1932

Abstract

Expansins comprise an ancient group of cell wall proteins ubiquitous in land plants and their algal ancestors. During cell growth, they facilitate passive yielding of the wall's cellulose networks to turgor-generated tensile stresses, without evidence of enzymatic activity. Expansins are also implicated in fruit softening and other developmental processes and in adaptive responses to environmental stresses and pathogens. The major expansin families in plants include α-expansins (EXPAs), which act on cellulose-cellulose junctions, and β-expansins, which can act on xylans. EXPAs mediate acid growth, which contributes to wall enlargement by auxin and other growth agents. The genomes of diverse microbes, including many plant pathogens, also encode expansins designated expansin-like X. Expansins are proposed to disrupt noncovalent bonding between laterally aligned polysaccharides (notably cellulose), facilitating wall loosening for a variety of biological roles.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-111822-115334
2024-10-02
2025-04-24
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/40/1/annurev-cellbio-111822-115334.html?itemId=/content/journals/10.1146/annurev-cellbio-111822-115334&mimeType=html&fmt=ahah

Literature Cited

  1. Armezzani A, Abad U, Ali O, Andres Robin A, Vachez L, et al. 2018.. Transcriptional induction of cell wall remodelling genes is coupled to microtubule-driven growth isotropy at the shoot apex in Arabidopsis. . Development 145::dev162255
    [Crossref] [Google Scholar]
  2. Ball T, Edstrom W, Mauch L, Schmitt J, Leistler B, et al. 2005.. Gain of structure and IgE epitopes by eukaryotic expression of the major Timothy grass pollen allergen, Phl p 1. . FEBS J. 272::21727
    [Crossref] [Google Scholar]
  3. Bernal-Gallardo JJ, Gonzalez-Aguilera KL, de Folter S. 2024.. EXPANSIN15 is involved in flower and fruit development in Arabidopsis. . Plant Reprod. 37::25970
    [Crossref] [Google Scholar]
  4. Brummell DA, Harpster MH, Civello PM, Palys JM, Bennett AB, Dunsmuir P. 1999.. Modification of expansin protein abundance in tomato fruit alters softening and cell wall polymer metabolism during ripening. . Plant Cell 11::220316
    [Crossref] [Google Scholar]
  5. Calderini DF, Castillo FM, Arenas MA, Molero G, Reynolds MP, et al. 2021.. Overcoming the trade-off between grain weight and number in wheat by the ectopic expression of expansin in developing seeds leads to increased yield potential. . New Phytol. 230::62940
    [Crossref] [Google Scholar]
  6. Cantu D, Vicente AR, Greve LC, Dewey FM, Bennett AB, et al. 2008.. The intersection between cell wall disassembly, ripening, and fruit susceptibility to Botrytis cinerea. . PNAS 105::85964
    [Crossref] [Google Scholar]
  7. Carey RE, Cosgrove DJ. 2007.. Portrait of the expansin superfamily in Physcomitrella patens: comparisons with angiosperm expansins. . Ann. Bot. 99::113141
    [Crossref] [Google Scholar]
  8. Carey RE, Hepler NK, Cosgrove DJ. 2013.. Selaginella moellendorffii has a reduced and highly conserved expansin superfamily with genes more closely related to angiosperms than to bryophytes. . BMC Plant Biol. 13::4
    [Crossref] [Google Scholar]
  9. Chanliaud E, Burrows KM, Jeronimidis G, Gidley MJ. 2002.. Mechanical properties of primary plant cell wall analogues. . Planta 215::98996
    [Crossref] [Google Scholar]
  10. Chase WR, Zhaxybayeva O, Rocha J, Cosgrove DJ, Shapiro LR. 2020.. Global cellulose biomass, horizontal gene transfers and domain fusions drive microbial expansin evolution. . New Phytol. 226::92138
    [Crossref] [Google Scholar]
  11. Chen S, Ren H, Luo Y, Feng C, Li H. 2021.. Genome-wide identification of wheat (Triticum aestivum L.) expansin genes and functional characterization of TaEXPB1A. . Environ. Exp. Bot. 182::104307
    [Crossref] [Google Scholar]
  12. Chen Z, Shen D, Shi Y, Chen Y, He H, et al. 2024.. Genome-wide identification of expansins in Rubus chingii and profiling analysis during fruit ripening and softening. . Plants 13::431
    [Crossref] [Google Scholar]
  13. Cho HT, Cosgrove DJ. 2002.. Regulation of root hair initiation and expansin gene expression in Arabidopsis. . Plant Cell 14::323753
    [Crossref] [Google Scholar]
  14. Cho HT, Kende H. 1997.. Expansins in deepwater rice internodes. . Plant Physiol. 113::113743
    [Crossref] [Google Scholar]
  15. Choi D, Kim JH, Lee Y. 2008.. Expansins in plant development. . In Botanical Research, Vol. 47: Incorporating Advances in Plant Pathology, ed. J-C Kader, M Delseny , pp. 4797. San Diego, CA:: Elsevier
    [Google Scholar]
  16. Choi DS, Lee Y, Cho HT, Kende H. 2003.. Regulation of expansin gene expression affects growth and development in transgenic rice plants. . Plant Cell 15::138698
    [Crossref] [Google Scholar]
  17. Cleland RE, Cosgrove DJ, Tepfer M. 1987.. Long-term acid-induced wall extension in an in-vitro system. . Planta 170::37985
    [Crossref] [Google Scholar]
  18. Coen E, Cosgrove DJ. 2023.. The mechanics of plant morphogenesis. . Science 379::eade8055
    [Crossref] [Google Scholar]
  19. Cosgrove DJ. 1989.. Characterization of long-term extension of isolated cell walls from growing cucumber hypocotyls. . Planta 177::12130
    [Crossref] [Google Scholar]
  20. Cosgrove DJ. 2000.. Loosening of plant cell walls by expansins. . Nature 407::32126
    [Crossref] [Google Scholar]
  21. Cosgrove DJ. 2015.. Plant expansins: diversity and interactions with plant cell walls. . Curr. Opin. Plant Biol. 25::16272
    [Crossref] [Google Scholar]
  22. Cosgrove DJ. 2016.. Catalysts of plant cell wall loosening. . F1000Research 5::119
    [Crossref] [Google Scholar]
  23. Cosgrove DJ. 2017.. Microbial expansins. . Annu. Rev. Microbiol. 71::47997
    [Crossref] [Google Scholar]
  24. Cosgrove DJ. 2020.. Non-enzymatic action of expansins. . J. Biol. Chem. 295::6782
    [Crossref] [Google Scholar]
  25. Cosgrove DJ. 2022.. Building an extensible cell wall. . Plant Physiol. 189::124677
    [Crossref] [Google Scholar]
  26. Cosgrove DJ. 2024.. Structure and growth of plant cell walls. . Nat. Rev. Mol. Cell Biol. 25::34058
    [Crossref] [Google Scholar]
  27. Cosgrove DJ, Bedinger P, Durachko DM. 1997.. Group I allergens of grass pollen as cell wall-loosening agents. . PNAS 94::655964
    [Crossref] [Google Scholar]
  28. Cosgrove DJ, Durachko DM. 1994.. Autolysis and extension of isolated walls from growing cucumber hypocotyls. . J. Exp. Bot. 45::171119
    [Crossref] [Google Scholar]
  29. Dabrowski-Tumanski P, Sulkowska JI. 2017.. Topological knots and links in proteins. . PNAS 114::341520
    [Crossref] [Google Scholar]
  30. Darley CP, Li Y, Schaap P, McQueen-Mason SJ. 2003.. Expression of a family of expansin-like proteins during the development of Dictyostelium discoideum. . FEBS Lett. 546::41618
    [Crossref] [Google Scholar]
  31. de Sandozequi A, Salazar-Cortés JJ, Tapia-Vázquez I, Martínez-Anaya C. 2022.. Prevalent association with the bacterial cell envelope of prokaryotic expansins revealed by bioinformatics analysis. . Protein Sci. 31::e4315
    [Crossref] [Google Scholar]
  32. Ding S, Liu X, Hakulinen N, Taherzadeh MJ, Wang Y, et al. 2022.. Boosting enzymatic degradation of cellulose using a fungal expansin: structural insight into the pretreatment mechanism. . Bioresour. Technol. 358::127434
    [Crossref] [Google Scholar]
  33. Du M, Spalding EP, Gray WM. 2020.. Rapid auxin-mediated cell expansion. . Annu. Rev. Plant Biol. 71::379402
    [Crossref] [Google Scholar]
  34. Duan Y, Ma Y, Zhao X, Huang R, Su R, et al. 2018.. Real-time adsorption and action of expansin on cellulose. . Biotechnol. Biofuels 11::317
    [Crossref] [Google Scholar]
  35. Fan N, Xu Q, Yang Z, Zhuang L, Yu J, Huang B. 2023.. Identification of expansin genes as promoting or repressing factors for leaf elongation in tall fescue. . Physiol. Plant. 175::e13861
    [Crossref] [Google Scholar]
  36. Fendrych M, Akhmanova M, Merrin J, Glanc M, Hagihara S, et al. 2018.. Rapid and reversible root growth inhibition by TIR1 auxin signalling. . Nat. Plants 4::45359
    [Crossref] [Google Scholar]
  37. Feng X, Xu YQ, Peng LN, Yu XY, Zhao QQ, et al. 2019.. TaEXPB7-B, a β-expansin gene involved in low-temperature stress and abscisic acid responses, promotes growth and cold resistance in Arabidopsis thaliana. . J. Plant Physiol. 240::153004
    [Crossref] [Google Scholar]
  38. Fry SC. 1989.. Cellulases, hemicelluloses and auxin-stimulated growth: a possible relationship. . Physiol. Plant. 75::53236
    [Crossref] [Google Scholar]
  39. Geilfus CM, Ober D, Eichacker LA, Muhling KH, Zorb C. 2015.. Down-regulation of ZmEXPB6 (Zea mays β-expansin 6) protein is correlated with salt-mediated growth reduction in the leaves of Z. mays L. . J. Biol. Chem. 290::1123545
    [Crossref] [Google Scholar]
  40. Geitmann A, Mulder BM, Persson S, Spalding EP. 2022.. Modeling the molecular structures and dynamics responsible for the remarkable mechanical properties of a plant cell wall. . Fac. Rev. 11::24
    [Crossref] [Google Scholar]
  41. Georgelis N, Nikolaidis N, Cosgrove DJ. 2014.. Biochemical analysis of expansin-like proteins from microbes. . Carbohydr. Polym. 100::1723
    [Crossref] [Google Scholar]
  42. Georgelis N, Nikolaidis N, Cosgrove DJ. 2015.. Bacterial expansins and related proteins from the world of microbes. . Appl. Microbiol. Biotechnol. 99::380723
    [Crossref] [Google Scholar]
  43. Georgelis N, Tabuchi A, Nikolaidis N, Cosgrove DJ. 2011.. Structure-function analysis of the bacterial expansin EXLX1. . J. Biol. Chem. 286::1681423
    [Crossref] [Google Scholar]
  44. Georgelis N, Yennawar NH, Cosgrove DJ. 2012.. Structural basis for entropy-driven cellulose binding by a type-A cellulose-binding module (CBM) and bacterial expansin. . PNAS 109::1483035
    [Crossref] [Google Scholar]
  45. Gigli-Bisceglia N, Engelsdorf T, Hamann T. 2020.. Plant cell wall integrity maintenance in model plants and crop species-relevant cell wall components and underlying guiding principles. . Cell. Mol. Life Sci. 77::204977
    [Crossref] [Google Scholar]
  46. Goh HH, Sloan J, Dorca-Fornell C, Fleming A. 2012.. Inducible repression of multiple expansin genes leads to growth suppression during leaf development. . Plant Physiol. 159::175970
    [Crossref] [Google Scholar]
  47. Goh HH, Sloan J, Malinowski R, Fleming A. 2014.. Variable expansin expression in Arabidopsis leads to different growth responses. . J. Plant Physiol. 171::32939
    [Crossref] [Google Scholar]
  48. Gong D, Tan Z, Zhao H, Pan Z, Sun Q, Qiu F. 2021.. Fine mapping of a kernel length-related gene with potential value for maize breeding. . Theor. Appl. Genet. 134::103345
    [Crossref] [Google Scholar]
  49. Hager A, Menzel H, Krauss A. 1971.. Versuche und Hypothese zur Primaerwirkung des Auxins beim Streckungswachstum. . Planta 100::4775
    [Crossref] [Google Scholar]
  50. Han Z, Liu Y, Deng X, Liu D, Liu Y, et al. 2019.. Genome-wide identification and expression analysis of expansin gene family in common wheat (Triticum aestivum L.). . BMC Genom. 20::101
    [Crossref] [Google Scholar]
  51. Hayashi T, Wong YS, Maclachlan G. 1984.. Pea xyloglucan and cellulose: II. Hydrolysis by pea endo-1,4-β-glucanases. . Plant Physiol. 75::60510
    [Crossref] [Google Scholar]
  52. Hepler NK. 2019.. Insights into the evolution of expansin function using in vitro, in vivo, and phylogenetic methodologies. PhD Diss. , Penn. State Univ., State College, PA:
    [Google Scholar]
  53. Hepler NK, Bowman A, Carey RE, Cosgrove DJ. 2020.. Expansin gene loss is a common occurrence during adaptation to an aquatic environment. . Plant J. 101::66680
    [Crossref] [Google Scholar]
  54. Hepler NK, Cosgrove DJ. 2019.. Directed in vitro evolution of bacterial expansin BsEXLX1 for higher cellulose binding and its consequences for plant cell wall-loosening activities. . FEBS Lett. 593::254555
    [Crossref] [Google Scholar]
  55. Herburger K, Frankova L, Picmanova M, Loh JW, Valenzuela-Ortega M, et al. 2020.. Hetero-trans-β-glucanase produces cellulose-xyloglucan covalent bonds in the cell walls of structural plant tissues and is stimulated by expansin. . Mol. Plant 13::104762
    [Crossref] [Google Scholar]
  56. Hiltunen S, Sapkota J, Ioannou E, Haddad Momeni M, Master E, Ristolainen M. 2023.. Comparative assessment of chemical and biochemical approaches for the activation of lignocellulosic materials and emerging opportunities for expansin-related proteins. . Cellulose 31::14768
    [Crossref] [Google Scholar]
  57. Hocq L, Habrylo O, Sénéchal F, Voxeur A, Pau-Roblot C, et al. 2024.. Mutation of AtPME2, a pH-dependent pectin methylesterase, affects cell wall structure and hypocotyl elongation. . Plant Cell Physiol. 65::30118
    [Crossref] [Google Scholar]
  58. Hocq L, Pelloux J, Lefebvre V. 2017.. Connecting homogalacturonan-type pectin remodeling to acid growth. . Trends Plant Sci. 22::2029
    [Crossref] [Google Scholar]
  59. Ilias IA, Negishi K, Yasue K, Jomura N, Morohashi K, et al. 2019.. Transcriptome-wide effects of expansin gene manipulation in etiolated Arabidopsis seedling. . J. Plant Res. 132::15972
    [Crossref] [Google Scholar]
  60. Imai T, Naruse M, Horikawa Y, Yaoi K, Miyazaki K, Sugiyama J. 2023.. Disturbance of the hydrogen bonding in cellulose by bacterial expansin. . Cellulose 30::842338
    [Crossref] [Google Scholar]
  61. Ingel B, Jeske DR, Sun Q, Grosskopf J, Roper MC. 2019.. Xylella fastidiosa endoglucanases mediate the rate of pierce's disease development in Vitis vinifera in a cultivar-dependent manner. . Mol. Plant-Microbe Interact. 32::140214
    [Crossref] [Google Scholar]
  62. Ishida K, Yokoyama R. 2022.. Reconsidering the function of the xyloglucan endotransglucosylase/hydrolase family. . J. Plant Res. 135::14556
    [Crossref] [Google Scholar]
  63. Keller E, Cosgrove DJ. 1995.. Expansins in growing tomato leaves. . Plant J. 8::795802
    [Crossref] [Google Scholar]
  64. Kende H, Bradford K, Brummell D, Cho HT, Cosgrove D, et al. 2004.. Nomenclature for members of the expansin superfamily of genes and proteins. . Plant Mol. Biol. 55::31114
    [Crossref] [Google Scholar]
  65. Kerff F, Amoros A, Herman R, Sauvage E, Petrella S, et al. 2008.. Crystal structure and activity of Bacillus subtilis YoaJ (EXLX1), a bacterial expansin that promotes root colonization. . PNAS 105::1687681
    [Crossref] [Google Scholar]
  66. Kim DW, Lee SH, Choi SB, Won SK, Heo YK, et al. 2006.. Functional conservation of a root hair cell-specific cis-element in angiosperms with different root hair distribution patterns. . Plant Cell 18::295870
    [Crossref] [Google Scholar]
  67. Kok BO, Celik Altunoglu Y, Oncul AB, Karaci A, Cengiz Baloglu M. 2023.. Expansin gene family database: a comprehensive bioinformatics resource for plant expansin multigene family. . J. Bioinform. Comput. Biol. 21::2350015
    [Crossref] [Google Scholar]
  68. Kong Y, Wang B, Du H, Li W, Li X, Zhang C. 2019.. GmEXLB1, a soybean expansin-like B gene, alters root architecture to improve phosphorus acquisition in Arabidopsis. . Front. Plant Sci. 10::808
    [Crossref] [Google Scholar]
  69. Kuluev B, Avalbaev A, Mikhaylova E, Nikonorov Y, Berezhneva Z, Chemeris A. 2016.. Expression profiles and hormonal regulation of tobacco expansin genes and their involvement in abiotic stress response. . J. Plant Physiol. 206::112
    [Crossref] [Google Scholar]
  70. Kutschera U. 1994.. The current status of the acid-growth hypothesis. . New Phytol. 126::54969
    [Crossref] [Google Scholar]
  71. Laine MJ, Haapalainen M, Wahlroos T, Kankare K, Nissinen R, et al. 2000.. The cellulase encoded by the native plasmid of Clavibacter michiganensis ssp. sepedonicus plays a role in virulence and contains an expansin-like domain. . Physiol. Mol. Plant Pathol. 57::22133
    [Crossref] [Google Scholar]
  72. Li L, Verstraeten I, Roosjen M, Takahashi K, Rodriguez L, et al. 2021.. Cell surface and intracellular auxin signalling for H+ fluxes in root growth. . Nature 599::27377
    [Crossref] [Google Scholar]
  73. Li LC, Bedinger PA, Volk C, Jones AD, Cosgrove DJ. 2003.. Purification and characterization of four β-expansins (Zea m 1 isoforms) from maize pollen. . Plant Physiol. 132::207385
    [Crossref] [Google Scholar]
  74. Li Y, Darley CP, Ongaro V, Fleming A, Schipper O, et al. 2002.. Plant expansins are a complex multigene family with an ancient evolutionary origin. . Plant Physiol. 128::85464
    [Crossref] [Google Scholar]
  75. Li ZC, Durachko DM, Cosgrove DJ. 1993.. An oat coleoptile wall protein that induces wall extension in-vitro and that is antigenically related to a similar protein from cucumber hypocotyls. . Planta 191::34956
    [Crossref] [Google Scholar]
  76. Lin C, Choi HS, Cho HT. 2011.. Root hair-specific EXPANSIN A7 is required for root hair elongation in Arabidopsis. . Mol. Cells 31::39397
    [Crossref] [Google Scholar]
  77. Lin W, Zhou X, Tang W, Takahashi K, Pan X, et al. 2021.. TMK-based cell-surface auxin signalling activates cell-wall acidification. . Nature 599::27882
    [Crossref] [Google Scholar]
  78. Liu B, Zhang B, Yang Z, Liu Y, Yang S, et al. 2021.. Manipulating ZmEXPA4 expression ameliorates the drought-induced prolonged anthesis and silking interval in maize. . Plant Cell 33::205871
    [Crossref] [Google Scholar]
  79. Liu C, Zhao H, Li J, Cao Z, Deng B, et al. 2024.. Identification of candidate expansin genes associated with seed weight in pomegranate (Punica granatum L.). . Genes 15::212
    [Crossref] [Google Scholar]
  80. Lohoff C, Buchholz PCF, Le Roes-Hill M, Pleiss J. 2021.. Expansin engineering database: a navigation and classification tool for expansins and homologues. . Proteins 89::14962
    [Crossref] [Google Scholar]
  81. Lu Y, Liu L, Wang X, Han Z, Ouyang B, et al. 2016.. Genome-wide identification and expression analysis of the expansin gene family in tomato. . Mol. Genet. Genom. 291::597608
    [Crossref] [Google Scholar]
  82. Lv LM, Zuo DY, Wang XF, Cheng HL, Zhang YP, et al. 2020.. Genome-wide identification of the expansin gene family reveals that expansin genes are involved in fibre cell growth in cotton. . BMC Plant Biol. 20::223
    [Crossref] [Google Scholar]
  83. Mahapatra S, Yadav R, Ramakrishna W. 2022.. Bacillus subtilis impact on plant growth, soil health and environment: Dr. Jekyll and Mr. Hyde. . J. Appl. Microbiol. 132::354362
    [Crossref] [Google Scholar]
  84. Marowa P, Ding AM, Kong YZ. 2016.. Expansins: roles in plant growth and potential applications in crop improvement. . Plant Cell Rep. 35::94965
    [Crossref] [Google Scholar]
  85. Masuda Y. 1990.. Auxin-induced cell elongation and cell-wall changes. . Bot. Mag. Tokyo 103::34570
    [Crossref] [Google Scholar]
  86. McQueen-Mason S, Cosgrove DJ. 1994.. Disruption of hydrogen bonding between plant cell wall polymers by proteins that induce wall extension. . PNAS 91::657478
    [Crossref] [Google Scholar]
  87. McQueen-Mason S, Durachko DM, Cosgrove DJ. 1992.. Two endogenous proteins that induce cell wall extension in plants. . Plant Cell 4::142533
    [Google Scholar]
  88. McQueen-Mason SJ, Cosgrove DJ. 1995.. Expansin mode of action on cell walls. Analysis of wall hydrolysis, stress relaxation, and binding. . Plant Physiol. 107::87100
    [Crossref] [Google Scholar]
  89. McQueen-Mason SJ, Fry SC, Durachko DM, Cosgrove DJ. 1993.. The relationship between xyloglucan endotransglycosylase and in-vitro cell wall extension in cucumber hypocotyls. . Planta 190::32731
    [Crossref] [Google Scholar]
  90. Michalak A, Wdowikowska A, Janicka M. 2022.. Plant plasma membrane proton pump: one protein with multiple functions. . Cells 11::4052
    [Crossref] [Google Scholar]
  91. Mira JP, Arenas MA, Calderini DF, Canales J. 2023.. Integrated transcriptome analysis identified key expansin genes associated with wheat cell wall, grain weight and yield. . Plants 12::2868
    [Crossref] [Google Scholar]
  92. Muthusamy M, Kim JA, Jeong M-J, Lee SI. 2020a.. Blue and red light upregulate α-expansin 1 (EXPA1) in transgenic Brassica rapa and its overexpression promotes leaf and root growth in Arabidopsis. . Plant Growth Regul. 91::7587
    [Crossref] [Google Scholar]
  93. Muthusamy M, Kim JY, Yoon EK, Kim JA, Lee SI. 2020b.. BrEXLB1, a Brassica rapa expansin-like B1 gene is associated with root development, drought stress response, and seed germination. . Genes 11::404
    [Crossref] [Google Scholar]
  94. Mutte SK, Kato H, Rothfels C, Melkonian M, Wong GK-S, Weijers D. 2018.. Origin and evolution of the nuclear auxin response system. . eLife 7::e33399
    [Crossref] [Google Scholar]
  95. Narváez-Barragán DA, Tovar-Herrera OE, Guevara-Garcia A, Serrano M, Martinez-Anaya C. 2022.. Mechanisms of plant cell wall surveillance in response to pathogens, cell wall-derived ligands and the effect of expansins to infection resistance or susceptibility. . Front. Plant Sci. 13::969343
    [Crossref] [Google Scholar]
  96. Narváez-Barragán DA, Tovar-Herrera OE, Segovia L, Serrano M, Martinez-Anaya C. 2020a.. Expansin-related proteins: biology, microbe–plant interactions and associated plant-defense responses. . Microbiology 166::100718
    [Crossref] [Google Scholar]
  97. Narváez-Barragán DA, Tovar-Herrera OE, Torres M, Rodríguez M, Humphris S, et al. 2020b.. Expansin-like Exl1 from Pectobacterium is a virulence factor required for host infection, and induces a defence plant response involving ROS, and jasmonate, ethylene and salicylic acid signalling pathways in Arabidopsis thaliana. . Sci. Rep. 10::7747
    [Crossref] [Google Scholar]
  98. Nikolaidis N, Doran N, Cosgrove DJ. 2014.. Plant expansins in bacteria and fungi: evolution by horizontal gene transfer and independent domain fusion. . Mol. Biol. Evol. 31::37686
    [Crossref] [Google Scholar]
  99. Nomura T, Iwase H, Saka N, Takahashi N, Mikami B, Mizutani K. 2019.. High-resolution crystal structures of the glycoside hydrolase family 45 endoglucanase EG27II from the snail Ampullaria crossean. . Acta Crystallogr. D Struct. Biol. 75::42636
    [Crossref] [Google Scholar]
  100. Park YB, Cosgrove DJ. 2012.. A revised architecture of primary cell walls based on biomechanical changes induced by substrate-specific endoglucanases. . Plant Physiol. 158::193343
    [Crossref] [Google Scholar]
  101. Pastor N, Davila S, Perez-Rueda E, Segovia L, Martinez-Anaya C. 2015.. Electrostatic analysis of bacterial expansins. . Proteins 83::21523
    [Crossref] [Google Scholar]
  102. Phyo P, Gu Y, Hong M. 2018.. Impact of acidic pH on plant cell wall polysaccharide structure and dynamics: insights into the mechanism of acid growth in plants from solid-state NMR. . Cellulose 26::291304
    [Crossref] [Google Scholar]
  103. Pien S, Wyrzykowska J, McQueen-Mason S, Smart C, Fleming A. 2001.. Local expression of expansin induces the entire process of leaf development and modifies leaf shape. . PNAS 98::1181217
    [Crossref] [Google Scholar]
  104. Polak M, Karcz W. 2021.. Some new methodological and conceptual aspects of the “acid growth theory” for the auxin action in maize (Zea mays L.) coleoptile segments: Do acid- and auxin-induced rapid growth differ in their mechanisms?. Int. J. Mol. Sci. 22::2317
    [Crossref] [Google Scholar]
  105. Ramakrishna P, Ruiz Duarte P, Rance GA, Schubert M, Vordermaier V, et al. 2019.. EXPANSIN A1-mediated radial swelling of pericycle cells positions anticlinal cell divisions during lateral root initiation. . PNAS 116::8597602
    [Crossref] [Google Scholar]
  106. Rayle DL, Cleland RE. 1992.. The acid growth theory of auxin-induced cell elongation is alive and well. . Plant Physiol. 99::127174
    [Crossref] [Google Scholar]
  107. Rehman Z. 2021.. Drought stress induces differential DNA methylation shift at symmetric and asymmetric cytosine sites in the promoter region of ZmEXPB2 gene in maize. . Int. J. Agric. Biol. 25::31926
    [Crossref] [Google Scholar]
  108. Rocha J, Shapiro LR, Kolter R. 2020.. A horizontally acquired expansin gene increases virulence of the emerging plant pathogen Erwinia tracheiphila. . Sci. Rep. 10::21743
    [Crossref] [Google Scholar]
  109. Rochange SF, McQueen-Mason SJ. 2000.. Expression of a heterologous expansin in transgenic tomato plants. . Planta 211::58386
    [Crossref] [Google Scholar]
  110. Rochange SF, Wenzel CL, McQueen-Mason SJ. 2001.. Impaired growth in transgenic plants over-expressing an expansin isoform. . Plant Mol. Biol. 46::58189
    [Crossref] [Google Scholar]
  111. Rose JK, Cosgrove DJ, Albersheim P, Darvill AG, Bennett AB. 2000.. Detection of expansin proteins and activity during tomato fruit ontogeny. . Plant Physiol. 123::158392
    [Crossref] [Google Scholar]
  112. Saladie M, Matas AJ, Isaacson T, Jenks MA, Goodwin SM, et al. 2007.. A reevaluation of the key factors that influence tomato fruit softening and integrity. . Plant Physiol. 144::101228
    [Crossref] [Google Scholar]
  113. Samalova M, Gahurova E, Hejatko J. 2022.. Expansin-mediated developmental and adaptive responses: a matter of cell wall biomechanics?. Quant. Plant Biol. 3::e11
    [Crossref] [Google Scholar]
  114. Samalova M, Melnikava A, Elsayad K, Peaucelle A, Gahurova E, et al. 2023.. Hormone-regulated expansins: expression, localization, and cell wall biomechanics in Arabidopsis root growth. . Plant Physiol. 194::20928
    [Crossref] [Google Scholar]
  115. Sampedro J, Cosgrove DJ. 2005.. The expansin superfamily. . Genome Biol. 6::242
    [Crossref] [Google Scholar]
  116. Sampedro J, Guttman M, Li LC, Cosgrove DJ. 2015.. Evolutionary divergence of β–expansin structure and function in grasses parallels emergence of distinctive primary cell wall traits. . Plant J. 81::10820
    [Crossref] [Google Scholar]
  117. Sampedro J, Lee Y, Carey RE, dePamphilis C, Cosgrove DJ. 2005.. Use of genomic history to improve phylogeny and understanding of births and deaths in a gene family. . Plant J. 44::40919
    [Crossref] [Google Scholar]
  118. Seader VH, Thornsberry JM, Carey RE. 2016.. Utility of the Amborella trichopoda expansin superfamily in elucidating the history of angiosperm expansins. . J. Plant Res. 129::199207
    [Crossref] [Google Scholar]
  119. Seki Y, Kikuchi Y, Yoshimoto R, Aburai K, Kanai Y, et al. 2015.. Promotion of crystalline cellulose degradation by expansins from Oryza sativa. . Planta 241::8393
    [Crossref] [Google Scholar]
  120. Shcherban TY, Shi J, Durachko DM, Guiltinan MJ, McQueen-Mason SJ, et al. 1995.. Molecular cloning and sequence analysis of expansins—a highly conserved, multigene family of proteins that mediate cell wall extension in plants. . PNAS 92::924549
    [Crossref] [Google Scholar]
  121. Shi YN, Li BJ, Grierson D, Chen KS. 2023.. Insights into cell wall changes during fruit softening from transgenic and naturally occurring mutants. . Plant Physiol. 192::167183
    [Crossref] [Google Scholar]
  122. Silveira RL, Skaf MS. 2016.. Molecular dynamics of the Bacillus subtilis expansin EXLX1: interaction with substrates and structural basis of the lack of activity of mutants. . Phys. Chem. Chem. Phys. 18::351021
    [Crossref] [Google Scholar]
  123. Su G, Lin Y, Wang C, Lu J, Liu Z, et al. 2024.. Expansin SlExp1 and endoglucanase SlCel2 synergistically promote fruit softening and cell wall disassembly in tomato. . Plant Cell 36::70926
    [Crossref] [Google Scholar]
  124. Tabuchi A, Li LC, Cosgrove DJ. 2011.. Matrix solubilization and cell wall weakening by β-expansin (group-1 allergen) from maize pollen. . Plant J. 68::54659
    [Crossref] [Google Scholar]
  125. Takahashi K, Hirata S, Kido N, Katou K. 2006.. Wall-yielding properties of cell walls from elongating cucumber hypocotyls in relation to the action of expansin. . Plant Physiol. 47::152029
    [Google Scholar]
  126. Tancos MA, Lowe-Power TM, Peritore-Galve FC, Tran TM, Allen C, Smart CD. 2018.. Plant-like bacterial expansins play contrasting roles in two tomato vascular pathogens. . Mol. Plant Pathol. 19::121021
    [Crossref] [Google Scholar]
  127. Tao K, Li Y, Hu Y, Li Y, Zhang D, et al. 2023.. Overexpression of ZmEXPA5 reduces anthesis-silking interval and increases grain yield under drought and well-watered conditions in maize. . Mol. Breed. 43::84
    [Crossref] [Google Scholar]
  128. Tovar-Herrera OE, Rodriguez M, Olarte-Lozano M, Sampedro-Guerrero JA, Guerrero A, et al. 2018.. Analysis of the binding of expansin Exl1, from Pectobacterium carotovorum, to plant xylem and comparison to EXLX1 from Bacillus subtilis. . ACS Omega 3::700818
    [Crossref] [Google Scholar]
  129. Valdivia ER, Sampedro J, Lamb JC, Chopra S, Cosgrove DJ. 2007a.. Recent proliferation and translocation of pollen group 1 allergen genes in the maize genome. . Plant Physiol. 143::126981
    [Crossref] [Google Scholar]
  130. Valdivia ER, Stephenson AG, Durachko DM, Cosgrove D. 2009.. Class B β–expansins are needed for pollen separation and stigma penetration. . Sex. Plant Reprod. 22::14152
    [Crossref] [Google Scholar]
  131. Valdivia ER, Wu Y, Li LC, Cosgrove DJ, Stephenson AG. 2007b.. A group-1 grass pollen allergen influences the outcome of pollen competition in maize. . PLOS ONE 2::e154
    [Crossref] [Google Scholar]
  132. Valenzuela-Riffo F, Morales-Quintana L. 2020.. Study of the structure and binding site features of FaEXPA2, an α-expansin protein involved in strawberry fruit softening. . Comput. Biol. Chem. 87::107279
    [Crossref] [Google Scholar]
  133. Wang L, Wang W, Miao Y, Peters M, Schultze-Kraft R, et al. 2023.. Development of transgenic composite Stylosanthes plants to study root growth regulated by a β-expansin gene, SgEXPB1, under phosphorus deficiency. . Plant Cell Rep. 42::57585
    [Crossref] [Google Scholar]
  134. Wang T, Chen Y, Tabuchi A, Cosgrove DJ, Hong M. 2016.. The target of β–expansin EXPB1 in maize cell walls from binding and solid-state NMR studies. . Plant Physiol. 172::210719
    [Crossref] [Google Scholar]
  135. Wang T, Park YB, Caporini MA, Rosay M, Zhong L, et al. 2013.. Sensitivity-enhanced solid-state NMR detection of expansin's target in plant cell walls. . PNAS 110::1644449
    [Crossref] [Google Scholar]
  136. Wang X, Wilson L, Cosgrove DJ. 2020.. Pectin methylesterase selectively softens the onion epidermal wall yet reduces acid-induced creep. . J. Exp. Bot. 71::262940
    [Crossref] [Google Scholar]
  137. Wei W, Yang C, Luo J, Lu C, Wu Y, Yuan S. 2010.. Synergism between cucumber α-expansin, fungal endoglucanase and pectin lyase. . J. Plant Physiol. 167::120410
    [Crossref] [Google Scholar]
  138. Whitney SEC, Gidley MJ, McQueen-Mason SJ. 2000.. Probing expansin action using cellulose/hemicellulose composites. . Plant J. 22::32734
    [Crossref] [Google Scholar]
  139. Wolf S. 2022.. Cell wall signaling in plant development and defense. . Annu. Rev. Plant Biol. 73::32353
    [Crossref] [Google Scholar]
  140. Wu Y, Sharp RE, Durachko DM, Cosgrove DJ. 1996.. Growth maintenance of the maize primary root at low water potentials involves increases in cell-wall extension properties, expansin activity, and wall susceptibility to expansins. . Plant Physiol. 111::76572
    [Crossref] [Google Scholar]
  141. Wu Y, Thorne ET, Sharp RE, Cosgrove DJ. 2001.. Modification of expansin transcript levels in the maize primary root at low water potentials. . Plant Physiol. 126::147179
    [Crossref] [Google Scholar]
  142. Yactayo-Chang JP, Yoon S, Teoh KT, Hood NC, Lorence A, Hood EE. 2016.. Failure to over-express expansin in multiple heterologous systems. . New Negat. Plant Sci. 3–4::1018
    [Crossref] [Google Scholar]
  143. Yang Z, Gao Z, Zhou H, He Y, Liu Y, et al. 2021.. GmPTF1 modifies root architecture responses to phosphate starvation primarily through regulating GmEXPB2 expression in soybean. . Plant J. 107::52543
    [Crossref] [Google Scholar]
  144. Yennawar NH, Li LC, Dudzinski DM, Tabuchi A, Cosgrove DJ. 2006.. Crystal structure and activities of EXPB1 (Zea m 1), a β-expansin and group-1 pollen allergen from maize. . PNAS 103::1466471
    [Crossref] [Google Scholar]
  145. Yoon S, Devaiah SP, Choi S, Bray J, Love R, et al. 2015.. Over-expression of the cucumber expansin gene (Cs-EXPA1) in transgenic maize seed for cellulose deconstruction. . Transgenic Res. 25::17386
    [Crossref] [Google Scholar]
  146. Yu J, Zhang Y, Cosgrove DJ. 2024.. The nonlinear mechanics of highly extensible plant epidermal cell walls. . PNAS 121::e2316396121
    [Crossref] [Google Scholar]
  147. Yuan S, Wu Y, Cosgrove DJ. 2001.. A fungal endoglucanase with plant cell wall extension activity. . Plant Physiol. 127::32433
    [Crossref] [Google Scholar]
  148. Zhang P, Su R, Duan Y, Cui M, Huang R, et al. 2021.. Synergy between endo/exo-glucanases and expansin enhances enzyme adsorption and cellulose conversion. . Carbohydr. Polym. 253::117287
    [Crossref] [Google Scholar]
  149. Zhang T, Tang H, Vavylonis D, Cosgrove DJ. 2019.. Disentangling loosening from softening: insights into primary cell wall structure. . Plant J. 100::110117
    [Crossref] [Google Scholar]
  150. Zhang Y, Van de Peer Y, Lu B, Zhang S, Che J, et al. 2023.. Expression divergence of expansin genes drive the heteroblasty in Ceratopteris chingii. . BMC Biol. 21::244
    [Crossref] [Google Scholar]
  151. Zhang Y, Yu J, Wang X, Durachko DM, Zhang S, Cosgrove DJ. 2021.. Molecular insights into the complex mechanics of plant epidermal cell walls. . Science 372::70611
    [Crossref] [Google Scholar]
  152. Zhao Q, Yuan S, Wang X, Zhang Y, Zhu H, Lu C. 2008.. Restoration of mature etiolated cucumber hypocotyl cell wall susceptibility to expansin by pretreatment with fungal pectinases and EGTA in vitro. . Plant Physiol. 147::187485
    [Crossref] [Google Scholar]
  153. Zhao ZY, Hu BZ, Feng X, Li FL, He FM, et al. 2022.. Cloning and functional analysis of expansin TaEXPA9 orthologs in winter wheat in frigid regions. . Biol. Plant. 66::27286
    [Crossref] [Google Scholar]
  154. Zorb C, Muhling KH, Kutschera U, Geilfus CM. 2015.. Salinity stiffens the epidermal cell walls of salt-stressed maize leaves: Is the epidermis growth-restricting?. PLOS ONE 10::e0118406
    [Crossref] [Google Scholar]
  155. Zou H, Wenwen Y, Zang G, Kang Z, Zhang Z, et al. 2015.. OsEXPB2, a β-expansin gene, is involved in rice root system architecture. . Mol. Breed. 35::41
    [Crossref] [Google Scholar]
/content/journals/10.1146/annurev-cellbio-111822-115334
Loading
/content/journals/10.1146/annurev-cellbio-111822-115334
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error