1932

Abstract

Animal tissues are made up of multiple cell types that are increasingly well-characterized, yet our understanding of the core principles that govern tissue organization is still incomplete. This is in part because many observable tissue characteristics, such as cellular composition and spatial patterns, are emergent properties, and as such, they cannot be explained through the knowledge of individual cells alone. Here we propose a complex systems theory perspective to address this fundamental gap in our understanding of tissue biology. We introduce the concept of cell categories, which is based on cell relations rather than cell identity. Based on these notions we then discuss common principles of tissue modularity, introducing compositional, structural, and functional tissue modules. Cell diversity and cell relations provide a basis for a new perspective on the underlying principles of tissue organization in health and disease.

[Erratum, Closure]

An erratum has been published for this article:
Erratum: Tissue Biology: In Search of a New Paradigm Approaches
Loading

Article metrics loading...

/content/journals/10.1146/annurev-cellbio-120420-113830
2023-10-16
2024-10-12
Loading full text...

Full text loading...

/deliver/fulltext/cellbio/39/1/annurev-cellbio-120420-113830.html?itemId=/content/journals/10.1146/annurev-cellbio-120420-113830&mimeType=html&fmt=ahah

Literature Cited

  1. Acloque H, Adams MS, Fishwick K, Bronner-Fraser M, Nieto MA. 2009. Epithelial-mesenchymal transitions: the importance of changing cell state in development and disease. J. Clin. Investig. 119:61438–49
    [Google Scholar]
  2. Adler M, Korem Kohanim Y, Tendler A, Mayo A, Alon U 2019. Continuum of gene-expression profiles provides spatial division of labor within a differentiated cell type. Cell Syst 8:143–52.e5
    [Google Scholar]
  3. Adler M, Mayo A, Zhou X, Franklin RA, Jacox JB et al. 2018. Endocytosis as a stabilizing mechanism for tissue homeostasis. PNAS 115:8e1926–35
    [Google Scholar]
  4. Adler M, Mayo A, Zhou X, Franklin RA, Meizlish ML et al. 2020. Principles of cell circuits for tissue repair and fibrosis. iScience 23:2100841
    [Google Scholar]
  5. Adler M, Moriel N, Goeva A, Avraham-Davidi I, Mages S et al. 2023. Emergence of division of labor in tissues through cell interactions and spatial cues. Cell Rep 42:5112412
    [Google Scholar]
  6. Arendt D. 2008. The evolution of cell types in animals: emerging principles from molecular studies. Nat. Rev. Genet. 9:11868–82
    [Google Scholar]
  7. Arendt D, Musser JM, Baker CVH, Bergman A, Cepko C et al. 2016. The origin and evolution of cell types. Nat. Rev. Genet. 17:12744–57
    [Google Scholar]
  8. Bailles A, Gehrels EW, Lecuit T. 2022. Mechanochemical principles of spatial and temporal patterns in cells and tissues. Annu. Rev. Cell Dev. Biol. 38:321–47
    [Google Scholar]
  9. Banchereau J, Briere F, Caux C, Davoust J, Lebecque S et al. 2000. Immunobiology of dendritic cells. Annu. Rev. Immunol. 18:767–811
    [Google Scholar]
  10. Bonnans C, Chou J, Werb Z. 2014. Remodelling the extracellular matrix in development and disease. Nat. Rev. Mol. Cell Biol. 15:12786–801
    [Google Scholar]
  11. Briscoe J, Small S. 2015. Morphogen rules: design principles of gradient-mediated embryo patterning. Development 142:233996–4009
    [Google Scholar]
  12. Brückner A, Badroos JM, Learsch RW, Yousefelahiyeh M, Kitchen SA, Parker J. 2021. Evolutionary assembly of cooperating cell types in an animal chemical defense system. Cell 184:256138–56.e28
    [Google Scholar]
  13. Brunet T, Albert M, Roman W, Coyle MC, Spitzer DC, King N 2021. A flagellate-to-amoeboid switch in the closest living relatives of animals. eLife 10:e61037
    [Google Scholar]
  14. Brunet T, King N. 2017. The origin of animal multicellularity and cell differentiation. Dev. Cell 43:2124–40
    [Google Scholar]
  15. Bryant DM, Mostov KE. 2008. From cells to organs: building polarized tissue. Nat. Rev. Mol. Cell Biol. 9:11887–901
    [Google Scholar]
  16. Burkhardt P. 2022. Ctenophores and the evolutionary origin(s) of neurons. Trends Neurosci 45:12878–80
    [Google Scholar]
  17. Camazine S, Deneubourg J-L, Franks NR, Sneyd J, Theraula G, Bonabeau E. 2001. Self-Organization in Biological Systems Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  18. Carroll SB, Grenier JK, Weatherbee SD. 2005. From DNA to Diversity: Molecular Genetics and the Evolution of Animal Design Malden, MA: Blackwell. , 2nd ed..
    [Google Scholar]
  19. Chang HY. 2009. Anatomic demarcation of cells: genes to patterns. Science 326:59571206–7
    [Google Scholar]
  20. Clark RA. 1990. Fibronectin matrix deposition and fibronectin receptor expression in healing and normal skin. J. Investig. Dermatol. 94:Suppl. 6128S–34S
    [Google Scholar]
  21. Cook DP, Wrana JL. 2022. A specialist-generalist framework for epithelial-mesenchymal plasticity in cancer. Trends Cancer 8:5358–68
    [Google Scholar]
  22. Dahmann C, Basler K. 1999. Compartment boundaries: at the edge of development. Trends Genet 15:8320–26
    [Google Scholar]
  23. Dahmann C, Oates AC, Brand M. 2011. Boundary formation and maintenance in tissue development. Nat. Rev. Genet. 12:143–55
    [Google Scholar]
  24. Denton AE, Roberts EW, Fearon DT. 2018. Stromal cells in the tumor microenvironment. Adv. Exp. Med. Biol. 1060:99–114
    [Google Scholar]
  25. Duffield JS, Lupher M, Thannickal VJ, Wynn TA. 2013. Host responses in tissue repair and fibrosis. Annu. Rev. Pathol. Mech. Dis. 8:241–76
    [Google Scholar]
  26. Dunn CW, Giribet G, Edgecombe GD, Hejnol A. 2014. Animal phylogeny and its evolutionary implications. Annu. Rev. Ecol. Evol. Syst. 45:371–95
    [Google Scholar]
  27. Erkenbrack EM, Maziarz JD, Griffith OW, Liang C, Chavan AR et al. 2018. The mammalian decidual cell evolved from a cellular stress response. PLOS Biol 16:8e2005594
    [Google Scholar]
  28. Fan X, Rudensky AY. 2016. Hallmarks of tissue-resident lymphocytes. Cell 164:61198–211
    [Google Scholar]
  29. Felix R, Hofstetter W, Wetterwald A, Cecchini MG, Fleisch H. 1994. Role of colony-stimulating factor-1 in bone metabolism. J. Cell. Biochem. 55:3340–49
    [Google Scholar]
  30. Folkman J. 2002. Role of angiogenesis in tumor growth and metastasis. Semin. Oncol. 29:6 Suppl. 1615–18
    [Google Scholar]
  31. Friedman G, Levi-Galibov O, David E, Bornstein C, Giladi A et al. 2020. Cancer-associated fibroblast compositions change with breast cancer progression linking the ratio of S100A4+ and PDPN+ CAFs to clinical outcome. Nat. Cancer 1:7692–708
    [Google Scholar]
  32. Fuchs E. 2007. Scratching the surface of skin development. Nature 445:7130834–42
    [Google Scholar]
  33. Galli SJ, Borregaard N, Wynn TA. 2011. Phenotypic and functional plasticity of cells of innate immunity: macrophages, mast cells and neutrophils. Nat. Immunol. 12:111035–44
    [Google Scholar]
  34. Geiger B, Yamada KM. 2011. Molecular architecture and function of matrix adhesions. Cold Spring Harb. Perspect. Biol. 3:5a005033
    [Google Scholar]
  35. Gilbert SF. 2010. Developmental Biology Sunderland, MA: Sinauer Assoc. , 9th ed..
    [Google Scholar]
  36. Gilmour D, Rembold M, Leptin M. 2017. From morphogen to morphogenesis and back. Nature 541:7637311–20
    [Google Scholar]
  37. Ginhoux F, Schultze JL, Murray PJ, Ochando J, Biswas SK. 2016. New insights into the multidimensional concept of macrophage ontogeny, activation and function. Nat. Immunol. 17:134–40
    [Google Scholar]
  38. Glen CM, Kemp ML, Voit EO. 2019. Agent-based modeling of morphogenetic systems: advantages and challenges. PLOS Comput. Biol. 15:3e1006577
    [Google Scholar]
  39. Grasse PP. 1960. The automatic regulations of collective behavior of social insect and “stigmergy.”. J. Psychol. Norm. Pathol. 57:1–10
    [Google Scholar]
  40. Grau-Bové X, Torruella G, Donachie S, Suga H, Leonard G et al. 2017. Dynamics of genomic innovation in the unicellular ancestry of animals. eLife 6:e26036
    [Google Scholar]
  41. Groves SM, Ireland A, Liu Q, Simmons AJ, Lau K et al. 2021. Cancer hallmarks define a continuum of plastic cell states between small cell lung cancer archetypes. bioRxiv 2021.01.22.427865. https://doi.org/10.1101/2021.01.22.427865
  42. Hart Y, Sheftel H, Hausser J, Szekely P, Ben-Moshe NB et al. 2015. Inferring biological tasks using Pareto analysis of high-dimensional data. Nat. Methods 12:3233–35
    [Google Scholar]
  43. Hartwell LH, Hopfield JJ, Leibler S, Murray AW. 1999. From molecular to modular cell biology. Nature 402:6761C47–52
    [Google Scholar]
  44. Hashimoto D, Chow A, Noizat C, Teo P, Beasley MB et al. 2013. Tissue-resident macrophages self-maintain locally throughout adult life with minimal contribution from circulating monocytes. Immunity 38:4792–804
    [Google Scholar]
  45. Hausser J, Alon U. 2020. Tumour heterogeneity and the evolutionary trade-offs of cancer. Nat. Rev. Cancer 20:4247–57
    [Google Scholar]
  46. Hausser J, Szekely P, Bar N, Zimmer A, Sheftel H et al. 2019. Tumor diversity and the trade-off between universal cancer tasks. Nat. Commun. 10:15423
    [Google Scholar]
  47. Heller E, Fuchs E. 2015. Tissue patterning and cellular mechanics. J. Cell Biol. 211:2219–31
    [Google Scholar]
  48. Hsu Y-C, Li L, Fuchs E. 2014. Emerging interactions between skin stem cells and their niches. Nat. Med. 20:8847–56
    [Google Scholar]
  49. Hynes RO, Naba A. 2012. Overview of the matrisome—an inventory of extracellular matrix constituents and functions. Cold Spring Harb. Perspect. Biol. 4:1a004903
    [Google Scholar]
  50. Kadler KE, Hill A, Canty-Laird EG. 2008. Collagen fibrillogenesis: fibronectin, integrins, and minor collagens as organizers and nucleators. Curr. Opin. Cell Biol. 20:5495–501
    [Google Scholar]
  51. Karamanos NK, Theocharis AD, Piperigkou Z, Manou D, Passi A et al. 2021. A guide to the composition and functions of the extracellular matrix. FEBS J 288:246850–912
    [Google Scholar]
  52. Kim J-M, Lin C, Stavre Z, Greenblatt MB, Shim J-H. 2020. Osteoblast-osteoclast communication and bone homeostasis. Cells 9:92073
    [Google Scholar]
  53. King N, Rokas A. 2017. Embracing uncertainty in reconstructing early animal evolution. Curr. Biol. 27:19R1081–88
    [Google Scholar]
  54. Kirschner M, Gerhart J, Mitchison T. 2000. Molecular “vitalism.”. Cell 100:179–88
    [Google Scholar]
  55. Kondo S, Miura T. 2010. Reaction-diffusion model as a framework for understanding biological pattern formation. Science 329:59991616–20
    [Google Scholar]
  56. Korem Y, Szekely P, Hart Y, Sheftel H, Hausser J et al. 2015. Geometry of the gene expression space of individual cells. PLOS Comput. Biol. 11:7e1004224
    [Google Scholar]
  57. Kotas ME, Medzhitov R. 2015. Homeostasis, inflammation, and disease susceptibility. Cell 160:5816–27
    [Google Scholar]
  58. Krafts KP. 2010. Tissue repair: the hidden drama. Organogenesis 6:4225–33
    [Google Scholar]
  59. LeBleu VS, Kalluri R. 2018. A peek into cancer-associated fibroblasts: origins, functions and translational impact. Dis. Model. Mech. 11:4dmm029447
    [Google Scholar]
  60. Lemos DR, Duffield JS. 2018. Tissue-resident mesenchymal stromal cells: implications for tissue-specific antifibrotic therapies. Sci. Transl. Med. 10:426eaan5174
    [Google Scholar]
  61. Leys SP, Riesgo A. 2012. Epithelia, an evolutionary novelty of metazoans. J. Exp. Zool. B 318:6438–47
    [Google Scholar]
  62. Li Y, Shen X-X, Evans B, Dunn CW, Rokas A. 2021. Rooting the animal tree of life. Mol. Biol. Evol. 38:104322–33
    [Google Scholar]
  63. Liang R, Ghaffari S. 2016. Advances in understanding the mechanisms of erythropoiesis in homeostasis and disease. Br. J. Haematol. 174:5661–73
    [Google Scholar]
  64. Love AC, Wagner GP. 2022. Co-option of stress mechanisms in the origin of evolutionary novelties. Evolution 76:3394–413
    [Google Scholar]
  65. Magie CR, Martindale MQ. 2008. Cell-cell adhesion in the cnidaria: insights into the evolution of tissue morphogenesis. Biol. Bull. 214:3218–32
    [Google Scholar]
  66. Mantovani A, Marchesi F, Malesci A, Laghi L, Allavena P. 2017. Tumour-associated macrophages as treatment targets in oncology. Nat. Rev. Clin. Oncol. 14:7399–416
    [Google Scholar]
  67. Maslow AH. 1943. A theory of human motivation. Psychol. Rev. 50:4370–96
    [Google Scholar]
  68. Meinhardt H, Gierer A. 2000. Pattern formation by local self-activation and lateral inhibition. BioEssays 22:8753–60
    [Google Scholar]
  69. Meizlish ML, Franklin RA, Zhou X, Medzhitov R. 2021. Tissue homeostasis and inflammation. Annu. Rev. Immunol. 39:557–81
    [Google Scholar]
  70. Miller JH, Page SE. 2007. Complex Adaptive Systems: An Introduction to Computational Models of Social Life Princeton, NJ: Princeton Univ. Press
    [Google Scholar]
  71. Miller PW, Clarke DN, Weis WI, Lowe CJ, Nelson WJ. 2013. The evolutionary origin of epithelial cell-cell adhesion mechanisms. Curr. Top. Membr. 72:267–311
    [Google Scholar]
  72. Miyara S, Adler M, Bassat E, Divinsky Y, Umansky KB et al. 2023. Circuit to target approach defines an autocrine myofibroblast loop that drives cardiac fibrosis. bioRxiv 2023.01.01.522422. https://doi.org/10.1101/2023.01.01.522422
  73. Moroz LL. 2015. Convergent evolution of neural systems in ctenophores. J. Exp. Biol. 218:Part 4598–611
    [Google Scholar]
  74. Musser JM, Schippers KJ, Nickel M, Mizzon G, Kohn AB et al. 2021. Profiling cellular diversity in sponges informs animal cell type and nervous system evolution. Science 374:6568717–23
    [Google Scholar]
  75. Nelson CM, Bissell MJ. 2006. Of extracellular matrix, scaffolds, and signaling: Tissue architecture regulates development, homeostasis, and cancer. Annu. Rev. Cell Dev. Biol. 22:287–309
    [Google Scholar]
  76. Newman SA, Bhat R. 2009. Dynamical patterning modules: a “pattern language” for development and evolution of multicellular form. Int. J. Dev. Biol. 53:5–6693–705
    [Google Scholar]
  77. O'Brien J, Lyons T, Monks J, Lucia MS, Wilson RS et al. 2010. Alternatively activated macrophages and collagen remodeling characterize the postpartum involuting mammary gland across species. Am. J. Pathol. 176:31241–55
    [Google Scholar]
  78. Okabe Y, Medzhitov R. 2016. Tissue biology perspective on macrophages. Nat. Immunol. 17:19–17
    [Google Scholar]
  79. Oyler-Yaniv A, Oyler-Yaniv J, Whitlock BM, Liu Z, Germain RN et al. 2017. A tunable diffusion-consumption mechanism of cytokine propagation enables plasticity in cell-to-cell communication in the immune system. Immunity 46:4609–20
    [Google Scholar]
  80. Partch CL, Green CB, Takahashi JS. 2014. Molecular architecture of the mammalian circadian clock. Trends Cell Biol 24:290–99
    [Google Scholar]
  81. Paşa SP, Arlotta P, Bateup HS, Camp JG, Cappello S et al. 2022. A nomenclature consensus for nervous system organoids and assembloids. Nature 609:7929907–10
    [Google Scholar]
  82. Pechenik JA. 2015. Biology of the Invertebrates New York: McGraw-Hill. , 7th ed..
    [Google Scholar]
  83. Perdiguero EG, Geissmann F. 2016. The development and maintenance of resident macrophages. Nat. Immunol. 17:12–8
    [Google Scholar]
  84. Perumal S, Antipova O, Orgel JPRO. 2008. Collagen fibril architecture, domain organization, and triple-helical conformation govern its proteolysis. PNAS 105:82824–29
    [Google Scholar]
  85. Pope SD, Medzhitov R. 2018. Emerging principles of gene expression programs and their regulation. Mol. Cell 71:3389–97
    [Google Scholar]
  86. Potente M, Mäkinen T. 2017. Vascular heterogeneity and specialization in development and disease. Nat. Rev. Mol. Cell Biol. 18:8477–94
    [Google Scholar]
  87. Pugh CW, Ratcliffe PJ. 2003. Regulation of angiogenesis by hypoxia: role of the HIF system. Nat. Med. 9:6677–84
    [Google Scholar]
  88. Raff MC. 1992. Social controls on cell survival and cell death. Nature 356:6368397–400
    [Google Scholar]
  89. Ricard-Blum S. 2011. The collagen family. Cold Spring Harb. Perspect. Biol. 3:1a004978
    [Google Scholar]
  90. Ross MH, Pawlina W. 2011. Histology: A Text and Atlas: With Correlated Cell and Molecular Biology Philadelphia: Wolters Kluwer/Lippincott Williams & Wilkins Health. , 6th ed..
    [Google Scholar]
  91. Sarrazin S, Lamanna WC, Esko JD. 2011. Heparan sulfate proteoglycans. Cold Spring Harb. Perspect. Biol. 3:7a004952
    [Google Scholar]
  92. Schlosser G, Wagner GP, eds. 2004. Modularity in Development and Evolution Chicago: Univ. Chicago Press
    [Google Scholar]
  93. Sebe-Pedros A, Chomsky E, Pang K, Lara-Astiaso D, Gaiti F et al. 2018. Early metazoan cell type diversity and the evolution of multicellular gene regulation. Nat. Ecol. Evol. 2:71176–88
    [Google Scholar]
  94. Serra D, Mayr U, Boni A, Lukonin I, Rempfler M et al. 2019. Self-organization and symmetry breaking in intestinal organoid development. Nature 569:775466–72
    [Google Scholar]
  95. Shubin N, Tabin C, Carroll S. 2009. Deep homology and the origins of evolutionary novelty. Nature 457:7231818–23
    [Google Scholar]
  96. Smith CL, Varoqueaux F, Kittelmann M, Azzam RN, Cooper B et al. 2014. Novel cell types, neurosecretory cells, and body plan of the early-diverging metazoan Trichoplax adhaerens. Curr. Biol. 24:141565–72
    [Google Scholar]
  97. Solé RV, Goodwin BC. 2000. Signs of Life: How Complexity Pervades Biology New York: Basic Books
    [Google Scholar]
  98. Takizawa H, Boettcher S, Manz MG. 2012. Demand-adapted regulation of early hematopoiesis in infection and inflammation. Blood 119:132991–3002
    [Google Scholar]
  99. Telford MJ, Moroz LL, Halanych KM. 2016. A sisterly dispute. Nature 529:7586286–87
    [Google Scholar]
  100. Thiery JP, Sleeman JP. 2006. Complex networks orchestrate epithelial-mesenchymal transitions. Nat. Rev. Mol. Cell Biol. 7:2131–42
    [Google Scholar]
  101. Turing AM. 1990. 1953. The chemical basis of morphogenesis. Bull. Math. Biol. 52:1–2153–97
    [Google Scholar]
  102. Tuveson D, Clevers H. 2019. Cancer modeling meets human organoid technology. Science 364:6444952–55
    [Google Scholar]
  103. Tyler S. 2003. Epithelium–the primary building block for metazoan complexity. Integr. Comp. Biol. 43:155–63
    [Google Scholar]
  104. Veglia F, Perego M, Gabrilovich D. 2018. Myeloid-derived suppressor cells coming of age. Nat. Immunol. 19:2108–19
    [Google Scholar]
  105. Vivier E, Artis D, Colonna M, Diefenbach A, Di Santo JP et al. 2018. Innate lymphoid cells: 10 years on. Cell 174:51054–66
    [Google Scholar]
  106. Waddington CH. 1942. Canalization of development and the inheritance of acquired characters. Nature 150:3811563–65
    [Google Scholar]
  107. Waddington CH. 1953. Genetic assimilation of an acquired character. Evolution 7:2118–26
    [Google Scholar]
  108. Wagner GP, Pavlicev M, Cheverud JM. 2007. The road to modularity. Nat. Rev. Genet. 8:12921–31
    [Google Scholar]
  109. Wang S, Li K, Pickholz E, Dobie R, Matchett KP et al. 2023. An autocrine signaling circuit in hepatic stellate cells underlies advanced fibrosis in nonalcoholic steatohepatitis. Sci. Transl. Med. 15:677eadd3949
    [Google Scholar]
  110. Whelan NV, Kocot KM, Moroz LL, Halanych KM. 2015. Error, signal, and the placement of Ctenophora sister to all other animals. PNAS 112:185773–78
    [Google Scholar]
  111. Wiese S, Karus M, Faissner A. 2012. Astrocytes as a source for extracellular matrix molecules and cytokines. Front. Pharmacol. 3:120
    [Google Scholar]
  112. Wolpert L, Tickle C, Martinez Arias A, eds. 2015. Principles of Development New York: Oxford Univ. Press. , 5th ed..
    [Google Scholar]
  113. Wooldridge MJ. 2002. An Introduction to Multiagent Systems New York: Wiley
    [Google Scholar]
  114. Wynn TA, Chawla A, Pollard JW. 2013. Macrophage biology in development, homeostasis and disease. Nature 496:7446445–55
    [Google Scholar]
  115. Yurchenco PD. 2011. Basement membranes: cell scaffoldings and signaling platforms. Cold Spring Harb. Perspect. Biol. 3:2a004911
    [Google Scholar]
  116. Zhong C, Chrzanowska-Wodnicka M, Brown J, Shaub A, Belkin AM, Burridge K. 1998. Rho-mediated contractility exposes a cryptic site in fibronectin and induces fibronectin matrix assembly. J. Cell Biol. 141:2539–51
    [Google Scholar]
  117. Zhou X, Franklin RA, Adler M, Jacox JB, Bailis W et al. 2018. Circuit design features of a stable two-cell system. Cell 172:4744–57.e17
    [Google Scholar]
  118. Zwick RK, Guerrero-Juarez CF, Horsley V, Plikus MV. 2018. Anatomical, physiological, and functional diversity of adipose tissue. Cell Metab 27:168–83
    [Google Scholar]
/content/journals/10.1146/annurev-cellbio-120420-113830
Loading
/content/journals/10.1146/annurev-cellbio-120420-113830
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error