degradation of an immunity-associated vesicle traffic regulator in Arabidopsis. PNAS 108:10774–79 [Google Scholar]
  120. Nuruzzaman M, Sharoni AM, Kikuchi S. 2013. Roles of NAC transcription factors in the regulation of biotic and abiotic stress responses in plants. Front. Microbiol. 4:1–16 [Google Scholar]
  121. Okmen B, Doehlemann G. 2014. Inside plant: biotrophic strategies to modulate host immunity and metabolism. Curr. Opin. Plant Biol. 20:19–25 [Google Scholar]
  122. Olsen AN, Ernst HA, Leggio LL, Skriver K. 2005. NAC transcription factors: structurally distinct, functionally diverse. Trends Plant Sci. 10:79–87 [Google Scholar]
  123. Orchard J, Collin HA, Hardwick K, Isaac S. 1994. Changes in morphology and measurement of cytokinin levels during the development of witches' brooms on cocoa. Plant Pathol. 43:65–72 [Google Scholar]
  124. Ortiz-Castro R, Pelagio-Flores R, Mendez-Bravo A, Ruiz-Herrera LF, Campos-Garcia J, Lopez-Bucio J. 2014. Pyocyanin, a virulence factor produced by Pseudomonas aeruginosa, alters root development through reactive oxygen species and ethylene signaling in Arabidopsis. Mol. Plant Microbe Interact. 27:364–78 [Google Scholar]
  125. Parniske M. 2000. Intracellular accommodation of microbes by plants: a common developmental program for symbiosis and disease?. Curr. Opin. Plant Biol. 3:320–28 [Google Scholar]
  126. Pel MJ, Pieterse CM. 2013. Microbial recognition and evasion of host immunity. J. Exp. Bot. 64:1237–48 [Google Scholar]
  127. Perez-Montano F, Alias-Villegas C, Bellogin RA, del Cerro P, Espuny MR. et al. 2014. Plant growth promotion in cereal and leguminous agricultural important plants: from microorganism capacities to crop production. Microbiol. Res. 169:325–36 [Google Scholar]
  128. Perley JE, Stowe BB. 1966. On the ability of Taphrina deformans to produce indoleacetic acid from tryptophan by way of tryptamine. Plant Physiol. 41:234–37 [Google Scholar]
  129. Petrášek J, Schwarzerová K. 2009. Actin and microtubule cytoskeleton interactions. Curr. Opin. Plant Biol. 12:728–34 [Google Scholar]
  130. Pietraszewska-Bogiel A, Lefebvre B, Koini MA, Klaus-Heisen D, Takken FL. et al. 2013. Interaction of Medicago truncatula lysin motif receptor–like kinases, NFP and LYK3, produced in Nicotiana benthamiana induces defence-like responses. PLOS ONE 8:e65055 [Google Scholar]
  131. Piffanelli P, Zhou F, Casais C, Orme J, Jarosch B. et al. 2002. The barley MLO modulator of defense and cell death is responsive to biotic and abiotic stress stimuli. Plant Physiol. 129:1076–85 [Google Scholar]
  132. Plet J, Wasson A, Ariel F, Le Signor C, Baker D. et al. 2011. MtCRE1-dependent cytokinin signaling integrates bacterial and plant cues to coordinate symbiotic nodule organogenesis in Medicago truncatula. Plant J. 65:622–33 [Google Scholar]
  133. Plett JM, Daguerre Y, Wittulsky S, Vayssières A, Deveau A. et al. 2014. Effector MiSSP7 of the mutualistic fungus Laccaria bicolor stabilizes the Populus JAZ6 protein and represses jasmonic acid (JA) responsive genes. PNAS 111:8299–304 [Google Scholar]
  134. Qiao Y, Liu L, Xiong Q, Flores C, Wong J. et al. 2013. Oomycete pathogens encode RNA silencing suppressors. Nat. Genet. 45:330–33 [Google Scholar]
  135. Raffaele S, Vailleau F, Léger A, Joubès J, Miersch O. et al. 2008. A MYB transcription factor regulates very-long-chain fatty acid biosynthesis for activation of the hypersensitive cell death response in Arabidopsis. Plant Cell 20:752–67 [Google Scholar]
  136. Reineke G, Heinze B, Schirawski J, Buettner H, Kahmann R, Basse CW. 2008. Indole-3-acetic acid (IAA) biosynthesis in the smut fungus Ustilago maydis and its relevance for increased IAA levels in infected tissue and host tumour formation. Mol. Plant Pathol. 9:339–55 [Google Scholar]
  137. Reusche M, Thole K, Janz D, Truskina J, Rindfleisch S. et al. 2012. Verticillium infection triggers VASCULAR-RELATED NAC DOMAIN7–dependent de novo xylem formation and enhances drought tolerance in Arabidopsis. Plant Cell 24:3823–37 [Google Scholar]
  138. Rey T, Nars A, Bonhomme M, Bottin A, Huguet S. et al. 2013. NFP, a LysM protein controlling Nod factor perception, also intervenes in Medicago truncatula resistance to pathogens. New Phytol. 198:875–86 [Google Scholar]
  139. Rey T, Chatterjee A, Buttay M, Toulotte J, Schornack S. 2015. Medicago truncatula symbiosis mutants affected in the interaction with a biotrophic root pathogen. New Phytol 206:497–500 [Google Scholar]
  140. Ribot C, Cesari S, Abidi I, Chalvon V, Bournaud C. et al. 2013. The Magnaporthe oryzae effector AVR1-CO39 is translocated into rice cells independently of a fungal-derived machinery. Plant J. 74:1–12 [Google Scholar]
  141. Ried MK, Antolín-Llovera M, Parniske M. 2014. Spontaneous symbiotic reprogramming of plant roots triggered by receptor-like kinases. eLife 3:03891 [Google Scholar]
  142. Rincones J, Scarpari LM, Carazzolle MF, Mondego JM, Formighieri EF. et al. 2008. Differential gene expression between the biotrophic-like and saprotrophic mycelia of the witches' broom pathogen Moniliophthora perniciosa. Mol. Plant Microbe Interact. 21:891–908 [Google Scholar]
  143. Rio MC, de Oliveira BV, de Tomazella DP, Silva JA, Pereira GA. 2008. Production of calcium oxalate crystals by the basidiomycete Moniliophthora perniciosa, the causal agent of witches' broom disease of cacao. Curr. Microbiol. 56:363–70 [Google Scholar]
  144. Rodríguez-Herva JJ, González-Melendi P, Cuartas-Lanza R, Antúnez-Lamas M, Río-Alvarez I. et al. 2012. A bacterial cysteine protease effector protein interferes with photosynthesis to suppress plant innate immune responses. Cell. Microbiol. 14:669–81 [Google Scholar]
  145. Rojas AM, de los Rios JEG, Saux MFL, Jimenez P, Reche P. et al. 2004. Erwinia toletana sp. nov., associated with Pseudomonas savastanoi-induced tree knots. Int. J. Syst. Evol. Microbiol. 54:2217–22 [Google Scholar]
  146. Ruiz-Lozano JM, Gianinazzi S, Gianinazzi-Pearson V. 1999. Genes involved in resistance to powdery mildew in barley differentially modulate root colonization by the mycorrhizal fungus Glomus mosseae. Mycorrhiza 9:237–40 [Google Scholar]
  147. Samaj J, Read ND, Volkmann D, Menzel D, Baluska F. 2005. The endocytic network in plants. Trends Cell Biol. 15:425–33 [Google Scholar]
  148. Samolski I, Rincon AM, Pinzon LM, Viterbo A, Monte E. 2012. The qid74 gene from Trichoderma harzianum has a role in root architecture and plant biofertilization. Microbiology 158:129–38 [Google Scholar]
  149. Sánchez-Vallet A, Saleem-Batcha R, Kombrink A, Hansen G, Valkenburg DJ. et al. 2013. Fungal effector Ecp6 outcompetes host immune receptor for chitin binding through intrachain LysM dimerization. eLife 2013:1–16 [Google Scholar]
  150. Schilling L, Matei A, Redkar A, Walbot V, Doehlemann G. 2014. Virulence of the maize smut Ustilago maydis is shaped by organ-specific effectors. Mol. Plant Pathol. 15:780–89 [Google Scholar]
  151. Schmidt SM, Kuhn H, Micali C, Liller C, Kwaaitaal M, Panstruga R. 2014. Interaction of a Blumeria graminis f. sp. hordei effector candidate with a barley ARF-GAP suggests that host vesicle trafficking is a fungal pathogenicity target. Mol. Plant Pathol. 15:535–49 [Google Scholar]
  152. Schuller A, Kehr J, Ludwig-Müller J. 2014. Laser microdissection coupled to transcriptional profiling of Arabidopsis roots inoculated by Plasmodiophora brassicae indicates a role for brassinosteroids in clubroot formation. Plant Cell Physiol. 55:392–411 [Google Scholar]
  153. Shimizu T, Nakano T, Takamizawa D, Desaki Y, Ishii-Minami N. et al. 2010. Two LysM receptor molecules, CEBiP and OsCERK1, cooperatively regulate chitin elicitor signaling in rice. Plant J. 64:204–14 [Google Scholar]
  154. Singh RP, Hodson DP, Huerta-Espino J, Jin Y, Bhavani S. et al. 2011. The emergence of Ug99 races of the stem rust fungus is a threat to world wheat production. Annu. Rev. Phytopathol. 49:465–81 [Google Scholar]
  155. Sirrenberg A, Gobel C, Grond S, Czempinski N, Ratzinger A. et al. 2007. Piriformospora indica affects plant growth by auxin production. Physiol. Plant. 131:581–89 [Google Scholar]
  156. Sugio A, Kingdom HN, MacLean AM, Grieve VM, Hogenhout SA. 2011. Phytoplasma protein effector SAP11 enhances insect vector reproduction by manipulating plant development and defense hormone biosynthesis. PNAS 108:E1254–63 [Google Scholar]
  157. Sun J, Miller JB, Granqvist E, Wiley-Kalil A, Gobbato E. et al. 2015. Activation of symbiosis signaling by arbuscular mycorrhizal fungi in legumes and rice. Plant Cell 27:823–38 [Google Scholar]
  158. Sunder S, Satyavir. 1998. Vegetative compatibility, biosynthesis of GA3 and virulence of Fusarium moniliforme isolates from bakanae disease of rice. Plant Pathol. 47:767–72 [Google Scholar]
  159. Surico G, Iacobellis NS, Sisto A. 1985. Studies on the role of indole-3-acetic-acid and cytokinins in the formation of knots on olive and oleander plants by Pseudomonas syringae pv. savastanoi. Physiol. Plant Pathol. 26:309–20 [Google Scholar]
  160. Tanaka S, Brefort T, Neidig N, Djamei A, Kahnt J. et al. 2014. A secreted Ustilago maydis effector promotes virulence by targeting anthocyanin biosynthesis in maize. eLife 3:e01355 [Google Scholar]
  161. Tarkowski P, Vereecke D. 2014. Threats and opportunities of plant pathogenic bacteria. Biotechnol. Adv. 32:215–29 [Google Scholar]
  162. Tian M, Benedetti B, Kamoun S. 2005. A second Kazal-like protease inhibitor from Phytophthora infestans inhibits and interacts with the apoplastic pathogenesis-related protease P69B of tomato. Plant Physiol. 138:1785–93 [Google Scholar]
  163. Tian M, Huitema E, Da Cunha L, Torto-Alalibo T, Kamoun S. 2004. A Kazal-like extracellular serine protease inhibitor from Phytophthora infestans targets the tomato pathogenesis-related protease P69B. J. Biol. Chem. 279:26370–77 [Google Scholar]
  164. Tian M, Win J, Song J, van der Hoorn R, van der Knaap E, Kamoun S. 2007. A Phytophthora infestans cystatin-like protein targets a novel tomato papain-like apoplastic protease. Plant Physiol. 143:364–77 [Google Scholar]
  165. Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS. et al. 2007. A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–7 [Google Scholar]
  166. Tsai IJ, Tanaka E, Masuya H, Tanaka R, Hirooka Y. et al. 2014. Comparative genomics of Taphrina fungi causing varying degrees of tumorous deformity in plants. Genome Biol. Evol. 6:861–72 [Google Scholar]
  167. Uchida W, Matsunaga S, Sugiyama R, Kazama Y, Kawano S. 2003. Morphological development of anthers induced by the dimorphic smut fungus Microbotryum violaceum in female flowers of the dioecious plant Silene latifolia. Planta 218:240–48 [Google Scholar]
  168. Üstün S, Bartetzko V, Börnke F. 2013. The Xanthomonas campestris type III effector XopJ targets the host cell proteasome to suppress salicylic-acid mediated plant defence. PLOS Pathog. 9:e1003427 [Google Scholar]
  169. van Ooij C. 2011. The SWEET life of pathogens. Nat. Rev. Microbiol. 9:4 [Google Scholar]
  170. van Schie CC, Takken FL. 2014. Susceptibility genes 101: how to be a good host. Annu. Rev. Phytopathol. 52:551–81 [Google Scholar]
  171. Varma A, Verma S, Sudha, Sahay N, Butehorn B, Franken P. 1999. Piriformospora indica, a cultivable plant-growth-promoting root endophyte. Appl. Environ. Microbiol. 65:2741–44 [Google Scholar]
  172. Vinale F, Sivasithamparam K, Ghisalberti EL, Marra R, Barbetti MJ. et al. 2008. A novel role for Trichoderma secondary metabolites in the interactions with plants. Physiol. Mol. Plant Pathol. 72:80–86 [Google Scholar]
  173. Wang E, Schornack S, Marsh JF, Gobbato E, Schwessinger B. et al. 2012. A common signaling process that promotes mycorrhizal and oomycete colonization of plants. Curr. Biol. 22:2242–46 [Google Scholar]
  174. Wawra S, Djamei A, Albert I, Nurnberger T, Kahmann R, van West P. 2013. In vitro translocation experiments with RxLR-reporter fusion proteins of Avr1b from Phytophthora sojae and AVR3a from Phytophthora infestans fail to demonstrate specific autonomous uptake in plant and animal cells. Mol. Plant Microbe Interact. 26:528–36 [Google Scholar]
  175. Weiberg A, Wang M, Lin FM, Zhao HW, Zhang ZH. et al. 2013. Fungal small RNAs suppress plant immunity by hijacking host RNA interference pathways. Science 342:118–23 [Google Scholar]
  176. Whisson SC, Boevink PC, Moleleki L, Avrova AO, Morales JG. et al. 2007. A translocation signal for delivery of oomycete effector proteins into host plant cells. Nature 450:115–18 [Google Scholar]
  177. Wiemann P, Sieber CM, von Bargen KW, Studt L, Niehaus EM. et al. 2013. Deciphering the cryptic genome: genome-wide analyses of the rice pathogen Fusarium fujikuroi reveal complex regulation of secondary metabolism and novel metabolites. PLOS Pathog. 9:e1003475 [Google Scholar]
  178. Wolter M, Hollricher K, Salamini F, Schulze-Lefert P. 1993. The mlo resistance alleles to powdery mildew infection in barley trigger a developmentally controlled defence mimic phenotype. Mol. Gen. Genet. 239:122–28 [Google Scholar]
  179. Wood AR. 2014. Observations on the gall rust fungus Prospodium transformans, a potential biocontrol agent of Tecoma stans var. stans (Bignoniaceae) in South Africa. Trop. Plant Pathol. 39:284–93 [Google Scholar]
  180. Yadeta K, Thomma BPHJ. 2013. The xylem as battleground for plant hosts and vascular wilt pathogens. Front. Plant Sci. 4:97 [Google Scholar]
  181. Yamada T, Tsukamoto H, Shiraishi T, Nomura T, Oku H. 1990. Detection of indoleacetic acid biosynthesis in some species of Taphrina causing hyperplastic diseases in plants. Ann. Phytopathol. Soc. Jpn. 56:532–40 [Google Scholar]
  182. Yang L, Qin L, Liu G, Peremyslov VV, Dolja VV, Wei Y. 2014. Myosins XI modulate host cellular responses and penetration resistance to fungal pathogens. PNAS 111:13996–4001 [Google Scholar]
  183. Yi M, Valent B. 2013. Communication between filamentous pathogens and plants at the biotrophic interface. Annu. Rev. Phytopathol. 51:587–611 [Google Scholar]
  184. Zeigler RS, Powell LE, Thurston HD. 1980. Gibberellin A4 production by Sphaceloma manihoticola, causal agent of cassava superelongation disease. Phytopathology 70:589–93 [Google Scholar]
  185. Zhang H, Wang S. 2013. Rice versus Xanthomonas oryzae pv. oryzae: a unique pathosystem. Curr. Opin. Plant Biol. 16:188–95 [Google Scholar]
  186. Zhang M, Li Q, Liu T, Liu L, Shen D. et al. 2015a. Two cytoplasmic effectors of Phytophthora sojae regulate plant cell death via interactions with plant catalases. Plant Physiol. 167:164–75 [Google Scholar]
  187. Zhang X, Dong W, Sun J, Feng F, Deng Y. et al. 2015b. The receptor kinase CERK1 has dual functions in symbiosis and immunity signalling. Plant J. 81:258–67 [Google Scholar]
  188. Zheng X, McLellan H, Fraiture M, Liu X, Boevink PC. et al. 2014. Functionally redundant RXLR effectors from Phytophthora infestans act at different steps to suppress early flg22-triggered immunity. PLOS Pathog. 10:e1004057 [Google Scholar]
  189. Zolobowska L, Van Gijsegem F. 2006. Induction of lateral root structure formation on petunia roots: a novel effect of GMI1000 Ralstonia solanacearum infection impaired in Hrp mutants. Mol. Plant Microbe Interact. 19:597–606 [Google Scholar]

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error