1932

Abstract

Ribosomes synthesize protein in all cells. Maintaining both the correct number and composition of ribosomes is critical for protein homeostasis. To address this challenge, cells have evolved intricate quality control mechanisms during assembly to ensure that only correctly matured ribosomes are released into the translating pool. However, these assembly-associated quality control mechanisms do not deal with damage that arises during the ribosomes’ exceptionally long lifetimes and might equally compromise their function or lead to reduced ribosome numbers. Recent research has revealed that ribosomes with damaged ribosomal proteins can be repaired by the release of the damaged protein, thereby ensuring ribosome integrity at a fraction of the energetic cost of producing new ribosomes, appropriate for stress conditions. In this article, we cover the types of ribosome damage known so far, and then we review the known repair mechanisms before surveying the literature for possible additional instances of repair.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-113326
2024-10-02
2025-04-26
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-113326.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-113326&mimeType=html&fmt=ahah

Literature Cited

  1. Aas PA, Otterlei M, Falnes PO, Vagbo CB, Skorpen F, et al. 2003.. Human and bacterial oxidative demethylases repair alkylation damage in both RNA and DNA. . Nature 421::85963
    [Crossref] [Google Scholar]
  2. Abelson HT, Johnson LF, Penman S, Green H. 1974.. Changes in RNA in relation to growth of the fibroblast. II. The lifetime of mRNA, rRNA, and tRNA in resting and growing cells. . Cell 1::16165
    [Crossref] [Google Scholar]
  3. An H, Ordureau A, Korner M, Paulo JA, Harper JW. 2020.. Systematic quantitative analysis of ribosome inventory during nutrient stress. . Nature 583::3039
    [Crossref] [Google Scholar]
  4. Apel K, Hirt H. 2004.. Reactive oxygen species: metabolism, oxidative stress, and signal transduction. . Annu. Rev. Plant Biol. 55::37399
    [Crossref] [Google Scholar]
  5. Bachvarova R, De Leon V. 1977.. Stored and polysomal ribosomes of mouse ova. . Dev. Biol. 58::24854
    [Crossref] [Google Scholar]
  6. Barciszewski J, Barciszewska MZ, Siboska G, Rattan SI, Clark BF. 1999.. Some unusual nucleic acid bases are products of hydroxyl radical oxidation of DNA and RNA. . Mol. Biol. Rep. 26::23138
    [Crossref] [Google Scholar]
  7. Barna M, Karbstein K, Tollervey D, Ruggero D, Brar G, et al. 2022.. The promises and pitfalls of specialized ribosomes. . Mol. Cell 82::217984
    [Crossref] [Google Scholar]
  8. Ben-Shem A, Garreau de Loubresse N, Melnikov S, Jenner L, Yusupova G, Yusupov M. 2011.. The structure of the eukaryotic ribosome at 3.0 Å resolution. . Science 334::152429
    [Crossref] [Google Scholar]
  9. Black JJ, Musalgaonkar S, Johnson AW. 2019.. Tsr4 is a cytoplasmic chaperone for the ribosomal protein Rps2 in Saccharomyces cerevisiae. . Mol. Cell. Biol. 39::e00094-19
    [Crossref] [Google Scholar]
  10. Blomqvist EK, Huang H, Karbstein K. 2023.. A disease associated mutant reveals how Ltv1 orchestrates RP assembly and rRNA folding of the small ribosomal subunit head. . PLOS Genet. 19::e1010862
    [Crossref] [Google Scholar]
  11. Borovinskaya MA, Pai RD, Zhang W, Schuwirth BS, Holton JM, et al. 2007.. Structural basis for aminoglycoside inhibition of bacterial ribosome recycling. . Nat. Struct. Mol. Biol. 14::72732
    [Crossref] [Google Scholar]
  12. Bray MS, Lenz TK, Haynes JW, Bowman JC, Petrov AS, et al. 2018.. Multiple prebiotic metals mediate translation. . PNAS 115::1216469
    [Crossref] [Google Scholar]
  13. Brown A, Baird MR, Yip MC, Murray J, Shao S. 2018.. Structures of translationally inactive mammalian ribosomes. . eLife 7::e40486
    [Crossref] [Google Scholar]
  14. Caldwell P, Luk DC, Weissbach H, Brot N. 1978.. Oxidation of the methionine residues of Escherichia coli ribosomal protein L12 decreases the protein's biological activity. . PNAS 75::534952
    [Crossref] [Google Scholar]
  15. Casati P, Walbot V. 2004.. Crosslinking of ribosomal proteins to RNA in maize ribosomes by UV-B and its effects on translation. . Plant Physiol. 136::331932
    [Crossref] [Google Scholar]
  16. Chen SS, Sperling E, Silverman JM, Davis JH, Williamson JR. 2012.. Measuring the dynamics of E. coli ribosome biogenesis using pulse-labeling and quantitative mass spectrometry. . Mol. Biosyst. 8::332534
    [Crossref] [Google Scholar]
  17. Christiano R, Nagaraj N, Frohlich F, Walther TC. 2014.. Global proteome turnover analyses of the yeasts S. cerevisiae and S. pombe. . Cell Rep. 9::195965
    [Crossref] [Google Scholar]
  18. Cole SE, LaRiviere FJ, Merrikh CN, Moore MJ. 2009.. A convergence of rRNA and mRNA quality control pathways revealed by mechanistic analysis of nonfunctional rRNA decay. . Mol. Cell 34::44050
    [Crossref] [Google Scholar]
  19. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, et al. 1987.. Oxygen radicals and human disease. . Ann. Intern. Med. 107::52645
    [Crossref] [Google Scholar]
  20. D'Aquila P, Montesanto A, Mandalà M, Garasto S, Mari V, et al. 2017.. Methylation of the ribosomal RNA gene promoter is associated with aging and age-related decline. . Aging Cell 16::96675
    [Crossref] [Google Scholar]
  21. Dawson DM. 1967.. Turnover of ribosomal RNA in the rat brain. . J. Neurochem. 14::93946
    [Crossref] [Google Scholar]
  22. de la Cruz J, Karbstein K, Woolford JL Jr. 2015.. Functions of ribosomal proteins in assembly of eukaryotic ribosomes in vivo. . Annu. Rev. Biochem. 84::93129
    [Crossref] [Google Scholar]
  23. Dedduwa-Mudalige GNP, Chow CS. 2015.. Cisplatin targeting of bacterial ribosomal RNA hairpins. . Int. J. Mol. Sci. 16::21392409
    [Crossref] [Google Scholar]
  24. Deutscher MP. 2003.. Degradation of stable RNA in bacteria. . J. Biol. Chem. 278::4504144
    [Crossref] [Google Scholar]
  25. Dhondt I, Petyuk VA, Bauer S, Brewer HM, Smith RD, et al. 2017.. Changes of protein turnover in aging Caenorhabditis elegans. . Mol. Cell. Proteom. 16::162133
    [Crossref] [Google Scholar]
  26. Diaconu M, Kothe U, Schlünzen F, Fischer N, Harms JM, et al. 2005.. Structural basis for the function of the ribosomal L7/12 stalk in factor binding and GTPase activation. . Cell 121::9911004
    [Crossref] [Google Scholar]
  27. D'Orazio KN, Green R. 2021.. Ribosome states signal RNA quality control. . Mol. Cell 81::137283
    [Crossref] [Google Scholar]
  28. Dorrbaum AR, Kochen L, Langer JD, Schuman EM. 2018.. Local and global influences on protein turnover in neurons and glia. . eLife 7::e34202
    [Crossref] [Google Scholar]
  29. Dwyer DJ, Belenky PA, Yang JH, MacDonald IC, Martell JD, et al. 2014.. Antibiotics induce redox-related physiological alterations as part of their lethality. . PNAS 111::E21009
    [Crossref] [Google Scholar]
  30. Engl C, Schaefer J, Kotta-Loizou I, Buck M. 2016.. Cellular and molecular phenotypes depending upon the RNA repair system RtcAB of Escherichia coli. . Nucleic Acids Res. 44::993341
    [Google Scholar]
  31. Englert M, Sheppard K, Aslanian A, Yates JR 3rd, Soll D. 2011.. Archaeal 3′-phosphate RNA splicing ligase characterization identifies the missing component in tRNA maturation. . PNAS 108::129095
    [Crossref] [Google Scholar]
  32. Estevez M, Valesyan S, Jora M, Limbach PA, Addepalli B. 2021.. Oxidative damage to RNA is altered by the presence of interacting proteins or modified nucleosides. . Front. Mol. Biosci. 8::697149
    [Crossref] [Google Scholar]
  33. Ferretti MB, Ghalei H, Ward EA, Potts EL, Karbstein K. 2017.. Rps26 directs mRNA-specific translation by recognition of Kozak sequence elements. . Nat. Struct. Mol. Biol. 24::7007
    [Crossref] [Google Scholar]
  34. Ferretti MB, Karbstein K. 2019.. Does functional specialization of ribosomes really exist?. RNA 25::52138
    [Crossref] [Google Scholar]
  35. Fu L, Liu K, Sun M, Tian C, Sun R, et al. 2017.. Systematic and quantitative assessment of hydrogen peroxide reactivity with cysteines across human proteomes. . Mol. Cell. Proteom. 16::181528
    [Crossref] [Google Scholar]
  36. Fusco CM, Desch K, Dorrbaum AR, Wang M, Staab A, et al. 2021.. Neuronal ribosomes exhibit dynamic and context-dependent exchange of ribosomal proteins. . Nat. Commun. 12::6127
    [Crossref] [Google Scholar]
  37. Garcia-Gomez JJ, Lebaron S, Froment C, Monsarrat B, Henry Y, de la Cruz J. 2011.. Dynamics of the putative RNA helicase Spb4 during ribosome assembly in Saccharomyces cerevisiae. . Mol. Cell. Biol. 31::415664
    [Crossref] [Google Scholar]
  38. Garshott DM, An H, Sundaramoorthy E, Leonard M, Vicary A, et al. 2021.. iRQC, a surveillance pathway for 40S ribosomal quality control during mRNA translation initiation. . Cell Rep. 36::109642
    [Crossref] [Google Scholar]
  39. Gasch AP, Spellman PT, Kao CM, Carmel-Harel O, Eisen MB, et al. 2000.. Genomic expression programs in the response of yeast cells to environmental changes. . Mol. Biol. Cell 11::424157
    [Crossref] [Google Scholar]
  40. Gay DM, Lund AH, Jansson MD. 2022.. Translational control through ribosome heterogeneity and functional specialization. . Trends Biochem. Sci. 47::6681
    [Crossref] [Google Scholar]
  41. Genuth NR, Barna M. 2018.. The discovery of ribosome heterogeneity and its implications for gene regulation and organismal life. . Mol. Cell 71::36474
    [Crossref] [Google Scholar]
  42. Ghalei H, Schaub FX, Doherty JR, Noguchi Y, Roush WR, et al. 2015.. Hrr25/CK1δ-directed release of Ltv1 from pre-40S ribosomes is necessary for ribosome assembly and cell growth. . J. Cell Biol. 208::74559
    [Crossref] [Google Scholar]
  43. Ghalei H, Trepreau J, Collins JC, Bhaskaran H, Strunk BS, Karbstein K. 2017.. The ATPase Fap7 tests the ability to carry out translocation-like conformational changes and releases Dim1 during 40S ribosome maturation. . Mol. Cell 67::9901000.e3
    [Crossref] [Google Scholar]
  44. Gorenstein C, Warner JR. 1977.. Synthesis and turnover of ribosomal proteins in the absence of 60S subunit assembly in Saccharomyces cerevisiae. . Mol. Gen. Genet. 157::32732
    [Crossref] [Google Scholar]
  45. Gough DR, Cotter TG. 2011.. Hydrogen peroxide: a Jekyll and Hyde signalling molecule. . Cell Death Dis. 2::e213
    [Crossref] [Google Scholar]
  46. Gudkov AT, Behlke J. 1978.. N-terminal sequence protein of L7-L12 is responsible for its dimerization. . Eur. J. Biochem. 90::30912
    [Crossref] [Google Scholar]
  47. He C, Hus JC, Sun LJ, Zhou P, Norman DPG, et al. 2005.. A methylation-dependent electrostatic switch controls DNA repair and transcriptional activation by E. coli Ada. . Mol. Cell 20::11729
    [Crossref] [Google Scholar]
  48. Hellmich UA, Weis BL, Lioutikov A, Wurm JP, Kaiser M, et al. 2013.. Essential ribosome assembly factor Fap7 regulates a hierarchy of RNA-protein interactions during small ribosomal subunit biogenesis. . PNAS 110::1525358
    [Crossref] [Google Scholar]
  49. Henras AK, Plisson-Chastang C, O'Donohue MF, Chakraborty A, Gleizes PE. 2015.. An overview of pre-ribosomal RNA processing in eukaryotes. . Wiley Interdiscip. Rev. RNA 6::22542
    [Crossref] [Google Scholar]
  50. Hofer T, Badouard C, Bajak E, Ravanat JL, Mattsson A, Cotgreave IA. 2005.. Hydrogen peroxide causes greater oxidation in cellular RNA than in DNA. . Biol. Chem. 386::33337
    [Crossref] [Google Scholar]
  51. Hofer T, Seo AY, Prudencio M, Leeuwenburgh C. 2006.. A method to determine RNA and DNA oxidation simultaneously by HPLC-ECD: greater RNA than DNA oxidation in rat liver after doxorubicin administration. . Biol. Chem. 387::10311
    [Crossref] [Google Scholar]
  52. Holt CE, Martin KC, Schuman EM. 2019.. Local translation in neurons: visualization and function. . Nat. Struct. Mol. Biol. 26::55766
    [Crossref] [Google Scholar]
  53. Hostetter AA, Osborn MF, DeRose VJ. 2012.. RNA-Pt adducts following cisplatin treatment of Saccharomyces cerevisiae. . ACS Chem. Biol. 7::21825
    [Crossref] [Google Scholar]
  54. Huang H, Ghalei H, Karbstein K. 2020.. Quality control of 40S ribosome head assembly ensures scanning competence. . J. Cell Biol. 219::e202004161
    [Crossref] [Google Scholar]
  55. Huang H, Karbstein K. 2021.. Assembly factors chaperone ribosomal RNA folding by isolating helical junctions that are prone to misfolding. . PNAS 118::e2101164118
    [Crossref] [Google Scholar]
  56. Hussain T, Llacer JL, Fernandez IS, Munoz A, Martin-Marcos P, et al. 2014.. Structural changes enable start codon recognition by the eukaryotic translation initiation complex. . Cell 159::597607
    [Crossref] [Google Scholar]
  57. Imlay JA. 2003.. Pathways of oxidative damage. . Annu. Rev. Microbiol. 57::395418
    [Crossref] [Google Scholar]
  58. Iordanov MS, Pribnow D, Magun JL, Dinh TH, Pearson JA, Magun BE. 1998.. Ultraviolet radiation triggers the ribotoxic stress response in mammalian cells. . J. Biol. Chem. 273::15794803
    [Crossref] [Google Scholar]
  59. Iouk TL, Aitchison JD, Maguire S, Wozniak RW. 2001.. Rrb1p, a yeast nuclear WD-repeat protein involved in the regulation of ribosome biosynthesis. . Mol. Cell. Biol. 21::126071
    [Crossref] [Google Scholar]
  60. Ivanov IP, Saba JA, Fan CM, Wang J, Firth AE, et al. 2022.. Evolutionarily conserved inhibitory uORFs sensitize Hox mRNA translation to start codon selection stringency. . PNAS 119::e2117226119
    [Crossref] [Google Scholar]
  61. Jacques S, Ghesquiere B, De Bock PJ, Demol H, Wahni K, et al. 2015.. Protein methionine sulfoxide dynamics in Arabidopsis thaliana under oxidative stress. . Mol. Cell. Proteom. 14::121729
    [Crossref] [Google Scholar]
  62. Jamieson ER, Lippard SJ. 1999.. Structure, recognition, and processing of cisplatin-DNA adducts. . Chem. Rev. 99::246798
    [Crossref] [Google Scholar]
  63. Ju D, Li L, Xie Y. 2023.. Homeostatic regulation of ribosomal proteins by ubiquitin-independent cotranslational degradation. . PNAS 120::e2306152120
    [Crossref] [Google Scholar]
  64. Juhnke H, Charizanis C, Latifi F, Krems B, Entian KD. 2000.. The essential protein Fap7 is involved in the oxidative stress response of Saccharomyces cerevisiae. . Mol. Microbiol. 35::93648
    [Crossref] [Google Scholar]
  65. Jung M, Jin SG, Zhang XY, Xiong WY, Gogoshin G, et al. 2015.. Longitudinal epigenetic and gene expression profiles analyzed by three-component analysis reveal down-regulation of genes involved in protein translation in human aging. . Nucleic Acids Res. 43::E100
    [Crossref] [Google Scholar]
  66. Jurkin J, Henkel T, Nielsen AF, Minnich M, Popow J, et al. 2014.. The mammalian tRNA ligase complex mediates splicing of XBP1 mRNA and controls antibody secretion in plasma cells. . EMBO J. 33::292236
    [Crossref] [Google Scholar]
  67. Kiley PJ, Storz G. 2004.. Exploiting thiol modifications. . PLOS Biol. 2::e400
    [Crossref] [Google Scholar]
  68. Klinge S, Woolford JL. 2019.. Ribosome assembly coming into focus. . Nat. Rev. Mol. Cell Biol. 20::11631
    [Crossref] [Google Scholar]
  69. Koch B, Mitterer V, Niederhauser J, Stanborough T, Murat G, et al. 2012.. Yar1 protects the ribosomal protein Rps3 from aggregation. . J. Biol. Chem. 287::2180615
    [Crossref] [Google Scholar]
  70. Kohanski MA, Dwyer DJ, Hayete B, Lawrence CA, Collins JJ. 2007.. A common mechanism of cellular death induced by bactericidal antibiotics. . Cell 130::797810
    [Crossref] [Google Scholar]
  71. Koplin A, Preissler S, Ilina Y, Koch M, Scior A, et al. 2010.. A dual function for chaperones SSB-RAC and the NAC nascent polypeptide-associated complex on ribosomes. . J. Cell Biol. 189::5768
    [Crossref] [Google Scholar]
  72. Koteliansky VE, Domogatsky SP, Gudkov AT. 1978.. Dimer state of protein L7/L12 and EF-G-dependent reactions of ribosomes. . Eur. J. Biochem. 90::31923
    [Crossref] [Google Scholar]
  73. Kressler D, Bange G, Ogawa Y, Stjepanovic G, Bradatsch B, et al. 2012.. Synchronizing nuclear import of ribosomal proteins with ribosome assembly. . Science 338::66671
    [Crossref] [Google Scholar]
  74. LaRiviere FJ, Cole SE, Ferullo DJ, Moore MJ. 2006.. A late-acting quality control process for mature eukaryotic rRNAs. . Mol. Cell 24::61926
    [Crossref] [Google Scholar]
  75. Lee SW, Berger SJ, Martinovic S, Pasa-Tolic L, Anderson GA, et al. 2002.. Direct mass spectrometric analysis of intact proteins of the yeast large ribosomal subunit using capillary LC/FTICR. . PNAS 99::594247
    [Crossref] [Google Scholar]
  76. Leesch F, Lorenzo-Orts L, Pribitzer C, Grishkovskaya I, Roehsner J, et al. 2023.. A molecular network of conserved factors keeps ribosomes dormant in the egg. . Nature 613::71220
    [Crossref] [Google Scholar]
  77. Leichert LI, Gehrke F, Gudiseva HV, Blackwell T, Ilbert M, et al. 2008.. Quantifying changes in the thiol redox proteome upon oxidative stress in vivo. . PNAS 105::8197202
    [Crossref] [Google Scholar]
  78. Liebhaber SA, Wolf S, Schlessinger D. 1978.. Differences in rRNA metabolism of primary and SV40-transformed human fibroblasts. . Cell 13::12127
    [Crossref] [Google Scholar]
  79. Lilleorg S, Reier K, Pulk A, Liiv A, Tammsalu T, et al. 2019.. Bacterial ribosome heterogeneity: changes in ribosomal protein composition during transition into stationary growth phase. . Biochimie 156::16980
    [Crossref] [Google Scholar]
  80. Liu X, Huang H, Karbstein K. 2021.. Blocking a dead-end assembly pathway creates a point of regulation for the DEAD-box ATPase Has1 and prevents platform misassembly. . bioRxiv 2021.09.06.459192. https://doi.org/10.1101.2021.09.06.459192
  81. Lo KY, Li Z, Bussiere C, Bresson S, Marcotte EM, Johnson AW. 2010.. Defining the pathway of cytoplasmic maturation of the 60S ribosomal subunit. . Mol. Cell 39::196208
    [Crossref] [Google Scholar]
  82. Lu Y, Liang FX, Wang X. 2014.. A synthetic biology approach identifies the mammalian UPR RNA ligase RtcB. . Mol. Cell 55::75870
    [Crossref] [Google Scholar]
  83. Maday S, Twelvetrees AE, Moughamian AJ, Holzbaur EL. 2014.. Axonal transport: cargo-specific mechanisms of motility and regulation. . Neuron 84::292309
    [Crossref] [Google Scholar]
  84. Manwar MR, Shao C, Shi X, Wang J, Lin Q, et al. 2020.. The bacterial RNA ligase RtcB accelerates the repair process of fragmented rRNA upon releasing the antibiotic stress. . Sci. China Life Sci. 63::25158
    [Crossref] [Google Scholar]
  85. Mathieson T, Franken H, Kosinski J, Kurzawa N, Zinn N, et al. 2018.. Systematic analysis of protein turnover in primary cells. . Nat. Commun. 9::689
    [Crossref] [Google Scholar]
  86. Mathis AD, Naylor BC, Carson RH, Evans E, Harwell J, et al. 2017.. Mechanisms of in vivo ribosome maintenance change in response to nutrient signals. . Mol. Cell. Proteom. 16::24354
    [Crossref] [Google Scholar]
  87. Melnikov SV, Söll D, Steitz TA, Polikanov YS. 2016.. Insights into RNA binding by the anticancer drug cisplatin from the crystal structure of cisplatin-modified ribosome. . Nucleic Acids Res. 44::497887
    [Crossref] [Google Scholar]
  88. Meng J, Fu L, Liu K, Tian C, Wu Z, et al. 2021.. Global profiling of distinct cysteine redox forms reveals wide-ranging redox regulation in C. elegans. . Nat. Commun. 12::1415
    [Crossref] [Google Scholar]
  89. Menzies RA, Gold PH. 1972.. The apparent turnover of mitochondria, ribosomes and sRNA of the brain in young adult and aged rats. . J. Neurochem. 19::167183
    [Crossref] [Google Scholar]
  90. Menzies RA, Mishra RK, Gold PH. 1972.. The turnover of ribosomes and soluble RNA in a variety of tissues of young adult and aged rats. . Mech. Ageing Dev. 1::11732
    [Crossref] [Google Scholar]
  91. Meselson M, Nomura M, Brenner S, Davern C, Schlessinger D. 1964.. Conservation of ribosomes during bacterial growth. . J. Mol. Biol. 9::696711
    [Crossref] [Google Scholar]
  92. Mills EW, Green R. 2017.. Ribosomopathies: There's strength in numbers. . Science 358::eaan2755
    [Crossref] [Google Scholar]
  93. Mitterer V, Gantenbein N, Birner-Gruenberger R, Murat G, Bergler H, et al. 2016.. Nuclear import of dimerized ribosomal protein Rps3 in complex with its chaperone Yar1. . Sci. Rep. 6::36714
    [Crossref] [Google Scholar]
  94. Mitterer V, Thoms M, Buschauer R, Berninghausen O, Hurt E, Beckmann R. 2023.. Concurrent emodelling of nucleolar 60S subunit precursors by the Rea1 ATPase and Spb4 RNA helicase. . eLife 12::e84877
    [Crossref] [Google Scholar]
  95. Mizuno CM, Guyomar C, Roux S, Lavigne R, Rodriguez-Valera F, et al. 2019.. Numerous cultivated and uncultivated viruses encode ribosomal proteins. . Nat. Commun. 10::752
    [Crossref] [Google Scholar]
  96. Moskovitz J. 2005.. Methionine sulfoxide reductases: ubiquitous enzymes involved in antioxidant defense, protein regulation, and prevention of aging-associated diseases. . Biochim. Biophys. Acta Proteins Proteom. 1703::21319
    [Crossref] [Google Scholar]
  97. Nesterchuk MV, Sergiev PV, Dontsova OA. 2011.. Posttranslational modifications of ribosomal proteins in Escherichia coli. . Acta Nat. 3::2233
    [Crossref] [Google Scholar]
  98. Novakovic MB, Petrovic SL, Rakic LM, Ivanus JJ. 1979.. Different turnover rates of brain ribosomal ribonucleic acids in male and female rats. . J. Neurochem. 33::66167
    [Crossref] [Google Scholar]
  99. Odintsova TI, Müller EC, Ivanov AV, Egorov TA, Bienert R, et al. 2003.. Characterization and analysis of posttranslational modifications of the human large cytoplasmic ribosomal subunit proteins by mass spectrometry and Edman sequencing. . J. Protein Chem. 22::24958
    [Crossref] [Google Scholar]
  100. Osborn MF, White JD, Haley MM, DeRose VJ. 2014.. Platinum-RNA modifications following drug treatment in S. cerevisiae identified by click chemistry and enzymatic mapping. . ACS Chem. Biol. 9::240411
    [Crossref] [Google Scholar]
  101. Parker MD, Collins JC, Korona B, Ghalei H, Karbstein K. 2019.. A kinase-dependent checkpoint prevents escape of immature ribosomes into the translating pool. . PLOS Biol. 17::e3000329
    [Crossref] [Google Scholar]
  102. Parker MD, Brunk ES, Getzler AJ, Karbstein K. 2024.. The kinase Rio1 and a ribosome collision-dependent decay pathway survey the integrity of 18S rRNA cleavage. . PLOS Biol. 22::e3001767
    [Crossref] [Google Scholar]
  103. Parker MD, Karbstein K. 2023.. Quality control ensures fidelity in ribosome assembly and cellular health. . J. Cell Biol. 222::e202209115
    [Crossref] [Google Scholar]
  104. Paulsen CE, Carroll KS. 2013.. Cysteine-mediated redox signaling: chemistry, biology, and tools for discovery. . Chem. Rev. 113::463379
    [Crossref] [Google Scholar]
  105. Pausch P, Singh U, Ahmed YL, Pillet B, Murat G, et al. 2015.. Co-translational capturing of nascent ribosomal proteins by their dedicated chaperones. . Nat. Commun. 6::7494
    [Crossref] [Google Scholar]
  106. Petrova B, Liu K, Tian C, Kitaoka M, Freinkman E, et al. 2018.. Dynamic redox balance directs the oocyte-to-embryo transition via developmentally controlled reactive cysteine changes. . PNAS 115::E797886
    [Crossref] [Google Scholar]
  107. Pillet B, Garcia-Gomez JJ, Pausch P, Falquet L, Bange G, et al. 2015.. The dedicated chaperone Acl4 escorts ribosomal protein Rpl4 to its Nuclear pre-60S assembly site. . PLOS Genet. 11::e1005565
    [Crossref] [Google Scholar]
  108. Pillet B, Mitterer V, Kressler D, Pertschy B. 2017.. Hold on to your friends: dedicated chaperones of ribosomal proteins. . BioEssays 39::112
    [Crossref] [Google Scholar]
  109. Plakos K, DeRose VJ. 2017.. Mapping platinum adducts on yeast ribosomal RNA using high-throughput sequencing. . Chem. Commun. 53::1274649
    [Crossref] [Google Scholar]
  110. Poetsch AR. 2020.. The genomics of oxidative DNA damage, repair, and resulting mutagenesis. . Comput. Struct. Biotechnol. J. 18::20719
    [Crossref] [Google Scholar]
  111. Popow J, Englert M, Weitzer S, Schleiffer A, Mierzwa B, et al. 2011.. HSPC117 is the essential subunit of a human tRNA splicing ligase complex. . Science 331::76064
    [Crossref] [Google Scholar]
  112. Prossliner T, Skovbo Winther K, Sorensen MA, Gerdes K. 2018.. Ribosome hibernation. . Annu. Rev. Genet. 52::32148
    [Crossref] [Google Scholar]
  113. Pulk A, Liiv A, Peil L, Maivali U, Nierhaus K, Remme J. 2010.. Ribosome reactivation by replacement of damaged proteins. . Mol. Microbiol. 75::80114
    [Crossref] [Google Scholar]
  114. Reddie KG, Carroll KS. 2008.. Expanding the functional diversity of proteins through cysteine oxidation. . Curr. Opin. Chem. Biol. 12::74654
    [Crossref] [Google Scholar]
  115. Retz KC, Steele WJ. 1980.. Ribosome turnover in rat brain and liver. . Life Sci. 27::26014
    [Crossref] [Google Scholar]
  116. Rijal K, Chow CS. 2009.. A new role for cisplatin: probing ribosomal RNA structure. . Chem. Commun. 2008::1079
    [Google Scholar]
  117. Robertson WR, Dowsett SJ, Hardy SJ. 1977.. Exchange of ribosomal proteins among the ribosomes of Escherichia coli. . Mol. Gen. Genet. 157::20514
    [Crossref] [Google Scholar]
  118. Rossler I, Embacher J, Pillet B, Murat G, Liesinger L, et al. 2019.. Tsr4 and Nap1, two novel members of the ribosomal protein chaperOME. . Nucleic Acids Res. 47::69847002
    [Crossref] [Google Scholar]
  119. Schafer T, Maco B, Petfalski E, Tollervey D, Bottcher B, et al. 2006.. Hrr25-dependent phosphorylation state regulates organization of the pre-40S subunit. . Nature 441::65155
    [Crossref] [Google Scholar]
  120. Schutz S, Fischer U, Altvater M, Nerurkar P, Pena C, et al. 2014.. A RanGTP-independent mechanism allows ribosomal protein nuclear import for ribosome assembly. . eLife 3::e03473
    [Crossref] [Google Scholar]
  121. Schutz S, Michel E, Damberger FF, Oplova M, Pena C, et al. 2018.. Molecular basis for disassembly of an importin:ribosomal protein complex by the escortin Tsr2. . Nat. Commun. 9::3669
    [Crossref] [Google Scholar]
  122. Shacter E. 2000.. Quantification and significance of protein oxidation in biological samples. . Drug Metab. Rev. 32::30726
    [Crossref] [Google Scholar]
  123. Shcherbik N, Pestov DG. 2019.. The impact of oxidative stress on ribosomes: from injury to regulation. . Cells 8::1379
    [Crossref] [Google Scholar]
  124. Shedlovskiy D, Zinskie JA, Gardner E, Pestov DG, Shcherbik N. 2017.. Endonucleolytic cleavage in the expansion segment 7 of 25S rRNA is an early marker of low-level oxidative stress in yeast. . J. Biol. Chem. 292::1846985
    [Crossref] [Google Scholar]
  125. Shi Y, Carroll KS. 2020.. Activity-based sensing for site-specific proteomic analysis of cysteine oxidation. . ACC Chem. Res. 53::2031
    [Crossref] [Google Scholar]
  126. Shi Z, Fujii K, Kovary KM, Genuth NR, Rost HL, et al. 2017.. Heterogeneous ribosomes preferentially translate distinct subpools of mRNAs genome-wide. . Mol. Cell 67::7183.e7
    [Crossref] [Google Scholar]
  127. Shigeoka T, Koppers M, Wong HH, Lin JQ, Cagnetta R, et al. 2019.. On-site ribosome remodeling by locally synthesized ribosomal proteins in axons. . Cell Rep. 29::360519.e10
    [Crossref] [Google Scholar]
  128. Sies H. 1986.. Biochemistry of oxidative stress. . Angew. Chem. Int. Ed. 25::105871
    [Crossref] [Google Scholar]
  129. Simms CL, Hudson BH, Mosior JW, Rangwala AS, Zaher HS. 2014.. An active role for the ribosome in determining the fate of oxidized mRNA. . Cell Rep. 9::125664
    [Crossref] [Google Scholar]
  130. Simms CL, Yan LWL, Zaher HS. 2017.. Ribosome collision is critical for quality control during no-go decay. . Mol. Cell 68::36173.e5
    [Crossref] [Google Scholar]
  131. Simsek D, Barna M. 2017.. An emerging role for the ribosome as a nexus for post-translational modifications. . Curr. Opin. Cell Biol. 45::92101
    [Crossref] [Google Scholar]
  132. Smethurst DGJ, Kovalev N, McKenzie ER, Pestov DG, Shcherbik N. 2020.. Iron-mediated degradation of ribosomes under oxidative stress is attenuated by manganese. . J. Biol. Chem. 295::1720014
    [Crossref] [Google Scholar]
  133. Steenken S, Jovanovic SV. 1997.. How easily oxidizable is DNA? One-electron reduction potentials of adenosine and guanosine radicals in aqueous solution. . J. Am. Chem. Soc. 119::61718
    [Crossref] [Google Scholar]
  134. Stelter P, Huber FM, Kunze R, Flemming D, Hoelz A, Hurt E. 2015.. Coordinated ribosomal L4 protein assembly into the pre-ribosome is regulated by its eukaryote-specific extension. . Mol. Cell 58::85462
    [Crossref] [Google Scholar]
  135. Stoneley M, Harvey RF, Mulroney TE, Mordue R, Jukes-Jones R, et al. 2022.. Unresolved stalled ribosome complexes restrict cell-cycle progression after genotoxic stress. . Mol. Cell 82::155772.e7
    [Crossref] [Google Scholar]
  136. Stoykova AS, Dudov KP, Dabeva MD, Hadjiolov AA. 1983.. Different rates of synthesis and turnover of ribosomal RNA in rat brain and liver. . J. Neurochem. 41::94249
    [Crossref] [Google Scholar]
  137. Strunk BS, Novak MN, Young CL, Karbstein K. 2012.. A translation-like cycle is a quality control checkpoint for maturing 40S ribosome subunits. . Cell 150::11121
    [Crossref] [Google Scholar]
  138. Subramanian AR, van Duin J. 1977.. Exchange of individual ribosomal proteins between ribosomes as studied by heavy isotope-transfer experiments. . Mol. Gen. Genet. 158::19
    [Crossref] [Google Scholar]
  139. Sugiyama T, Li S, Kato M, Ikeuchi K, Ichimura A, et al. 2019.. Sequential ubiquitination of ribosomal protein uS3 triggers the degradation of non-functional 18S rRNA. . Cell Rep. 26::340015.e7
    [Crossref] [Google Scholar]
  140. Sun M, Shen B, Li W, Samir P, Browne CM, et al. 2021.. A time-resolved cryo-EM study of Saccharomyces cerevisiae 80S ribosome protein composition in response to a change in carbon source. . Proteomics 21::e2000125
    [Crossref] [Google Scholar]
  141. Sung MK, Porras-Yakushi TR, Reitsma JM, Huber FM, Sweredoski MJ, et al. 2016.. A conserved quality-control pathway that mediates degradation of unassembled ribosomal proteins. . eLife 5::e19105
    [Crossref] [Google Scholar]
  142. Takahashi Y, Ogata K. 1981.. Ribosomal proteins cross-linked to natural mRNA by UV irradiation of rat liver polysomes. . J. Biochem. 90::154952
    [Crossref] [Google Scholar]
  143. Tanaka N, Shuman S. 2011.. RtcB is the RNA ligase component of an Escherichia coli RNA repair operon. . J. Biol. Chem. 286::772731
    [Crossref] [Google Scholar]
  144. Temmel H, Muller C, Sauert M, Vesper O, Reiss A, et al. 2017.. The RNA ligase RtcB reverses MazF-induced ribosome heterogeneity in Escherichia coli. . Nucleic Acids Res. 45::470821
    [Google Scholar]
  145. Thompson MK, Rojas-Duran MF, Gangaramani P, Gilbert WV. 2016.. The ribosomal protein Asc1/RACK1 is required for efficient translation of short mRNAs. . eLife 5::e11154
    [Crossref] [Google Scholar]
  146. Tikkanen M, Mekala NR, Aro EM. 2014.. Photosystem II photoinhibition-repair cycle protects photosystem I from irreversible damage. . Biochim. Biophys. Acta Bioenerg. 1837::21015
    [Crossref] [Google Scholar]
  147. Ting YH, Lu TJ, Johnson AW, Shie JT, Chen BR, et al. 2017.. Bcp1 is the nuclear chaperone of Rpl23 in Saccharomyces cerevisiae. . J. Biol. Chem. 292::58596
    [Crossref] [Google Scholar]
  148. Topf U, Suppanz I, Samluk L, Wrobel L, Boser A, et al. 2018.. Quantitative proteomics identifies redox switches for global translation modulation by mitochondrially produced reactive oxygen species. . Nat. Commun. 9::324
    [Crossref] [Google Scholar]
  149. van der Reest J, Lilla S, Zheng L, Zanivan S, Gottlieb E. 2018.. Proteome-wide analysis of cysteine oxidation reveals metabolic sensitivity to redox stress. . Nat. Commun. 9::1581
    [Crossref] [Google Scholar]
  150. Vesper O, Amitai S, Belitsky M, Byrgazov K, Kaberdina AC, et al. 2011.. Selective translation of leaderless mRNAs by specialized ribosomes generated by MazF in Escherichia coli. . Cell 147::14757
    [Crossref] [Google Scholar]
  151. Vincow ES, Merrihew G, Thomas RE, Shulman NJ, Beyer RP, et al. 2013.. The PINK1-Parkin pathway promotes both mitophagy and selective respiratory chain turnover in vivo. . PNAS 110::64005
    [Crossref] [Google Scholar]
  152. Vincow ES, Thomas RE, Merrihew GE, MacCoss MJ, Pallanck LJ. 2021.. Slowed protein turnover in aging Drosophila reflects a shift in cellular priorities. . J. Gerontol. A Biol. Sci. Med. Sci. 76::173439
    [Crossref] [Google Scholar]
  153. Wang D, Lippard SJ. 2005.. Cellular processing of platinum anticancer drugs. . Nat. Rev. Drug Discov. 4::30720
    [Crossref] [Google Scholar]
  154. Warner JR. 1977.. In the absence of ribosomal RNA synthesis, the ribosomal proteins of HeLa cells are synthesized normally and degraded rapidly. . J. Mol. Biol. 115::31533
    [Crossref] [Google Scholar]
  155. Warner JR. 1999.. The economics of ribosome biosynthesis in yeast. . Trends Biochem. Sci. 24::43740
    [Crossref] [Google Scholar]
  156. Wells JN, Buschauer R, Mackens-Kiani T, Best K, Kratzat H, et al. 2020.. Structure and function of yeast Lso2 and human CCDC124 bound to hibernating ribosomes. . PLOS Biol. 18::e3000780
    [Crossref] [Google Scholar]
  157. Werner A, Iwasaki S, McGourty CA, Medina-Ruiz S, Teerikorpi N, et al. 2015.. Cell-fate determination by ubiquitin-dependent regulation of translation. . Nature 525::52327
    [Crossref] [Google Scholar]
  158. White LK, Strugar SM, MacFadden A, Hesselberth JR. 2023.. Nanopore sequencing of internal 2′-PO4 modifications installed by RNA repair. . RNA 29::84761
    [Crossref] [Google Scholar]
  159. Wu CC, Peterson A, Zinshteyn B, Regot S, Green R. 2020.. Ribosome collisions trigger general stress responses to regulate cell fate. . Cell 182::40416.e14
    [Crossref] [Google Scholar]
  160. Wurtmann EJ, Wolin SL. 2009.. RNA under attack: cellular handling of RNA damage. . Crit. Rev. Biochem. Mol. Biol. 44::3449
    [Crossref] [Google Scholar]
  161. Xie K, Bunse C, Marcus K, Leichert LI. 2019.. Quantifying changes in the bacterial thiol redox proteome during host-pathogen interaction. . Redox Biol. 21::101087
    [Crossref] [Google Scholar]
  162. Xue S, Barna M. 2012.. Specialized ribosomes: a new frontier in gene regulation and organismal biology. . Nat. Rev. Mol. Cell Biol. 13::35569
    [Crossref] [Google Scholar]
  163. Yan LL, Simms CL, McLoughlin F, Vierstra RD, Zaher HS. 2019.. Oxidation and alkylation stresses activate ribosome-quality control. . Nat. Commun. 10::5611
    [Crossref] [Google Scholar]
  164. Yan LWL, Zaher HS. 2019.. How do cells cope with RNA damage and its consequences?. J. Biol. Chem. 294::1515871
    [Crossref] [Google Scholar]
  165. Yang YM, Jung Y, Abegg D, Adibekian A, Carroll KS, Karbstein K. 2023.. Chaperone-directed ribosome repair after oxidative damage. . Mol. Cell 83::152737.e5
    [Crossref] [Google Scholar]
  166. Yang YM, Karbstein K. 2022.. The chaperone Tsr2 regulates Rps26 release and reincorporation from mature ribosomes to enable a reversible, ribosome-mediated response to stress. . Sci. Adv. 8::eabl4386
    [Crossref] [Google Scholar]
  167. Yang YT, Ting YH, Liang KJ, Lo KY. 2016.. The roles of Puf6 and Loc1 in 60S biogenesis are interdependent, and both are required for efficient accommodation of Rpl43. . J. Biol. Chem. 291::1931223
    [Crossref] [Google Scholar]
  168. Yip MCJ, Sedor SF, Shao S. 2022.. Mechanism of client selection by the protein quality-control factor UBE2O. . Nat. Struct. Mol. Biol. 29::77480
    [Crossref] [Google Scholar]
  169. Young BD, Weiss DI, Zurita-Lopez CI, Webb KJ, Clarke SG, McBride AE. 2012.. Identification of methylated proteins in the yeast small ribosomal subunit: a role for SPOUT methyltransferases in protein arginine methylation. . Biochemistry 51::5091104
    [Crossref] [Google Scholar]
  170. Yu YH, Ji H, Doudna JA, Leary JA. 2005.. Mass spectrometric analysis of the human 40S ribosomal subunit: native and HCVIRES-bound complexes. . Protein Sci. 14::143846
    [Crossref] [Google Scholar]
  171. Zinskie JA, Ghosh A, Trainor BM, Shedlovskiy D, Pestov DG, Shcherbik N. 2018.. Iron-dependent cleavage of ribosomal RNA during oxidative stress in the yeast Saccharomyces cerevisiae. . J. Biol. Chem. 293::1423748
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-113326
Loading
/content/journals/10.1146/annurev-cellbio-111822-113326
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error