1932

Abstract

One of the fundamental questions in developmental biology is how a cell is specified to differentiate as a specialized cell type. Traditionally, plant cell types were defined based on their function, location, morphology, and lineage. Currently, in the age of single-cell biology, researchers typically attempt to assign plant cells to cell types by clustering them based on their transcriptomes. However, because cells are dynamic entities that progress through the cell cycle and respond to signals, the transcriptome also reflects the state of the cell at a particular moment in time, raising questions about how to define a cell type. We suggest that these complexities and dynamics of cell states are of interest and further consider the roles signaling, stochasticity, cell cycle, and mechanical forces play in plant cell fate specification. Once established, cell identity must also be maintained. With the wealth of single-cell data coming out, the field is poised to elucidate both the complexity and dynamics of cell states.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111323-102412
2024-10-02
2025-02-18
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111323-102412.html?itemId=/content/journals/10.1146/annurev-cellbio-111323-102412&mimeType=html&fmt=ahah

Literature Cited

  1. Abe M, Katsumata H, Komeda Y, Takahashi T. 2003.. Regulation of shoot epidermal cell differentiation by a pair of homeodomain proteins in Arabidopsis. . Development 130:(4):63543. https://doi.org/10.1242/dev.00292
    [Crossref] [Google Scholar]
  2. Almeida N, Chung MWH, Drudi EM, Engquist EN, Hamrud E, et al. 2021.. Employing core regulatory circuits to define cell identity. . EMBO J. 40:(10):e106785. https://doi.org/10.15252/embj.2020106785
    [Crossref] [Google Scholar]
  3. Amini S, Doyle JJ, Libault M. 2023.. The evolving definition of plant cell type. . Front. Plant Sci. 14::1271070. https://doi.org/10.3389/fpls.2023.1271070
    [Crossref] [Google Scholar]
  4. Araújo IS, Pietsch JM, Keizer EM, Greese B, Balkunde R, et al. 2017.. Stochastic gene expression in Arabidopsis thaliana. . Nat. Commun. 8:(1):2132. https://doi.org/10.1038/s41467-017-02285-7
    [Crossref] [Google Scholar]
  5. Arber A. 1950.. The Natural Philosophy of Plant Form. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/CBO9781139177290
    [Google Scholar]
  6. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C, et al. 2016.. The origin and evolution of cell types. . Nat. Rev. Genet. 17:(12):74457. https://doi.org/10.1038/nrg.2016.127
    [Crossref] [Google Scholar]
  7. Avery GS Jr. 1933.. Structure and development of the tobacco leaf. . Am. J. Botany 20:(9):56592. https://doi.org/10.1002/j.1537-2197.1933.tb08913.x
    [Crossref] [Google Scholar]
  8. Bakshi A, Swanson SJ, Gilroy S. 2023.. A touchy subject: Ca2+ signaling during leaf movements in Mimosa. . Cell Calcium 110::102695. https://doi.org/10.1016/j.ceca.2023.102695
    [Crossref] [Google Scholar]
  9. Balkunde R, Bouyer D, Hulskamp M. 2011.. Nuclear trapping by GL3 controls intercellular transport and redistribution of TTG1 protein in Arabidopsis. . Development 138:(22):503948. https://doi.org/10.1242/dev.072454
    [Crossref] [Google Scholar]
  10. Balkunde R, Deneer A, Bechtel H, Zhang B, Herberth S, et al. 2020.. Identification of the trichome patterning core network using data from weak ttg1 alleles to constrain the model space. . Cell Rep. 33:(11):108497. https://doi.org/10.1016/j.celrep.2020.108497
    [Crossref] [Google Scholar]
  11. Barron M, Li J. 2016.. Identifying and removing the cell-cycle effect from single-cell RNA-sequencing data. . Sci. Rep. 6::33892. https://doi.org/10.1038/srep33892
    [Crossref] [Google Scholar]
  12. Benfey PN, Linstead PJ, Roberts K, Schiefelbein JW, Hauser MT, Aeschbacher RA. 1993.. Root development in Arabidopsis: four mutants with dramatically altered root morphogenesis. . Development 119:(1):5770. https://doi.org/10.1242/dev.119.Supplement.57
    [Crossref] [Google Scholar]
  13. Bergen V, Lange M, Peidli S, Wolf FA, Theis FJ. 2020.. Generalizing RNA velocity to transient cell states through dynamical modeling. . Nat. Biotechnol. 38:(12):140814. https://doi.org/10.1038/s41587-020-0591-3
    [Crossref] [Google Scholar]
  14. Bergmann DC, Sack FD. 2007.. Stomatal development. . Annu. Rev. Plant Biol. 58::16381. https://doi.org/10.1146/annurev.arplant.58.032806.104023
    [Crossref] [Google Scholar]
  15. Bieluszewski T, Prakash S, Roule T, Wagner D. 2023.. The role and activity of SWI/SNF chromatin remodelers. . Annu. Rev. Plant Biol. 74::13963. https://doi.org/10.1146/annurev-arplant-102820-093218
    [Crossref] [Google Scholar]
  16. Bieluszewski T, Xiao J, Yang Y, Wagner D. 2021.. PRC2 activity, recruitment, and silencing: a comparative perspective. . Trends Plant Sci. 26:(11):118698. https://doi.org/10.1016/j.tplants.2021.06.006
    [Crossref] [Google Scholar]
  17. Bird DA, Buruiana MM, Zhou Y, Fowke LC, Wang H. 2007.. Arabidopsis cyclin-dependent kinase inhibitors are nuclear-localized and show different localization patterns within the nucleoplasm. . Plant Cell Rep. 26:(7):86172. https://doi.org/10.1007/s00299-006-0294-3
    [Crossref] [Google Scholar]
  18. Birnbaum K, Shasha DE, Wang JY, Jung JW, Lambert GM, et al. 2003.. A gene expression map of the Arabidopsis root. . Science 302:(5652):195660. https://doi.org/10.1126/science.1090022
    [Crossref] [Google Scholar]
  19. Birnbaum KD, Roudier F. 2017.. Epigenetic memory and cell fate reprogramming in plants. . Regeneration 4:(1):1520. https://doi.org/10.1002/reg2.73
    [Crossref] [Google Scholar]
  20. Boruc J, Mylle E, Duda M, De Clercq R, Rombauts S, et al. 2010.. Systematic localization of the Arabidopsis core cell cycle proteins reveals novel cell division complexes. . Plant Physiol. 152:(2):55365. https://doi.org/10.1104/pp.109.148643
    [Crossref] [Google Scholar]
  21. Bouyer D, Geier F, Kragler F, Schnittger A, Pesch M, et al. 2008.. Two-dimensional patterning by a trapping/depletion mechanism: the role of TTG1 and GL3 in Arabidopsis trichome formation. . PLOS Biol. 6:(6):e141. https://doi.org/10.1371/journal.pbio.0060141
    [Crossref] [Google Scholar]
  22. Brady SM, Orlando DA, Lee JY, Wang JY, Koch J, et al. 2007.. A high-resolution root spatiotemporal map reveals dominant expression patterns. . Science 318:(5851):8016. https://doi.org/10.1126/science.1146265
    [Crossref] [Google Scholar]
  23. Bramsiepe J, Wester K, Weinl C, Roodbarkelari F, Kasili R, et al. 2010.. Endoreplication controls cell fate maintenance. . PLOS Genet. 6:(6):e1000996. https://doi.org/10.1371/journal.pgen.1000996
    [Crossref] [Google Scholar]
  24. Brand U, Fletcher JC, Hobe M, Meyerowitz EM, Simon R. 2000.. Dependence of stem cell fate in Arabidopsis on a feedback loop regulated by CLV3 activity. . Science 289:(5479):61719. https://doi.org/10.1126/science.289.5479.617
    [Crossref] [Google Scholar]
  25. Carlsbecker A, Lee JY, Roberts CJ, Dettmer J, Lehesranta S, et al. 2010.. Cell signalling by microRNA165/6 directs gene dose-dependent root cell fate. . Nature 465:(7296):31621. https://doi.org/10.1038/nature08977
    [Crossref] [Google Scholar]
  26. Carter RF, Valli VE, Lumsden JH. 1986.. The cytology, histology and prevalence of cell types in canine lymphoma classified according to the National Cancer Institute Working Formulation. . Can. J. Vet. Res. 50:(2):15464
    [Google Scholar]
  27. Casey MJ, Stumpf PS, MacArthur BD. 2020.. Theory of cell fate. . WIREs Syst. Biol. Med. 12:(2):e1471. https://doi.org/10.1002/wsbm.1471
    [Crossref] [Google Scholar]
  28. Chen A, Liao S, Cheng M, Ma K, Wu L, et al. 2022.. Spatiotemporal transcriptomic atlas of mouse organogenesis using DNA nanoball-patterned arrays. . Cell 185:(10):177792.e21. https://doi.org/10.1016/j.cell.2022.04.003
    [Crossref] [Google Scholar]
  29. Chen C, Ge Y, Lu L. 2023.. Opportunities and challenges in the application of single-cell and spatial transcriptomics in plants. . Front. Plant Sci. 14::1185377. https://doi.org/10.3389/fpls.2023.1185377
    [Crossref] [Google Scholar]
  30. Chen KH, Boettiger AN, Moffitt JR, Wang S, Zhuang X. 2015.. Spatially resolved, highly multiplexed RNA profiling in single cells. . Science 348:(6233):aaa6090. https://doi.org/10.1126/science.aaa6090
    [Crossref] [Google Scholar]
  31. Clark SE, Running MP, Meyerowitz EM. 1995.. CLAVATA3 is a specific regulator of shoot and floral meristem development affecting the same processes as CLAVATA1. . Development 121::205767. https://doi.org/10.1242/dev.121.7.2057
    [Crossref] [Google Scholar]
  32. Clevers H, Rafelski S, Elowitz M, Klein A, Shendure J, et al. 2017.. What is your conceptual definition of “cell type” in the context of a mature organism?. Cell Syst. 4:(3):25559. https://doi.org/10.1016/j.cels.2017.03.006
    [Crossref] [Google Scholar]
  33. Cock MJ, McCormick S. 2001.. A large family of genes that share homology with CLAVATA3. . Plant Physiol. 126::93942. https://doi.org/10.1104/pp.126.3.939
    [Crossref] [Google Scholar]
  34. Conde D, Triozzi PM, Pereira WJ, Schmidt HW, Balmant KM, et al. 2022.. Single-nuclei transcriptome analysis of the shoot apex vascular system differentiation in Populus. . Development 149:(21):dev200632. https://doi.org/10.1242/dev.200632
    [Crossref] [Google Scholar]
  35. Crang R, Lyons-Sobaski S, Wise R. 2018.. Parenchyma, collenchyma, and sclerenchyma. . In Plant Anatomy: A Concept-Based Approach to the Structure of Seed Plants, pp. 181213. Cham, Switz:.: Springer. https://doi.org/10.1007/978-3-319-77315-5_6
    [Google Scholar]
  36. Crow M, Paul A, Ballouz S, Huang ZJ, Gillis J. 2018.. Characterizing the replicability of cell types defined by single cell RNA-sequencing data using MetaNeighbor. . Nat. Commun. 9:(1):884. https://doi.org/10.1038/s41467-018-03282-0
    [Crossref] [Google Scholar]
  37. Cruz-Ramirez A, Diaz-Trivino S, Blilou I, Grieneisen VA, Sozzani R, et al. 2012.. A bistable circuit involving SCARECROW-RETINOBLASTOMA integrates cues to inform asymmetric stem cell division. . Cell 150:(5):100215. https://doi.org/10.1016/j.cell.2012.07.017
    [Crossref] [Google Scholar]
  38. D'Alessio AC, Fan ZP, Wert KJ, Baranov P, Cohen MA, et al. 2015.. A systematic approach to identify candidate transcription factors that control cell identity. . Stem Cell Rep. 5:(5):76375. https://doi.org/10.1016/j.stemcr.2015.09.016
    [Crossref] [Google Scholar]
  39. D'Ario M, Tavares R, Schiessl K, Desvoyes B, Gutierrez C, et al. 2021.. Cell size controlled in plants using DNA content as an internal scale. . Science 372:(6547):117681. https://doi.org/10.1126/science.abb4348
    [Crossref] [Google Scholar]
  40. Denyer T, Ma X, Klesen S, Scacchi E, Nieselt K, Timmermans MCP. 2019.. Spatiotemporal developmental trajectories in the Arabidopsis root revealed using high-throughput single-cell RNA sequencing. . Dev. Cell 48:(6):84052.e5. https://doi.org/10.1016/j.devcel.2019.02.022
    [Crossref] [Google Scholar]
  41. Desvoyes B, de Mendoza A, Ruiz-Trillo I, Gutierrez C. 2014.. Novel roles of plant RETINOBLASTOMA-RELATED (RBR) protein in cell proliferation and asymmetric cell division. . J. Exp. Bot. 65:(10):265766. https://doi.org/10.1093/jxb/ert411
    [Crossref] [Google Scholar]
  42. Desvoyes B, Gutierrez C. 2020.. Roles of plant retinoblastoma protein: cell cycle and beyond. . EMBO J. 39:(19):e105802. https://doi.org/10.15252/embj.2020105802
    [Crossref] [Google Scholar]
  43. Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, et al. 1996.. The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. . Cell 86:(3):42333. https://doi.org/10.1016/s0092-8674(00)80115-4
    [Crossref] [Google Scholar]
  44. Digiuni S, Schellmann S, Geier F, Greese B, Pesch M, et al. 2008.. A competitive complex formation mechanism underlies trichome patterning on Arabidopsis leaves. . Mol. Syst. Biol. 4::217. https://doi.org/10.1038/msb.2008.54
    [Crossref] [Google Scholar]
  45. Ditengou FA, Teale WD, Kochersperger P, Flittner KA, Kneuper I, et al. 2008.. Mechanical induction of lateral root initiation in Arabidopsis thaliana. . PNAS 105:(48):1881823. https://doi.org/10.1073/pnas.0807814105
    [Crossref] [Google Scholar]
  46. Dong J, Bergmann DC. 2010.. Stomatal patterning and development. . Curr. Top. Dev. Biol. 91::26797. https://doi.org/10.1016/S0070-2153(10)91009-0
    [Crossref] [Google Scholar]
  47. Doyle JJ. 2022.. Cell types as species: exploring a metaphor. . Front. Plant Sci. 13::868565. https://doi.org/10.3389/fpls.2022.868565
    [Crossref] [Google Scholar]
  48. Efroni I. 2018.. A conceptual framework for cell identity transitions in plants. . Plant Cell Physiol. 59:(4):691701. https://doi.org/10.1093/pcp/pcx172
    [Crossref] [Google Scholar]
  49. Efroni I, Mello A, Nawy T, Ip P-L, Rahni R, et al. 2016.. Root regeneration triggers an embryo-like sequence guided by hormonal interactions. . Cell 165:(7):172133. https://doi.org/10.1016/j.cell.2016.04.046
    [Crossref] [Google Scholar]
  50. Elowitz MB, Levine AJ, Siggia ED, Swain PS. 2002.. Stochastic gene expression in a single cell. . Science 297:(5584):118386. https://doi.org/10.1126/science.1070919
    [Crossref] [Google Scholar]
  51. Farmer A, Thibivilliers S, Ryu KH, Schiefelbein J, Libault M. 2021.. Single-nucleus RNA and ATAC sequencing reveals the impact of chromatin accessibility on gene expression in Arabidopsis roots at the single-cell level. . Mol. Plant 14:(3):37283. https://doi.org/10.1016/j.molp.2021.01.001
    [Crossref] [Google Scholar]
  52. Fishell G, Kepecs A. 2020.. Interneuron types as attractors and controllers. . Annu. Rev. Neurosci. 43::130. https://doi.org/10.1146/annurev-neuro-070918-050421
    [Crossref] [Google Scholar]
  53. Fleck JS, Camp JG, Treutlein B. 2023.. What is a cell type?. Science 381:(6659):73334. https://doi.org/10.1126/science.adf6162
    [Crossref] [Google Scholar]
  54. Fletcher JC, Brand U, Running MP, Simon R, Meyerowitz EM. 1999.. Signaling of cell fate decisions by CLAVATA3 in Arabidopsis shoot meristems. . Science 283::191114
    [Crossref] [Google Scholar]
  55. Gala HP, Lanctot A, Jean-Baptiste K, Guiziou S, Chu JC, et al. 2021.. A single-cell view of the transcriptome during lateral root initiation in Arabidopsis thaliana. . Plant Cell 33:(7):2197220. https://doi.org/10.1093/plcell/koab101
    [Crossref] [Google Scholar]
  56. Greese B, Hulskamp M, Fleck C. 2014.. Quantification of variability in trichome patterns. . Front. Plant Sci. 5::596. https://doi.org/10.3389/fpls.2014.00596
    [Crossref] [Google Scholar]
  57. Guillotin B, Rahni R, Passalacqua M, Mohammed MA, Xu X, et al. 2023.. A pan-grass transcriptome reveals patterns of cellular divergence in crops. . Nature 617:(7962):78591. https://doi.org/10.1038/s41586-023-06053-0
    [Crossref] [Google Scholar]
  58. Hamant O, Heisler MG, Jonsson H, Krupinski P, Uyttewaal M, et al. 2008.. Developmental patterning by mechanical signals in Arabidopsis. . Science 322:(5908):165055. https://doi.org/10.1126/science.1165594
    [Crossref] [Google Scholar]
  59. Han SK, Herrmann A, Yang J, Iwasaki R, Sakamoto T, et al. 2022.. Deceleration of the cell cycle underpins a switch from proliferative to terminal divisions in plant stomatal lineage. . Dev. Cell 57:(5):56982.e6. https://doi.org/10.1016/j.devcel.2022.01.014
    [Crossref] [Google Scholar]
  60. Heisler MG, Hamant O, Krupinski P, Uyttewaal M, Ohno C, et al. 2010.. Alignment between PIN1 polarity and microtubule orientation in the shoot apical meristem reveals a tight coupling between morphogenesis and auxin transport. . PLOS Biol. 8:(10):e1000516. https://doi.org/10.1371/journal.pbio.1000516
    [Crossref] [Google Scholar]
  61. Helariutta Y, Fukaki H, Wysocka-Diller J, Nakajima K, Jung J, et al. 2000.. The SHORT-ROOT gene controls radial patterning of the Arabidopsis root through radial signaling. . Cell 101:(5):55567. https://doi.org/10.1016/s0092-8674(00)80865-x
    [Crossref] [Google Scholar]
  62. Herrmann A, Torii KU. 2021.. Shouting out loud: signaling modules in the regulation of stomatal development. . Plant Physiol. 185:(3):76580. https://doi.org/10.1093/plphys/kiaa061
    [Crossref] [Google Scholar]
  63. Hervieux N, Dumond M, Sapala A, Routier-Kierzkowska AL, Kierzkowski D, et al. 2016.. A mechanical feedback restricts sepal growth and shape in Arabidopsis. . Curr. Biol. 26:(8):101928. https://doi.org/10.1016/j.cub.2016.03.004
    [Crossref] [Google Scholar]
  64. Huang H, Tindall DJ. 2007.. CDK2 and FOXO1: a fork in the road for cell fate decisions. . Cell Cycle 6:(8):9026. https://doi.org/10.4161/cc.6.8.4122
    [Crossref] [Google Scholar]
  65. Huang S, Guo YP, May G, Enver T. 2007.. Bifurcation dynamics in lineage-commitment in bipotent progenitor cells. . Dev. Biol. 305:(2):695713. https://doi.org/10.1016/j.ydbio.2007.02.036
    [Crossref] [Google Scholar]
  66. Hulskamp M. 2004.. Plant trichomes: a model for cell differentiation. . Nat. Rev. Mol. Cell Biol. 5:(6):47180. https://doi.org/10.1038/nrm1404
    [Crossref] [Google Scholar]
  67. Iida H, Mahonen AP, Jurgens G, Takada S. 2023.. Epidermal injury-induced derepression of key regulator ATML1 in newly exposed cells elicits epidermis regeneration. . Nat. Commun. 14:(1):1031. https://doi.org/10.1038/s41467-023-36731-6
    [Crossref] [Google Scholar]
  68. Ishihara H, Sugimoto K, Tarr PT, Temman H, Kadokura S, et al. 2019.. Primed histone demethylation regulates shoot regenerative competency. . Nat. Commun. 10:(1):1786. https://doi.org/10.1038/s41467-019-09386-5
    [Crossref] [Google Scholar]
  69. Jaeger J, Monk N. 2014.. Bioattractors: dynamical systems theory and the evolution of regulatory processes. . J. Physiol. 592:(11):226781. https://doi.org/10.1113/jphysiol.2014.272385
    [Crossref] [Google Scholar]
  70. Jegu T, Latrasse D, Delarue M, Mazubert C, Bourge M, et al. 2013.. Multiple functions of Kip-related protein5 connect endoreduplication and cell elongation. . Plant Physiol. 161:(4):1694705. https://doi.org/10.1104/pp.112.212357
    [Crossref] [Google Scholar]
  71. Jun J, Fiume E, Roeder AH, Meng L, Sharma VK, et al. 2010.. Comprehensive analysis of CLE polypeptide signaling gene expression and overexpression activity in Arabidopsis. . Plant Physiol. 154:(4):172136. https://doi.org/10.1104/pp.110.163683
    [Crossref] [Google Scholar]
  72. Kauffman SA. 1993.. The Origins of Order: Self-Organization and Selection in Evolution. Oxford, UK:: Oxford Univ. Press
    [Google Scholar]
  73. Ke R, Mignardi M, Pacureanu A, Svedlund J, Botling J, et al. 2013.. In situ sequencing for RNA analysis in preserved tissue and cells. . Nat. Methods 10:(9):85760. https://doi.org/10.1038/nmeth.2563
    [Crossref] [Google Scholar]
  74. Kehr J, Kragler F. 2018.. Long distance RNA movement. . New Phytol. 218:(1):2940. https://doi.org/10.1111/nph.15025
    [Crossref] [Google Scholar]
  75. Kelly-Bellow R, Lee K, Kennaway R, Barclay JE, Whibley A, et al. 2023.. Brassinosteroid coordinates cell layer interactions in plants via cell wall and tissue mechanics. . Science 380:(6651):127581. https://doi.org/10.1126/science.adf0752
    [Crossref] [Google Scholar]
  76. Kiselev VY, Andrews TS, Hemberg M. 2019.. Challenges in unsupervised clustering of single-cell RNA-seq data. . Nat. Rev. Genet. 20:(5):27382. https://doi.org/10.1038/s41576-018-0088-9
    [Crossref] [Google Scholar]
  77. Kondo S, Miura T. 2010.. Reaction-diffusion model as a framework for understanding biological pattern formation. . Science 24::161620. https://doi.org/10.1126/science.1179047
    [Crossref] [Google Scholar]
  78. Kumar N, Larkin JC. 2017.. Why do plants need so many cyclin-dependent kinase inhibitors?. Plant Signal. Behav. 12:(2):e1282021. https://doi.org/10.1080/15592324.2017.1282021
    [Crossref] [Google Scholar]
  79. Landrein B, Kiss A, Sassi M, Chauvet A, Das P, et al. 2015.. Mechanical stress contributes to the expression of the STM homeobox gene in Arabidopsis shoot meristems. . eLife 4::e07811. https://doi.org/10.7554/eLife.07811
    [Crossref] [Google Scholar]
  80. Lee JS, Hnilova M, Maes M, Lin YC, Putarjunan A, et al. 2015.. Competitive binding of antagonistic peptides fine-tunes stomatal patterning. . Nature 522:(7557):43943. https://doi.org/10.1038/nature14561
    [Crossref] [Google Scholar]
  81. Lee TA, Nobori T, Illouz-Eliaz N, Xu J, Jow B, et al. 2023.. A single-nucleus atlas of seed-to-seed development in Arabidopsis. . bioRxiv 2023.03.23.533992. https://doi.org/10.1101/2023.03.23.533992
  82. Li S, Yamada M, Han X, Ohler U, Benfey PN. 2016.. High-resolution expression map of the Arabidopsis root reveals alternative splicing and lincRNA regulation. . Dev. Cell 39:(4):50822. https://doi.org/10.1016/j.devcel.2016.10.012
    [Crossref] [Google Scholar]
  83. Li T, Yan A, Bhatia N, Altinok A, Afik E, et al. 2019.. Calcium signals are necessary to establish auxin transporter polarity in a plant stem cell niche. . Nat. Commun. 10:(1):726. https://doi.org/10.1038/s41467-019-08575-6
    [Crossref] [Google Scholar]
  84. Lopez-Anido CB, Vaten A, Smoot NK, Sharma N, Guo V, et al. 2021.. Single-cell resolution of lineage trajectories in the Arabidopsis stomatal lineage and developing leaf. . Dev. Cell 56:(7):104355.e4. https://doi.org/10.1016/j.devcel.2021.03.014
    [Crossref] [Google Scholar]
  85. Losick R, Desplan C. 2008.. Stochasticity and cell fate. . Science 320:(5872):6568. https://doi.org/10.1126/science.1147888
    [Crossref] [Google Scholar]
  86. Marcotrigiano M. 2010.. A role for leaf epidermis in the control of leaf size and the rate and extent of mesophyll cell division. . Am. J. Bot. 97:(2):22433. https://doi.org/10.3732/ajb.0900102
    [Crossref] [Google Scholar]
  87. Matos JL, Lau OS, Hachez C, Cruz-Ramirez A, Scheres B, Bergmann DC. 2014.. Irreversible fate commitment in the Arabidopsis stomatal lineage requires a FAMA and RETINOBLASTOMA-RELATED module. . eLife 3::e03271. https://doi.org/10.7554/eLife.03271
    [Crossref] [Google Scholar]
  88. Mayer KF, Schoof H, Haecker A, Lenhard M, Jurgens G, Laux T. 1998.. Role of WUSCHEL in regulating stem cell fate in the Arabidopsis shoot meristem. . Cell 95:(6):80515. https://doi.org/10.1016/s0092-8674(00)81703-1
    [Crossref] [Google Scholar]
  89. Meyer HM, Roeder AH. 2014.. Stochasticity in plant cellular growth and patterning. . Front. Plant Sci. 5::420. https://doi.org/10.3389/fpls.2014.00420
    [Google Scholar]
  90. Meyer HM, Teles J, Formosa-Jordan P, Refahi Y, San-Bento R, et al. 2017.. Fluctuations of the transcription factor ATML1 generate the pattern of giant cells in the Arabidopsis sepal. . eLife 6::e19131. https://doi.org/10.7554/eLife.19131
    [Crossref] [Google Scholar]
  91. Miyashima S, Koi S, Hashimoto T, Nakajima K. 2011.. Non-cell-autonomous microRNA165 acts in a dose-dependent manner to regulate multiple differentiation status in the Arabidopsis root. . Development 138:(11):230313. https://doi.org/10.1242/dev.060491
    [Crossref] [Google Scholar]
  92. Moffitt JR, Hao J, Wang G, Chen KH, Babcock HP, Zhuang X. 2016.. High-throughput single-cell gene-expression profiling with multiplexed error-robust fluorescence in situ hybridization. . PNAS 113:(39):1104651. https://doi.org/10.1073/pnas.1612826113
    [Crossref] [Google Scholar]
  93. Nakajima K, Sena G, Nawy T, Benfey PN. 2001.. Intercellular movement of the putative transcription factor SHR in root patterning. . Nature 413:(6853):30711. https://doi.org/10.1038/35095061
    [Crossref] [Google Scholar]
  94. Nakayama N, Smith RS, Mandel T, Robinson S, Kimura S, et al. 2012.. Mechanical regulation of auxin-mediated growth. . Curr. Biol. 22:(16):146876. https://doi.org/10.1016/j.cub.2012.06.050
    [Crossref] [Google Scholar]
  95. Neumann M, Xu X, Smaczniak C, Schumacher J, Yan W, et al. 2022.. A 3D gene expression atlas of the floral meristem based on spatial reconstruction of single nucleus RNA sequencing data. . Nat. Commun. 13:(1):2838. https://doi.org/10.1038/s41467-022-30177-y
    [Crossref] [Google Scholar]
  96. Nobori T, Oliva M, Lister R, Ecker JR. 2023.. Multiplexed single-cell 3D spatial gene expression analysis in plant tissue using PHYTOMap. . Nat. Plants 9:(7):102633. https://doi.org/10.1038/s41477-023-01439-4
    [Crossref] [Google Scholar]
  97. Ogawa M, Shinohara H, Sakagami Y, Matsubayashi Y. 2008.. Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. . Science 319::294
    [Crossref] [Google Scholar]
  98. Omary M, Gil-Yarom N, Yahav C, Steiner E, Hendelman A, Efroni I. 2022.. A conserved superlocus regulates above- and belowground root initiation. . Science 375:(6584):eabf4368. https://doi.org/10.1126/science.abf4368
    [Crossref] [Google Scholar]
  99. Orozco A. 2020.. A spatial analysis of Norwegian spruce cone developmental stages. MA Thesis , Uppsala Univ., Uppsala, Swed:.
    [Google Scholar]
  100. Otero S, Gildea I, Roszak P, Lu Y, Di Vittori V, et al. 2022.. A root phloem pole cell atlas reveals common transcriptional states in protophloem-adjacent cells. . Nat. Plants 8:(8):95470. https://doi.org/10.1038/s41477-022-01178-y
    [Crossref] [Google Scholar]
  101. Paredez AR, Somerville CR, Ehrhardt DW. 2006.. Visualization of cellulose synthase demonstrates functional association with microtubules. . Science 312:(5779):149195. https://doi.org/10.1126/science.1126551
    [Crossref] [Google Scholar]
  102. Pesch M, Hulskamp M. 2009.. One, two, three…models for trichome patterning in Arabidopsis?. Curr. Opin. Plant Biol. 12:(5):58792. https://doi.org/10.1016/j.pbi.2009.07.015
    [Crossref] [Google Scholar]
  103. Poethig S. 1989.. Genetic mosaics and cell lineage analysis in plants. . Trends Genet. 5:(8):27377. https://doi.org/10.1016/0168-9525(89)90101-7
    [Crossref] [Google Scholar]
  104. Pysh LD, Wysocka-Diller JW, Camilleri C, Bouchez D, Benfey PN. 1999.. The GRAS gene family in Arabidopsis: sequence characterization and basic expression analysis of the SCARECROW-LIKE genes. . Plant J. 18:(1):11119. https://doi.org/10.1046/j.1365-313x.1999.00431.x
    [Crossref] [Google Scholar]
  105. Reddy GV, Meyerowitz EM. 2005.. Stem-cell homeostasis and growth dynamics can be uncoupled in the Arabidopsis shoot apex. . Science 310:(5748):66367. https://doi.org/10.1126/science.1116261
    [Crossref] [Google Scholar]
  106. Reeve RM. 1942.. Structure and growth of the vegetative shoot apex of Garrya elliptica Dougl. . Am. J. Botany 29:(9):697711. https://doi.org/10.1002/j.1537-2197.1942.tb10270.x
    [Crossref] [Google Scholar]
  107. Refahi Y, Zardilis A, Michelin G, Wightman R, Leggio B, et al. 2021.. A multiscale analysis of early flower development in Arabidopsis provides an integrated view of molecular regulation and growth control. . Dev. Cell 56:(4):54056.e8. https://doi.org/10.1016/j.devcel.2021.01.019
    [Crossref] [Google Scholar]
  108. Reinhardt D, Pesce ER, Stieger P, Mandel T, Baltensperger K, et al. 2003.. Regulation of phyllotaxis by polar auxin transport. . Nature 426:(6964):25560. https://doi.org/10.1038/nature02081
    [Crossref] [Google Scholar]
  109. Richter GL, Monshausen GB, Krol A, Gilroy S. 2009.. Mechanical stimuli modulate lateral root organogenesis. . Plant Physiol. 151:(4):185566. https://doi.org/10.1104/pp.109.142448
    [Crossref] [Google Scholar]
  110. Robinson S, Burian A, Couturier E, Landrein B, Louveaux M, et al. 2013.. Mechanical control of morphogenesis at the shoot apex. . J. Exp. Bot. 64:(15):472944. https://doi.org/10.1093/jxb/ert199
    [Crossref] [Google Scholar]
  111. Rodriguez-Leal D, Xu C, Kwon CT, Soyars C, Demesa-Arevalo E, et al. 2019.. Evolution of buffering in a genetic circuit controlling plant stem cell proliferation. . Nat. Genet. 51:(5):78692. https://doi.org/10.1038/s41588-019-0389-8
    [Crossref] [Google Scholar]
  112. Rodriques SG, Stickels RR, Goeva A, Martin CA, Murray E, et al. 2019.. Slide-seq: a scalable technology for measuring genome-wide expression at high spatial resolution. . Science 363:(6434):146367. https://doi.org/10.1126/science.aaw1219
    [Crossref] [Google Scholar]
  113. Roeder AH. 2018.. Use it or average it: stochasticity in plant development. . Curr. Opin. Plant Biol. 41::815. https://doi.org/10.1016/j.pbi.2017.07.010
    [Crossref] [Google Scholar]
  114. Roeder AH, Chickarmane V, Cunha A, Obara B, Manjunath BS, Meyerowitz EM. 2010.. Variability in the control of cell division underlies sepal epidermal patterning in Arabidopsis thaliana. . PLOS Biol. 8:(5):e1000367. https://doi.org/10.1371/journal.pbio.1000367
    [Crossref] [Google Scholar]
  115. Roeder AH, Cunha A, Ohno CK, Meyerowitz EM. 2012.. Cell cycle regulates cell type in the Arabidopsis sepal. . Development 139:(23):441627. https://doi.org/10.1242/dev.082925
    [Crossref] [Google Scholar]
  116. Roeder AHK, Otegui MS, Dixit R, Anderson CT, Faulkner C, et al. 2022.. Fifteen compelling open questions in plant cell biology. . Plant Cell 34:(1):72102. https://doi.org/10.1093/plcell/koab225
    [Crossref] [Google Scholar]
  117. Rojo E, Sharma VK, Kovaleva V, Raikhel NV, Fletcher JC. 2002.. CLV3 is localized to the extracellular space, where it activates the Arabidopsis CLAVATA stem cell signaling pathway. . Plant Cell 14::96977
    [Crossref] [Google Scholar]
  118. Ryu KH, Huang L, Kang HM, Schiefelbein J. 2019.. Single-cell RNA sequencing resolves molecular relationships among individual plant cells. . Plant Physiol. 179:(4):144456. https://doi.org/10.1104/pp.18.01482
    [Crossref] [Google Scholar]
  119. Saarenpää S, Shalev O, Ashkenazy H, de Oliveira-Carlos V, Lundberg DS, et al. 2022.. Spatially resolved host-bacteria-fungi interactomes via spatial metatranscriptomics. . bioRxiv 2022.07.18.496977. https://doi.org/10.1101/2022.07.18.496977
  120. Satterlee JW, Strable J, Scanlon MJ. 2020.. Plant stem-cell organization and differentiation at single-cell resolution. . PNAS 117:(52):3368999. https://doi.org/10.1073/pnas.2018788117
    [Crossref] [Google Scholar]
  121. Scheres B. 2001.. Plant cell identity. The role of position and lineage. . Plant Physiol. 125:(1):11214. https://doi.org/10.1104/pp.125.1.112
    [Crossref] [Google Scholar]
  122. Schoof H, Lenhard M, Haecker A, Mayer KF, Jurgens G, Laux T. 2000.. The stem cell population of Arabidopsis shoot meristems is maintained by a regulatory loop between the CLAVATA and WUSCHEL genes. . Cell 100:(6):63544. https://doi.org/10.1016/s0092-8674(00)80700-x
    [Crossref] [Google Scholar]
  123. Schwarz EM, Roeder AH. 2016.. Transcriptomic effects of the cell cycle regulator LGO in Arabidopsis sepals. . Front. Plant Sci. 7::1744. https://doi.org/10.3389/fpls.2016.01744
    [Crossref] [Google Scholar]
  124. Serrano-Ron L, Perez-Garcia P, Sanchez-Corrionero A, Gude I, Cabrera J, et al. 2021.. Reconstruction of lateral root formation through single-cell RNA sequencing reveals order of tissue initiation. . Mol. Plant 14:(8):136278. https://doi.org/10.1016/j.molp.2021.05.028
    [Crossref] [Google Scholar]
  125. Shulse CN, Cole BJ, Ciobanu D, Lin J, Yoshinaga Y, et al. 2019.. High-throughput single-cell transcriptome profiling of plant cell types. . Cell Rep. 27:(7):224147.e4. https://doi.org/10.1016/j.celrep.2019.04.054
    [Crossref] [Google Scholar]
  126. Stahl PL, Salmen F, Vickovic S, Lundmark A, Navarro JF, et al. 2016.. Visualization and analysis of gene expression in tissue sections by spatial transcriptomics. . Science 353:(6294):7882. https://doi.org/10.1126/science.aaf2403
    [Crossref] [Google Scholar]
  127. Stahl Y, Wink RH, Ingram GC, Simon R. 2009.. A signaling module controlling the stem cell niche in Arabidopsis root meristems. . Curr. Biol. 19:(11):90914. https://doi.org/10.1016/j.cub.2009.03.060
    [Crossref] [Google Scholar]
  128. Steeves TA, Sussex IM. 1989.. Patterns in Plant Development. Cambridge, UK:: Cambridge Univ. Press. https://doi.org/10.1017/CBO9780511626227
    [Google Scholar]
  129. Stewart RN, Burk LG. 1970.. Independence of tissues derived from apical layers in ontogeny of the tobacco leaf and ovary. . Am. J. Botany 57:(8):101016. https://doi.org/10.2307/2441000
    [Crossref] [Google Scholar]
  130. Strader L, Weijers D, Wagner D. 2022.. Plant transcription factors—being in the right place with the right company. . Curr. Opin. Plant Biol. 65::102136. https://doi.org/10.1016/j.pbi.2021.102136
    [Crossref] [Google Scholar]
  131. Sugano SS, Shimada T, Imai Y, Okawa K, Tamai A, et al. 2010.. Stomagen positively regulates stomatal density in Arabidopsis. . Nature 463:(7278):24144. https://doi.org/10.1038/nature08682
    [Crossref] [Google Scholar]
  132. Sugimoto K, Jiao Y, Meyerowitz EM. 2010.. Arabidopsis regeneration from multiple tissues occurs via a root development pathway. . Dev. Cell 18:(3):46371. https://doi.org/10.1016/j.devcel.2010.02.004
    [Crossref] [Google Scholar]
  133. Sugimoto K, Temman H, Kadokura S, Matsunaga S. 2019.. To regenerate or not to regenerate: factors that drive plant regeneration. . Curr. Opin. Plant Biol. 47::13850. https://doi.org/10.1016/j.pbi.2018.12.002
    [Crossref] [Google Scholar]
  134. Sun G, Xia M, Li J, Ma W, Li Q, et al. 2022.. The maize single-nucleus transcriptome comprehensively describes signaling networks governing movement and development of grass stomata. . Plant Cell 34:(5):1890911. https://doi.org/10.1093/plcell/koac047
    [Google Scholar]
  135. Takada S, Takada N, Yoshida A. 2013.. ATML1 promotes epidermal cell differentiation in Arabidopsis shoots. . Development 140:(9):191923. https://doi.org/10.1242/dev.094417
    [Crossref] [Google Scholar]
  136. Torii KU. 2012.. Two-dimensional spatial patterning in developmental systems. . Trends Cell Biol. 22:(8):43846. https://doi.org/10.1016/j.tcb.2012.06.002
    [Crossref] [Google Scholar]
  137. Toyota M, Spencer D, Sawai-Toyota S, Jiaqi W, Zhang T, et al. 2018.. Glutamate triggers long-distance, calcium-based plant defense signaling. . Science 361:(6407):111215. https://doi.org/10.1126/science.aat7744
    [Crossref] [Google Scholar]
  138. Trapnell C. 2015.. Defining cell types and states with single-cell genomics. . Genome Res. 25:(10):149198. https://doi.org/10.1101/gr.190595.115
    [Crossref] [Google Scholar]
  139. Trapnell C, Cacchiarelli D, Grimsby J, Pokharel P, Li S, et al. 2014.. The dynamics and regulators of cell fate decisions are revealed by pseudotemporal ordering of single cells. . Nat. Biotechnol. 32:(4):38186. https://doi.org/10.1038/nbt.2859
    [Crossref] [Google Scholar]
  140. Trinh DC, Martin M, Bald L, Maizel A, Trehin C, Hamant O. 2023.. Increased gene expression variability hinders the formation of regional mechanical conflicts leading to reduced organ shape robustness. . PNAS 120:(30):e2302441120. https://doi.org/10.1073/pnas.2302441120
    [Crossref] [Google Scholar]
  141. van den Berg C, Willemsen V, Hage W, Weisbeek P, Scheres B. 1995.. Cell fate in the Arabidopsis root meristem determined by directional signalling. . Nature 378:(6552):6265. https://doi.org/10.1038/378062a0
    [Crossref] [Google Scholar]
  142. Varapparambath V, Mathew MM, Shanmukhan AP, Radhakrishnan D, Kareem A, et al. 2022.. Mechanical conflict caused by a cell-wall-loosening enzyme activates de novo shoot regeneration. . Dev. Cell 57:(17):206380.e10. https://doi.org/10.1016/j.devcel.2022.07.017
    [Crossref] [Google Scholar]
  143. Vaten A, Dettmer J, Wu S, Stierhof YD, Miyashima S, et al. 2011.. Callose biosynthesis regulates symplastic trafficking during root development. . Dev. Cell 21:(6):114455. https://doi.org/10.1016/j.devcel.2011.10.006
    [Crossref] [Google Scholar]
  144. Verger S, Long Y, Boudaoud A, Hamant O. 2018.. A tension-adhesion feedback loop in plant epidermis. . eLife 7::e34460. https://doi.org/10.7554/eLife.34460
    [Crossref] [Google Scholar]
  145. Waddington CH. 1957.. The Strategy of the Genes: A Discussion of Some Aspects of Theoretical Biology. London:: Allen Unwin
    [Google Scholar]
  146. Wang S, Zhou Z, Rahiman R, Lee GSY, Yeo YK, et al. 2021.. Light regulates stomatal development by modulating paracrine signaling from inner tissues. . Nat. Commun. 12:(1):3403. https://doi.org/10.1038/s41467-021-23728-2
    [Crossref] [Google Scholar]
  147. Xia K, Sun HX, Li J, Li J, Zhao Y, et al. 2022.. The single-cell stereo-seq reveals region-specific cell subtypes and transcriptome profiling in Arabidopsis leaves. . Dev. Cell 57:(10):1299310.e4. https://doi.org/10.1016/j.devcel.2022.04.011
    [Crossref] [Google Scholar]
  148. Xu M, Du Q, Tian C, Wang Y, Jiao Y. 2021.. Stochastic gene expression drives mesophyll protoplast regeneration. . Sci. Adv. 7:(33):eabg8466. https://doi.org/10.1126/sciadv.abg8466
    [Crossref] [Google Scholar]
  149. Yadav RK, Girke T, Pasala S, Xie M, Reddy GV. 2009.. Gene expression map of the Arabidopsis shoot apical meristem stem cell niche. . PNAS 106:(12):494146. https://doi.org/10.1073/pnas.0900843106
    [Crossref] [Google Scholar]
  150. Yadav RK, Perales M, Gruel J, Girke T, Jonsson H, Reddy GV. 2011.. WUSCHEL protein movement mediates stem cell homeostasis in the Arabidopsis shoot apex. . Genes Dev. 25:(19):202530. https://doi.org/10.1101/gad.17258511
    [Crossref] [Google Scholar]
  151. Yamanaka S. 2008.. Induction of pluripotent stem cells from mouse fibroblasts by four transcription factors. . Cell Prolif. 41:(Suppl. 1):5156. https://doi.org/10.1111/j.1365-2184.2008.00493.x
    [Crossref] [Google Scholar]
  152. Zaret KS, Mango SE. 2016.. Pioneer transcription factors, chromatin dynamics, and cell fate control. . Curr. Opin. Genet. Dev. 37::7681. https://doi.org/10.1016/j.gde.2015.12.003
    [Crossref] [Google Scholar]
  153. Zhang TQ, Chen Y, Wang JW. 2021.. A single-cell analysis of the Arabidopsis vegetative shoot apex. . Dev. Cell 56:(7):105674.e8. https://doi.org/10.1016/j.devcel.2021.02.021
    [Crossref] [Google Scholar]
  154. Zhang TQ, Xu ZG, Shang GD, Wang JW. 2019.. A single-cell RNA sequencing profiles the developmental landscape of Arabidopsis root. . Mol. Plant 12:(5):64860. https://doi.org/10.1016/j.molp.2019.04.004
    [Crossref] [Google Scholar]
  155. Zhou Y, Yan A, Han H, Li T, Geng Y, et al. 2018.. HAIRY MERISTEM with WUSCHEL confines CLAVATA3 expression to the outer apical meristem layers. . Science 361:(6401):5026. https://doi.org/10.1126/science.aar8638
    [Crossref] [Google Scholar]
  156. Zhu M, Taylor IW, Benfey PN. 2022.. Single-cell genomics revolutionizes plant development studies across scales. . Development 149:(6):dev200179. https://doi.org/10.1242/dev.200179
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111323-102412
Loading
/content/journals/10.1146/annurev-cellbio-111323-102412
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error