1932

Abstract

In 1952, Alan Turing published the reaction-diffusion (RD) mathematical framework, laying the foundations of morphogenesis as a self-organized process emerging from physicochemical first principles. Regrettably, this approach has been widely doubted in the field of developmental biology. First, we summarize Turing's line of thoughts to alleviate the misconception that RD is an artificial mathematical construct. Second, we discuss why phenomenological RD models are particularly effective for understanding skin color patterning at the meso/macroscopic scales, without the need to parameterize the profusion of variables at lower scales. More specifically, we discuss how RD models () recapitulate the diversity of actual skin patterns, () capture the underlying dynamics of cellular interactions, () interact with tissue size and shape, () can lead to ordered sequential patterning, () generate cellular automaton dynamics in lizards and snakes, () predict actual patterns beyond their statistical features, and () are robust to model variations. Third, we discuss the utility of linear stability analysis and perform numerical simulations to demonstrate how deterministic RD emerges from the underlying chaotic microscopic agents.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120319-024414
2023-10-16
2024-05-01
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-120319-024414.html?itemId=/content/journals/10.1146/annurev-cellbio-120319-024414&mimeType=html&fmt=ahah

Literature Cited

  1. Aguilar-Hidalgo D, Werner S, Wartlick O, Gonzalez-Gaitan M, Friedrich BM, Julicher F. 2018. Critical point in self-organized tissue growth. Phys. Rev. Lett. 120:198102
    [Google Scholar]
  2. Bagnara JT, Matsumoto J 2006. Comparative anatomy and physiology of pigment cells in nonmammalian tissues. The Pigmentary System: Physiology and Pathophysiology JJ Nordlund, RE Boissy, VJ Hearing, RA King, WS Oetting, JP Ortonne 11–59. Malden, MA: Blackwell
    [Google Scholar]
  3. Baker RE, Schnell S, Maini PK. 2006a. A clock and wavefront mechanism for somite formation. Dev. Biol. 293:116–26
    [Google Scholar]
  4. Baker RE, Schnell S, Maini PK. 2006b. A mathematical investigation of a clock and wavefront model for somitogenesis. J. Math. Biol. 52:458–82
    [Google Scholar]
  5. Bard JBL. 1977. Unity underlying different zebra striping patterns. J. Zool. 183:527–39
    [Google Scholar]
  6. Barkai N, Ben-Zvi D. 2009.. ‘ Big frog, small frog’–maintaining proportions in embryonic development: delivered on 2 July 2008 at the 33rd FEBS congress in Athens, Greece. FEBS J. 276:1196–207
    [Google Scholar]
  7. Bottriell LG. 1987. King Cheetah: The Story of the Quest New York: Brill
  8. Budi EH, Patterson LB, Parichy DM. 2008. Embryonic requirements for ErbB signaling in neural crest development and adult pigment pattern formation. Development 135:2603–14
    [Google Scholar]
  9. Čapek D, Müller P. 2019. Positional information and tissue scaling during development and regeneration. Development 146:dev177709
    [Google Scholar]
  10. Chopard B, Droz M. 2005. Cellular Automata Modeling of Physical Systems New York: Cambridge Univ. Press
  11. Chopard B, Dupuis A, Masselot A, Luthi P. 2002. Cellular automata and lattice Boltzmann techniques: an approach to model and simulate complex systems. Adv. Complex Syst. 5:103–246
    [Google Scholar]
  12. Cocho G, Perez-Pascual R, Rius JL. 1987a. Discrete systems, cell-cell interactions and color pattern of animals. I. Conflicting dynamics and pattern formation. J. Theor. Biol. 125:419–35
    [Google Scholar]
  13. Cocho G, Perez-Pascual R, Rius JL, Soto F. 1987b. Discrete systems, cell-cell interactions and color pattern of animals. II. Clonal theory and cellular automata. J. Theor. Biol. 125:437–47
    [Google Scholar]
  14. Codd EF. 1968. Cellular Automata New York: Academic
  15. Cooke J, Zeeman EC. 1976. A clock and wavefront model for control of the number of repeated structures during animal morphogenesis. J. Theor. Biol. 58:455–76
    [Google Scholar]
  16. Cotterell J, Robert-Moreno A, Sharpe J. 2015. A local, self-organizing reaction-diffusion model can explain somite patterning in embryos. Cell Syst. 1:257–69
    [Google Scholar]
  17. Cross MC, Hohenberg PC. 1993. Pattern formation outside of equilibrium. Rev. Mod. Phys. 65:851–1112
    [Google Scholar]
  18. Deutsch A, Dormann S. 2005. Cellular Automaton Modeling of Biological Pattern Formation: Characterization, Applications, and Analysis Boston: Birkhäuser
  19. Dooley CM, Mongera A, Walderich B, Nüsslein-Volhard C. 2013. On the embryonic origin of adult melanophores: the role of ErbB and Kit signalling in establishing melanophore stem cells in zebrafish. Development 140:1003–13
    [Google Scholar]
  20. Eom DS, Bain EJ, Patterson LB, Grout ME, Parichy DM. 2015. Long-distance communication by specialized cellular projections during pigment pattern development and evolution. eLife 4:e12401
    [Google Scholar]
  21. Eom DS, Inoue S, Patterson LB, Gordon TN, Slingwine R et al. 2012. Melanophore migration and survival during zebrafish adult pigment stripe development require the immunoglobulin superfamily adhesion molecule Igsf11. PLOS Genet. 8:e1002899
    [Google Scholar]
  22. Eom DS, Parichy DM. 2017. A macrophage relay for long-distance signaling during postembryonic tissue remodeling. Science 355:1317–19
    [Google Scholar]
  23. Epperlein HH, Claviez M. 1982. Formation of pigment cell patterns in Triturus alpestris embryos. Dev. Biol. 91:497–502
    [Google Scholar]
  24. Epperlein HH, Lofberg J, Olsson L. 1996. Neural crest cell migration and pigment pattern formation in urodele amphibians. Int. J. Dev. Biol. 40:229–38
    [Google Scholar]
  25. Epstein IR, Xu B. 2016. Reaction-diffusion processes at the nano- and microscales. Nat. Nanotechnol. 11:312–19
    [Google Scholar]
  26. Fisher RA. 1937. The wave of advance of advantageous genes. Ann. Eugen. 7:355–69
    [Google Scholar]
  27. Fofonjka A, Milinkovitch MC. 2021. Reaction-diffusion in a growing 3D domain of skin scales generates a discrete cellular automaton. Nat. Commun. 12:2433
    [Google Scholar]
  28. Frohnhofer HG, Krauss J, Maischein HM, Nüsslein-Volhard C. 2013. Iridophores and their interactions with other chromatophores are required for stripe formation in zebrafish. Development 140:2997–3007
    [Google Scholar]
  29. Gardner M. 1970. The fantastic combinations of John Conway's new solitaire game “life. .” Sci. Am. 223:120–23
    [Google Scholar]
  30. Gierer A, Meinhardt H. 1972. A theory of biological pattern formation. Kybernetik 12:30–39
    [Google Scholar]
  31. Green JB, Sharpe J. 2015. Positional information and reaction-diffusion: Two big ideas in developmental biology combine. Development 142:1203–11
    [Google Scholar]
  32. Hamada H, Watanabe M, Lau HE, Nishida T, Hasegawa T et al. 2014. Involvement of Delta/Notch signaling in zebrafish adult pigment stripe patterning. Development 141:318–24
    [Google Scholar]
  33. Haupaix N, Curantz C, Bailleul R, Beck S, Robic A, Manceau M. 2018. The periodic coloration in birds forms through a prepattern of somite origin. Science 361:eaar4777
    [Google Scholar]
  34. Haupaix N, Manceau M. 2020. The embryonic origin of periodic color patterns. Dev. Biol. 460:70–76
    [Google Scholar]
  35. Ho WKW, Freem L, Zhao D, Painter KJ, Woolley TE et al. 2019. Feather arrays are patterned by interacting signalling and cell density waves. PLOS Biol. 17:e3000132
    [Google Scholar]
  36. Inaba M, Yamanaka H, Kondo S. 2012. Pigment pattern formation by contact-dependent depolarization. Science 335:677
    [Google Scholar]
  37. Ishihara S, Kaneko K. 2006. Turing pattern with proportion preservation. J. Theor. Biol. 238:683–93
    [Google Scholar]
  38. Ising E. 1925. Beitrag zur Theorie des Ferromagnetismus. Z. Phys. 31:253–58
    [Google Scholar]
  39. Jahanbakhsh E, Milinkovitch MC. 2022. Modeling convergent scale-by-scale skin color patterning in multiple species of lizards. Curr. Biol. 32:5069–82.e13
    [Google Scholar]
  40. Kolmogorov A, Petrovskii I, Piskunov N. 1937. Study of the diffusion equation with growth of the quantity of matter and its application to a biological problem. Bull. Mosc. Univ. 1:1–25
    [Google Scholar]
  41. Kondo S, Asal R. 1995. A reaction-diffusion wave on the skin of the marine angelfish Pomacanthus. Nature 376:765–68
    [Google Scholar]
  42. Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:1616–20
    [Google Scholar]
  43. Kondo S, Watanabe M, Miyazawa S. 2021. Studies of Turing pattern formation in zebrafish skin. Philos. Trans. R. Soc. A 379:20200274
    [Google Scholar]
  44. Kronforst MR, Barsh GS, Kopp A, Mallet J, Monteiro A et al. 2012. Unraveling the thread of nature's tapestry: the genetics of diversity and convergence in animal pigmentation. Pigment Cell Melanoma Res. 25:411–33
    [Google Scholar]
  45. Kuriyama T, Miyaji K, Sugimoto M, Hasegawa M. 2006. Ultrastructure of the dermal chromatophores in a lizard (Scincidae: Plestiodon latiscutatus) with conspicuous body and tail coloration. Zool. Sci. 23:793–99
    [Google Scholar]
  46. Langton CG. 1984. Self-reproduction in cellular automata. Physica D 10:135–44
    [Google Scholar]
  47. Larison B, Kaelin CB, Harrigan R, Henegar C, Rubenstein DI et al. 2021. Population structure, inbreeding and stripe pattern abnormalities in plains zebras. Mol. Ecol. 30:379–90
    [Google Scholar]
  48. Lenz W. 1920. Beiträge zum Verständnis der magnetischen Erscheinungen in festen Körpern. Phys. Z. 21:613–15
    [Google Scholar]
  49. Lorenz EN. 1963. Deterministic nonperiodic flow. J. Atmos. Sci. 20:130–41
    [Google Scholar]
  50. Macmillan GJ. 1976. Melanoblast-tissue interactions and the development of pigment pattern in Xenopus larvae. J. Embryol. Exp. Morphol. 35:463–84
    [Google Scholar]
  51. Maderspacher F, Nüsslein-Volhard C. 2003. Formation of the adult pigment pattern in zebrafish requires leopard and obelix dependent cell interactions. Development 130:3447–57
    [Google Scholar]
  52. Mahalwar P, Walderich B, Singh AP, Nüsslein-Volhard C. 2014. Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. Science 345:1362–64
    [Google Scholar]
  53. Manukyan L, Montandon SA, Fofonjka A, Smirnov S, Milinkovitch MC. 2017. A living mesoscopic cellular automaton made of skin scales. Nature 544:173–79
    [Google Scholar]
  54. Marcon L, Diego X, Sharpe J, Müller P. 2016. High-throughput mathematical analysis identifies Turing networks for patterning with equally diffusing signals. eLife 5:e14022
    [Google Scholar]
  55. Martins AF, Bessant M, Manukyan L, Milinkovitch MC. 2015. R2OBBIE-3D, a fast robotic high-resolution system for quantitative phenotyping of surface geometry and colour-texture. PLOS ONE 10:e0126740
    [Google Scholar]
  56. Mateus R, Holtzer L, Seum C, Hadjivasiliou Z, Dubois M et al. 2020. BMP signaling gradient scaling in the zebrafish pectoral fin. Cell Rep. 30:4292–302.e7
    [Google Scholar]
  57. Meinhardt H. 1982. Models of Biological Pattern Formation New York: Academic
  58. Meinhardt H, Gierer A. 1974. Applications of a theory of biological pattern formation based on lateral inhibition. J. Cell Sci. 15:321–46
    [Google Scholar]
  59. Milinkovitch MC. 2021. Emergence of self-organizational patterning at the mesoscopic scale. Dev. Cell 56:719–21
    [Google Scholar]
  60. Milinkovitch MC, Tzika A. 2007. Escaping the mouse trap: the selection of new Evo-Devo model species. J. Exp. Zool. B Mol. Dev. Evol. 308:337–46
    [Google Scholar]
  61. Miyazawa S. 2020. Pattern blending enriches the diversity of animal colorations. Sci. Adv. 6:eabb9107
    [Google Scholar]
  62. Miyazawa S, Okamoto M, Kondo S. 2010. Blending of animal colour patterns by hybridization. Nat. Commun. 1:66
    [Google Scholar]
  63. Murray JD. 1980. A pattern formation mechanism and its application to mammalian coat markings. Vito Volterra Symposium on Mathematical Models in Biology C Barigozzi 360–99. Berlin: Springer
    [Google Scholar]
  64. Murray JD. 1981a. On pattern formation mechanisms for lepidopteran wing patterns and mammalian coat markings. Philos. Trans. R. Soc. Lond. B Biol. Sci. 295:473–96
    [Google Scholar]
  65. Murray JD. 1981b. A pre-pattern formation mechanism for animal coat markings. J. Theor. Biol. 88:161–99
    [Google Scholar]
  66. Murray JD. 2003. Mathematical Biology II: Spatial Models and Biomedical Applications New York: Springer. , 3rd ed..
  67. Nakamasu A, Takahashi G, Kanbe A, Kondo S. 2009. Interactions between zebrafish pigment cells responsible for the generation of Turing patterns. PNAS 106:8429–34
    [Google Scholar]
  68. Nüsslein-Volhard C. 1994. Of flies and fishes. Science 266:572–74
    [Google Scholar]
  69. Olsson M, Stuart-Fox D, Ballen C. 2013. Genetics and evolution of colour patterns in reptiles. Semin. Cell Dev. Biol. 24:529–41
    [Google Scholar]
  70. Owen JP, Kelsh RN, Yates CA. 2020. A quantitative modelling approach to zebrafish pigment pattern formation. eLife 9:e52998
    [Google Scholar]
  71. Parichy DM. 1996. When neural crest and placodes collide: interactions between melanophores and the lateral lines that generate stripes in the salamander Ambystoma tigrinum tigrinum (Ambystomatidae). Dev. Biol. 175:283–300
    [Google Scholar]
  72. Parichy DM. 2003. Pigment patterns: fish in stripes and spots. Curr. Biol. 13:R947–50
    [Google Scholar]
  73. Parichy DM, Turner JM. 2003. Temporal and cellular requirements for Fms signaling during zebrafish adult pigment pattern development. Development 130:817–33
    [Google Scholar]
  74. Patterson LB, Bain EJ, Parichy DM. 2014. Pigment cell interactions and differential xanthophore recruitment underlying zebrafish stripe reiteration and Danio pattern evolution. Nat. Commun. 5:5299
    [Google Scholar]
  75. Patterson LB, Parichy DM. 2013. Interactions with iridophores and the tissue environment required for patterning melanophores and xanthophores during zebrafish adult pigment stripe formation. PLOS Genet. 9:e1003561
    [Google Scholar]
  76. Patterson LB, Parichy DM. 2019. Zebrafish pigment pattern formation: insights into the development and evolution of adult form. Annu. Rev. Genet. 53:505–30
    [Google Scholar]
  77. Pesavento U. 1995. An implementation of von Neumann's self-reproducing machine. Artif. Life 2:337–54
    [Google Scholar]
  78. Prigogine I. 1955. Introduction to Thermodynamics of Irreversible Processes Springfield, IL: C. Thomas . , 3rd ed..
  79. Protas ME, Patel NH. 2008. Evolution of coloration patterns. Annu. Rev. Cell Dev. Biol. 24:425–46
    [Google Scholar]
  80. Richmond DL, Oates AC. 2012. The segmentation clock: inherited trait or universal design principle?. Curr. Opin. Genet. Dev. 22:600–6
    [Google Scholar]
  81. Romanova-Michaelides M, Hadjivasiliou Z, Aguilar-Hidalgo D, Basagiannis D, Seum C et al. 2022. Morphogen gradient scaling by recycling of intracellular Dpp. Nature 602:287–93
    [Google Scholar]
  82. Saenko SV, Teyssier J, van der Marel D, Milinkovitch MC. 2013. Precise colocalization of interacting structural and pigmentary elements generates extensive color pattern variation in Phelsuma lizards. BMC Biol. 11:105
    [Google Scholar]
  83. Schweisguth F, Corson F. 2019. Self-organization in pattern formation. Dev. Cell 49:659–77
    [Google Scholar]
  84. Singh AP, Nüsslein-Volhard C. 2015. Zebrafish stripes as a model for vertebrate colour pattern formation. Curr. Biol. 25:R81–92
    [Google Scholar]
  85. Singh AP, Schach U, Nüsslein-Volhard C. 2014. Proliferation, dispersal and patterned aggregation of iridophores in the skin prefigure striped colouration of zebrafish. Nat. Cell Biol. 16:607–14
    [Google Scholar]
  86. Soroldoni D, Jörg DJ, Morelli LG, Richmond DL, Schindelin J et al. 2014. A Doppler effect in embryonic pattern formation. Science 345:222–25
    [Google Scholar]
  87. Stooke-Vaughan GA, Campàs O. 2018. Physical control of tissue morphogenesis across scales. Curr. Opin. Genet. Dev. 51:111–19
    [Google Scholar]
  88. Streisinger G, Walker C, Dower N, Knauber D, Singer F. 1981. Production of clones of homozygous diploid zebra fish (Brachydanio rerio). Nature 291:293–96
    [Google Scholar]
  89. Stuart-Fox D, Moussalli A. 2008. Selection for social signalling drives the evolution of chameleon colour change. PLOS Biol. 6:e25
    [Google Scholar]
  90. Suzuki N, Hirata M, Kondo S. 2003. Traveling stripes on the skin of a mutant mouse. PNAS 100:9680–85
    [Google Scholar]
  91. Teyssier J, Saenko SV, van der Marel D, Milinkovitch MC. 2015. Photonic crystals cause active colour change in chameleons. Nat. Commun. 6:6368
    [Google Scholar]
  92. Turing AM. 1937. On computable numbers, with an application to the Entscheidungsproblem. Proc. Lond. Math. Soc. s2–42:230–65
    [Google Scholar]
  93. Turing AM. 1952. The chemical basis of morphogenesis. Philos. Trans. R. Soc. Lond. Ser. B Biol. Sci. 237:37–72
    [Google Scholar]
  94. Twitty VC. 1945. The developmental analysis of specific pigment patterns. J. Exp. Zool. 100:141–78
    [Google Scholar]
  95. Tzika A, Milinkovitch MC 2008. A pragmatic approach for selecting evo-devo model species in amniotes. Evolving Pathways: Key Themes in Evolutionary Developmental Biology A Minelli, G Fusco 119–40. Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  96. Tzika AC, Ullate-Agote A, Zakany S, Kummrow M, Milinkovitch MC. 2023. Somitic positional information guides self-organised patterning of snake scales. Sci. Adv. 9:eadf8834
    [Google Scholar]
  97. Ulam S. 1952. Random processes and transformations. Proceedings of the International Congress of Mathematicians: Cambridge, Massachusetts, U.S.A.: August 30–September 6, 1950, Vol. 2 LM Graves, PA Smith, E Hille, O Zariski 264–75. Providence, RI: Am. Math. Soc.
    [Google Scholar]
  98. Ullate-Agote A, Burgelin I, Debry A, Langrez C, Montange F et al. 2020. Genome mapping of a LYST mutation in corn snakes indicates that vertebrate chromatophore vesicles are lysosome-related organelles. PNAS 117:26307–17
    [Google Scholar]
  99. Vasilopoulos G, Painter KJ. 2016. Pattern formation in discrete cell tissues under long range filopodia-based direct cell to cell contact. Math. Biosci. 273:1–15
    [Google Scholar]
  100. Volkening A, Sandstede B. 2018. Iridophores as a source of robustness in zebrafish stripes and variability in Danio patterns. Nat. Commun. 9:3231
    [Google Scholar]
  101. von Neumann J. 1951. The general and logical theory of automata. Cerebral Mechanisms in Behavior: The Hixon Symposium LA Jeffress 288–326. New York: Wiley
    [Google Scholar]
  102. von Neumann J, Burks AW. 1966. The Theory of Self-Reproducing Automata Champaign: Univ. Illinois Press
  103. Wang S, Garcia-Ojalvo J, Elowitz MB. 2022. Periodic spatial patterning with a single morphogen. Cell Syst. 13:1033–47.e7
    [Google Scholar]
  104. Wartlick O, Mumcu P, Kicheva A, Bittig T, Seum C et al. 2011. Dynamics of Dpp signaling and proliferation control. Science 331:1154–59
    [Google Scholar]
  105. Watanabe M, Kondo S. 2012. Changing clothes easily: connexin41.8 regulates skin pattern variation. Pigment Cell Melanoma Res. 25:326–30
    [Google Scholar]
  106. Watanabe M, Kondo S. 2015. Comment on “Local reorganization of xanthophores fine-tunes and colors the striped pattern of zebrafish. .” Science 348:297
    [Google Scholar]
  107. Wigner EP. 1960. The unreasonable effectiveness of mathematics in the natural sciences. Commun. Pure Appl. Math. 13:1–14
    [Google Scholar]
  108. Wolfram S 1984a. Cellular automata as models of complexity. Nature 311:419–24
    [Google Scholar]
  109. Wolfram S 1984b. Computation theory of cellular automata. Commun. Math. Phys. 96:15–57
    [Google Scholar]
  110. Wolfram S 1984c. Universality and complexity in cellular automata. Physica D 10:1–21–35
    [Google Scholar]
  111. Wolfram S 2002. A New Kind of Science Champaign, IL: Wolfram Media
  112. Wolpert L. 1969. Positional information and the spatial pattern of cellular differentiation. J. Theor. Biol. 25:1–47
    [Google Scholar]
  113. Wolpert L. 1971. Positional information and pattern formation. Curr. Top. Dev. Biol. 6:183–224
    [Google Scholar]
  114. Yamaguchi M, Yoshimoto E, Kondo S. 2007. Pattern regulation in the stripe of zebrafish suggests an underlying dynamic and autonomous mechanism. PNAS 104:4790–93
    [Google Scholar]
  115. Yamanaka H, Kondo S. 2014. In vitro analysis suggests that difference in cell movement during direct interaction can generate various pigment patterns in vivo. PNAS 111:1867–72
    [Google Scholar]
  116. Zakany S, Smirnov S, Milinkovitch MC. 2022. Lizard skin patterns and the Ising model. Phys. Rev. Lett. 128:048102
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120319-024414
Loading
/content/journals/10.1146/annurev-cellbio-120319-024414
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error